Insights into Morphology and Disease from the Dog Ger

Annual Review of Cell and Developmental Biology 30, 535-560

DOI: 10.1146/annurev-cellbio-100913-012927

Citation Report

#	Article	IF	CITATIONS
1	Insights into Morphology and Disease from the Dog Genome Project. Annual Review of Cell and Developmental Biology, 2014, 30, 535-560.	9.4	71
2	Transcriptome Analysis in Domesticated Species: Challenges and Strategies. Bioinformatics and Biology Insights, 2015, 9S4, BBI.S29334.	2.0	17
3	Visualization of Genome Diversity in German Shepherd Dogs. Bioinformatics and Biology Insights, 2015, 9s2, BBI.S30524.	2.0	6
4	Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease. Orphanet Journal of Rare Diseases, 2015, 10, 107.	2.7	43
5	Our time is now – how companion animal veterinarians can transform biomedical science. Journal of Small Animal Practice, 2015, 56, 689-692.	1.2	2
6	Stanniocalcin-2 Inhibits Mammalian Growth by Proteolytic Inhibition of the Insulin-like Growth Factor Axis. Journal of Biological Chemistry, 2015, 290, 3430-3439.	3.4	110
7	The effect of genetic bottlenecks and inbreeding on the incidence of two major autoimmune diseases in standard poodles, sebaceous adenitis and Addison's disease. Canine Genetics and Epidemiology, 2015, 2, 14.	2.8	25
8	Comparative Analysis of Genome Diversity in Bullmastiff Dogs. PLoS ONE, 2016, 11, e0147941.	2.5	26
9	Whole genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic trait mapping. DMM Disease Models and Mechanisms, 2016, 9, 1445-1460.	2.4	48
10	The dog aging project: translational geroscience in companion animals. Mammalian Genome, 2016, 27, 279-288.	2.2	111
11	Size regulation blossoms in Kobe. Development (Cambridge), 2016, 143, 2691-2695.	2.5	3
12	Evolutionary History, Selective Sweeps, and Deleterious Variation in the Dog. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 73-96.	8.3	37
13	Commonalities in Development of Pure Breeds and Population Isolates Revealed in the Genome of the Sardinian Fonni's Dog. Genetics, 2016, 204, 737-755.	2.9	33
14	The population genomics of rhesus macaques (<i>Macaca mulatta</i>) based on whole-genome sequences. Genome Research, 2016, 26, 1651-1662.	5.5	101
15	A framework for movement disorders in canine neurology. Veterinary Journal, 2016, 214, 122-123.	1.7	1
16	The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Developmental Biology, 2016, 415, 171-187.	2.0	61
18	Comparative genomics of canine hemoglobin genes reveals primacy of beta subunit delta in adult carnivores. BMC Genomics, 2017, 18, 141.	2.8	9
19	The bald and the beautiful: hairlessness in domestic dog breeds. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150488.	4.0	23

CITATION REPORT

#	Article	IF	CITATIONS
20	Demographic history, selection and functional diversity of the canine genome. Nature Reviews Genetics, 2017, 18, 705-720.	16.3	125
21	A numerical classification system for cleft lip and palate in the dog. Journal of Small Animal Practice, 2017, 58, 610-614.	1.2	5
22	Computational derivation of a molecular framework for hair follicle biology from disease genes. Scientific Reports, 2017, 7, 16303.	3.3	4
24	Cleft Lip and Palate in the Dog: Medical and Genetic Aspects. , 0, , .		9
25	Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body weight, muscling and back fat thickness. PLoS Genetics, 2017, 13, e1006661.	3.5	51
26	Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. Veterinary Sciences, 2017, 4, 24.	1.7	23
27	Animal models of smoke inhalation injury and related acute and chronic lung diseases. Advanced Drug Delivery Reviews, 2018, 123, 107-134.	13.7	22
28	Feline low-grade alimentary lymphoma: an emerging entity and a potential animal model for human disease. BMC Veterinary Research, 2018, 14, 306.	1.9	53
29	Genetic selection of athletic success in sport-hunting dogs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7212-E7221.	7.1	54
30	Animal Models for Preclinical Development of Allogeneic Hematopoietic Cell Transplantation. ILAR Journal, 2018, 59, 263-275.	1.8	6
31	Deleterious alleles in the context of domestication, inbreeding, and selection. Evolutionary Applications, 2019, 12, 6-17.	3.1	94
32	Genetic dissection of complex behaviour traits in German Shepherd dogs. Heredity, 2019, 123, 746-758.	2.6	19
33	Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Frontiers in Genetics, 2019, 10, 948.	2.3	36
34	Genome-wide association studies and genetic testing: understanding the science, success, and future of a rapidly developing field. Journal of the American Veterinary Medical Association, 2019, 255, 1126-1136.	0.5	10
35	Network analysis of canine brain morphometry links tumour risk to oestrogen deficiency and accelerated brain ageing. Scientific Reports, 2019, 9, 12506.	3.3	11
36	BarkBase: Epigenomic Annotation of Canine Genomes. Genes, 2019, 10, 433.	2.4	25
37	Hypoplasia of ribs associated with cleft palate, cleft lip, and unilateral renal agenesis in a neonate dog of undefined breed. Semina:Ciencias Agrarias, 2019, 40, 497.	0.3	0
38	Canine Cancer Genomics: Lessons for Canine and Human Health. Annual Review of Animal Biosciences, 2019, 7, 449-472.	7.4	47

#	Article	IF	CITATIONS
39	Hypothalamic transcriptome of tame and aggressive silver foxes (<scp><i>Vulpes vulpes</i></scp>) identifies gene expression differences shared across brain regions. Genes, Brain and Behavior, 2020, 19, e12614.	2.2	24
40	Fast speciations and slow genes: uncovering the root of living canids. Biological Journal of the Linnean Society, 2020, 129, 492-504.	1.6	4
41	Unravelling selection signatures in a single dog breed suggests recent selection for morphological and behavioral traits. Genetics & Genomics Next, 2020, 1, e10024.	1.5	10
42	Genomic diversity and population structure of the Leonberger dog breed. Genetics Selection Evolution, 2020, 52, 61.	3.0	9
43	Genome Diversity and the Origin of the Arabian Horse. Scientific Reports, 2020, 10, 9702.	3.3	47
44	Do dog breeds differ in pain sensitivity? Veterinarians and the public believe they do. PLoS ONE, 2020, 15, e0230315.	2.5	14
45	The German Shorthair Pointer Dog Breed (Canis lupus familiaris): Genomic Inbreeding and Variability. Animals, 2020, 10, 498.	2.3	6
46	Impacts of oocyte/zygote timing for inÂvitro fertilization and gene editing in the dog. Theriogenology, 2020, 150, 347-352.	2.1	3
47	Rare and unique adaptations to cancer in domesticated species: An untapped resource?. Evolutionary Applications, 2020, 13, 1605-1614.	3.1	11
48	Towards Forensic DNA Phenotyping for Predicting Visible Traits in Dogs. Genes, 2021, 12, 908.	2.4	6
49	Healthy, Active Aging for People and Dogs. Frontiers in Veterinary Science, 2021, 8, 655191.	2.2	8
50	Did Dog Domestication Contribute to Language Evolution?. Frontiers in Psychology, 2021, 12, 695116.	2.1	3
51	Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes. PLoS ONE, 2015, 10, e0145199.	2.5	9
52	Frequency of five disease-causing genetic mutations in a large mixed-breed dog population (2011–2012). PLoS ONE, 2017, 12, e0188543.	2.5	5
53	An epigenetic aging clock for dogs and wolves. Aging, 2017, 9, 1055-1068.	3.1	125
54	Genetic Characterization of the Yugoslavian Shepherd Dog – Sharplanina, a Livestock Guard Dog from the Western Balkans. Acta Veterinaria, 2020, 70, 329-345.	0.5	2
57	Tracing the Origin of the RSPO2 Long-Hair Allele and Epistatic Interaction between FGF5 and RSPO2 in Sapsaree Dog. Genes, 2022, 13, 102.	2.4	2
58	Runs of homozygosity in Swiss goats reveal genetic changes associated with domestication and modern selection. Genetics Selection Evolution, 2022, 54, 6	3.0	14

CITATION REPORT

	CITATION R	Citation Report		
#	Article	IF	CITATIONS	
59	Increased risk of cancer in dogs and humans: A consequence of recent extension of lifespan beyond evolutionarily determined limitations?. Aging and Cancer, 2022, 3, 3-19.	1.6	11	
60	Poly(A) RNA sequencing reveals age-related differences in the prefrontal cortex of dogs. GeroScience, 2022, , 1.	4.6	2	
62	Mutations in melanocortin-4 receptor: From fish to men. Progress in Molecular Biology and Translational Science, 2022, , 215-257.	1.7	5	
63	Investigation on mRNA expression and genetic variation within goat <i>SMAD2</i> gene and its association with litter size. Animal Biotechnology, 2023, 34, 2111-2119.	1.5	3	
64	Genetics of domesticated behavior in dogs and foxes. , 2022, , 275-323.		0	
65	Balancing at the Borderline of a Breed: A Case Study of the Hungarian Short-Haired Vizsla Dog Breed, Definition of the Breed Profile Using Simple SNP-Based Methods. Genes, 2022, 13, 2022.	2.4	3	
66	Pleiotropic functions of chordin gene causing drastic morphological changes in ornamental goldfish. Scientific Reports, 2022, 12, .	3.3	2	
67	Large-Scale Polymorphism Analysis of Dog Leukocyte Antigen Class I and Class II Genes (DLA-88,) Tj ETQq1 1 0.7 2023, 12, 809.	84314 rgB ⁻ 4.1	T /Overlock 2	
68	Identification of Genomic Signatures in Bullmastiff Dogs Using Composite Selection Signals Analysis of 23 Purebred Clades. Animals, 2023, 13, 1149.	2.3	1	
69	The Shepherd and the Hunter: A Genomic Comparison of Italian Dog Breeds. Animals, 2023, 13, 2438.	2.3	0	
71	A Putative Locus for Cranial-Size Variability of the Fox (Vulpes vulpes). Russian Journal of Genetics, 2023, 59, 466-482.	0.6	0	