Structural Features of the Pseudomonas fluorescens Bio LapG-Dependent Cleavage, Biofilm Formation, and Cell

Journal of Bacteriology 196, 2775-2788

DOI: 10.1128/jb.01629-14

Citation Report

#	Article	IF	CITATIONS
2	Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF. Microbiology (United Kingdom), 2014, 160, 2681-2693.	1.8	27
4	The LapG protein plays a role in <i>Pseudomonas aeruginosa</i> biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. MicrobiologyOpen, 2015, 4, 917-930.	3.0	63
5	Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis. Frontiers in Microbiology, 2015, 6, 790.	3. 5	42
6	The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus. PLoS Pathogens, 2015, 11, e1005192.	4.7	37
7	News and views on protein secretion systems. , 2015, , 77-108.		4
8	In situ proteolysis of the <i>Vibrio cholerae</i> matrix protein RbmA promotes biofilm recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10491-10496.	7.1	48
9	Type I Protein Secretion—Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus, 2016, 7, .	5.4	48
10	Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate. Journal of Bacteriology, 2016, 198, 66-76.	2.2	44
11	Influence of twitching and swarming motilities on biofilm formation in Pseudomonas strains. Archives of Microbiology, 2017, 199, 677-682.	2.2	20
12	Computational and Experimental Evaluation of Designed \hat{l}^2 -Cap Hairpins Using Molecular Simulations and Kinetic Network Models. Journal of Chemical Information and Modeling, 2017, 57, 1609-1620.	5.4	9
13	Biofilm formation by Paracoccus denitrificans requires a type I secretion system-dependent adhesin BapA. FEMS Microbiology Letters, 2017, 364, .	1.8	17
14	In silico analysis of ChtBD3 domain to find its role in bacterial pathogenesis and beyond. Microbial Pathogenesis, 2017, 110, 519-526.	2.9	7
15	Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans. Scientific Reports, 2017, 7, 7137.	3.3	43
16	Structure of a 1.5-MDa adhesin that binds its Antarctic bacterium to diatoms and ice. Science Advances, 2017, 3, e1701440.	10.3	83
17	A Symphony of Cyclases: Specificity in Diguanylate Cyclase Signaling. Annual Review of Microbiology, 2017, 71, 179-195.	7.3	82
18	Critical review on biofilm methods. Critical Reviews in Microbiology, 2017, 43, 313-351.	6.1	693
19	Plant Growth-Promoting Genes can Switch to be Virulence Factors via Horizontal Gene Transfer. Microbial Ecology, 2018, 76, 579-583.	2.8	9
20	Conserved structural features anchor biofilmâ€associated <scp>RTX</scp> –adhesins to the outer membrane of bacteria. FEBS Journal, 2018, 285, 1812-1826.	4.7	18

#	Article	IF	CITATIONS
21	An N-Terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: a Novel Subfamily of Type I Secretion Systems. Journal of Bacteriology, 2018, 200, .	2.2	44
22	Co-opting the Lap System of <i>Pseudomonas fluorescens</i> To Reversibly Customize Bacterial Cell Surfaces. ACS Synthetic Biology, 2018, 7, 2612-2617.	3.8	8
23	CdrA Interactions within the Pseudomonas aeruginosa Biofilm Matrix Safeguard It from Proteolysis and Promote Cellular Packing. MBio, $2018,9,1$	4.1	76
24	Understanding the intracellular-to-extracellular localization switch of polyhydroxybutyrate polymerase in pseudomonas backgrounds as a microevolutionary process. Journal of Theoretical Biology, 2018, 456, 29-33.	1.7	1
25	Bacterial adhesion at the single-cell level. Nature Reviews Microbiology, 2018, 16, 616-627.	28.6	380
26	<i>Acinetobacter</i> : an emerging pathogen with a versatile secretome. Emerging Microbes and Infections, 2018, 7, 1-15.	6.5	81
27	Type 1 Does the Two-Step: Type 1 Secretion Substrates with a Functional Periplasmic Intermediate. Journal of Bacteriology, 2018, 200, .	2,2	44
28	Exoelectrogens for Microbial Fuel Cells \hat{a}^{-} , 2018, , 193-230.		2
29	Structure and functional analysis of a bacterial adhesin sugar-binding domain. PLoS ONE, 2019, 14, e0220045.	2.5	11
30	Streamlined <i>Pseudomonas taiwanensis VLB120 Chassis Strains with Improved Bioprocess Features. ACS Synthetic Biology, 2019, 8, 2036-2050.</i>	3.8	28
31	Recent perspectives on the virulent factors and treatment options for multidrug-resistant <i>Acinetobacter baumannii</i> . Critical Reviews in Microbiology, 2019, 45, 315-333.	6.1	24
32	RTX Adhesins are Key Bacterial Surface Megaproteins in the Formation of Biofilms. Trends in Microbiology, 2019, 27, 453-467.	7.7	30
33	LapG mediates biofilm dispersal in <i>Vibrio fischeri</i> by controlling maintenance of the VCBSâ€containing adhesin LapV. Molecular Microbiology, 2020, 114, 742-761.	2.5	16
34	From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Annual Review of Microbiology, 2020, 74, 607-631.	7.3	39
35	Growth by Insertion: The Family of Bacterial DDxP Proteins. International Journal of Molecular Sciences, 2020, 21, 9184.	4.1	0
36	IolR, a negative regulator of the myo-inositol metabolic pathway, inhibits cell autoaggregation and biofilm formation by downregulating RpmA in Aeromonas hydrophila. Npj Biofilms and Microbiomes, 2020, 6, 22.	6.4	18
37	MapA, a Second Large RTX Adhesin Conserved across the Pseudomonads, Contributes to Biofilm Formation by Pseudomonas fluorescens. Journal of Bacteriology, 2020, 202, .	2.2	18
38	Helicobacter pylori Biofilm Confers Antibiotic Tolerance in Part via A Protein-Dependent Mechanism. Antibiotics, 2020, 9, 355.	3.7	20

3

#	Article	IF	CITATIONS
39	Detecting <i>Escherichia coli</i> Biofilm Development Stages on Gold and Titanium by Quartz Crystal Microbalance. ACS Omega, 2020, 5, 2295-2302.	3.5	22
40	Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Computational and Structural Biotechnology Journal, 2021, 19, 2796-2805.	4.1	10
41	Synergistic Effect of Biosynthesized Silver Nanoparticles and Natural Phenolic Compounds against Drug-Resistant Fish Pathogens and Their Cytotoxicity: An In Vitro Study. Marine Drugs, 2021, 19, 22.	4.6	16
42	Computational prediction of secreted proteins in gram-negative bacteria. Computational and Structural Biotechnology Journal, 2021, 19, 1806-1828.	4.1	23
43	Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons. Biology, 2021, 10, 51.	2.8	77
45	Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chemical Reviews, 2021, 121, 5479-5596.	47.7	103
46	Initial adhesion suppression of biofilm-forming and copper-tolerant bacterium Variovorax sp. on laser microtextured copper surfaces. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111656.	5.0	7
47	Loss of the Bacterial Flagellar Motor Switch Complex upon Cell Lysis. MBio, 2021, 12, e0029821.	4.1	6
48	Comparative Genomics Provides Insight into the Function of Broad-Host Range Sponge Symbionts. MBio, 2021, 12, e0157721.	4.1	5
51	LapF and Its Regulation by Fis Affect the Cell Surface Hydrophobicity of Pseudomonas putida. PLoS ONE, 2016, 11, e0166078.	2.5	20
52	Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP. ELife, 2014, 3, e03650.	6.0	41
53	Disruption of <i>de novo </i> purine biosynthesis in <i> Pseudomonas fluorescens </i> Pf0-1 leads to reduced biofilm formation and a reduction in cell size of surface-attached but not planktonic cells. PeerJ, 2016, 4, e1543.	2.0	24
55	Zwitterionic Peptides Reduce Accumulation of Marine and Freshwater Biofilm Formers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 49682-49691.	8.0	20
58	Effects of biofilm formation in bacteria from different perspectives. Yaftah, 2019, 6, 70-78.	0.2	1
59	PangenomeNet: a pan-genome-based network reveals functional modules on antimicrobial resistome for Escherichia coli strains. BMC Bioinformatics, 2021, 22, 548.	2.6	7
61	Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. ELife, 2021, 10 , .	6.0	25
62	Biofilm interceded microbial prospecting of bioremediation. , 2022, , 371-391.		1
63	T1SEstacker: A Tri-Layer Stacking Model Effectively Predicts Bacterial Type 1 Secreted Proteins Based on C-Terminal Non-repeats-in-Toxin-Motif Sequence Features. Frontiers in Microbiology, 2021, 12, 813094.	3.5	3

#	Article	IF	Citations
64	Biotechnological applications of type 1 secretion systems. Biotechnology Advances, 2021, 53, 107864.	11.7	8
65	Novel transient cytoplasmic rings stabilize assembling bacterial flagellar motors. EMBO Journal, 2022, 41, e109523.	7.8	10
66	Nonmotile Subpopulations of <i>Pseudomonas aeruginosa</i> Repress Flagellar Motility in Motile Cells through a Type IV Pilus- and Pel-Dependent Mechanism. Journal of Bacteriology, 2022, 204, e0052821.	2.2	5
67	Pseudomonas putida Biofilm Depends on the vWFa-Domain of LapA in Peptides-Containing Growth Medium. International Journal of Molecular Sciences, 2022, 23, 5898.	4.1	3
68	Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	239
69	The <i>In Vitro</i> Replication Cycle of Achromobacter xylosoxidans and Identification of Virulence Genes Associated with Cytotoxicity in Macrophages. Microbiology Spectrum, 2022, 10, .	3.0	7
70	Redefining the bacterial Type I protein secretion system. Advances in Microbial Physiology, 2023, , 155-204.	2.4	3
71	Methods for the Visualization of Multispecies Biofilms. Springer Series on Biofilms, 2023, , 35-78.	0.1	0
72	Identification of the adhesive domain of AtaA from Acinetobacter sp. Tol 5 and its application in immobilizing Escherichia coli. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	1
73	M.tb-Rv2462c of Mycobacterium tuberculosis Shows Chaperone-like Activity and Plays a Role in Stress Adaptation and Immunomodulation. Biology, 2023, 12, 69.	2.8	0
74	Becoming settlers: Elements and mechanisms for surface colonization by <i>Pseudomonas putida</i> Environmental Microbiology, 2023, 25, 1575-1593.	3.8	4
76	The regulator FleQ both transcriptionally and post-transcriptionally regulates the level of RTX adhesins of <i>Pseudomonas fluorescens</i> . Journal of Bacteriology, 2023, 205, .	2.2	0
78	Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits. Plants, 2023, 12, 3398.	3.5	0
79	The phosphodiesterase <scp>DibA</scp> interacts with the <scp>câ€diâ€GMP</scp> receptor <scp>LapD</scp> and specifically regulates biofilm in <i>Pseudomonas putida</i> Molecular Microbiology, 2024, 121, 1-17.	2.5	0
81	The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochemical Journal, 2024, 481, 245-263.	3.7	0
82	Reconstitution of a biofilm adhesin system from a sulfate-reducing bacterium in <i>Pseudomonas fluorescens</i> . Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
83	The global regulation of câ€diâ€GMP and cAMP in bacteria. , 2024, 3, 42-56.		0