Prevalence of the fosfomycin-resistance determinant, fo clinical isolates from China

Journal of Medical Microbiology 63, 1484-1489 DOI: 10.1099/jmm.0.077701-0

Citation Report

#	Article	IF	CITATIONS
1	High Prevalence of <i>vanM</i> in Vancomycin-Resistant Enterococcus faecium Isolates from Shanghai, China. Antimicrobial Agents and Chemotherapy, 2015, 59, 7795-7798.	1.4	34
2	Prevalence of Fosfomycin Resistance and Mutations in murA, glpT, and uhpT in Methicillin-Resistant Staphylococcus aureus Strains Isolated from Blood and Cerebrospinal Fluid Samples. Frontiers in Microbiology, 2015, 6, 1544.	1.5	39
3	Fosfomycin: Resurgence of an old companion. Journal of Infection and Chemotherapy, 2016, 22, 273-280.	0.8	95
4	High prevalence of fosfomycin resistance gene <i>fosA3</i> in <i>bla</i> _{CTX-M} -harbouring <i>Escherichia coli</i> from urine in a Chinese tertiary hospital during 2010–2014. Epidemiology and Infection, 2017, 145, 818-824.	1.0	34
5	Mutations of the Transporter Proteins ClpT and UhpT Confer Fosfomycin Resistance in Staphylococcus aureus. Frontiers in Microbiology, 2017, 8, 914.	1.5	35
6	Identification of Novel Conjugative Plasmids with Multiple Copies of fosB that Confer High-Level Fosfomycin Resistance to Vancomycin-Resistant Enterococci. Frontiers in Microbiology, 2017, 8, 1541.	1.5	21
7	Prevalence of Fosfomycin Resistance in Methicillin-Resistant <i>Staphylococcus aureus</i> Isolated from Patients in a University Hospital in China from 2013 to 2015. Japanese Journal of Infectious Diseases, 2018, 71, 312-314.	0.5	11
8	Mobile Genetic Elements Associated with Antimicrobial Resistance. Clinical Microbiology Reviews, 2018, 31, .	5.7	1,355
9	Antimicrobial resistance profiles of Listeria monocytogenes isolated from chicken meat in Fukuoka, Japan. International Journal of Food Microbiology, 2019, 304, 49-57.	2.1	23
10	Antibiotic resistance gene reservoir in live poultry markets. Journal of Infection, 2019, 78, 445-453.	1.7	40
11	Antimicrobial-resistant CC17 Enterococcus faecium: The past, the present and the future. Journal of Global Antimicrobial Resistance, 2019, 16, 36-47.	0.9	106
12	Molecular mechanisms and epidemiology of fosfomycin resistance in enterococci isolated from patients at a teaching hospital in China, 2013–2016. Journal of Global Antimicrobial Resistance, 2020, 20, 191-196.	0.9	11
13	In vitro activity of radezolid against Enterococcus faecium and compared with linezolid. Journal of Antibiotics, 2020, 73, 845-851.	1.0	6
14	Prevalence of fosfomycin resistance and gene mutations in clinical isolates of methicillin-resistant Staphylococcus aureus. Antimicrobial Resistance and Infection Control, 2020, 9, 135.	1.5	14
15	Characterization of clinical enterococci isolates, focusing on the vancomycin-resistant enterococci in a tertiary hospital in China: based on the data from 2013 to 2018. BMC Infectious Diseases, 2020, 20, 356.	1.3	22
16	First report of mecC gene in clinical methicillin resistant S. aureus (MRSA) from tertiary care hospital Islamabad, Pakistan. Journal of Infection and Public Health, 2020, 13, 1501-1507.	1.9	17
17	Molecular Mechanisms and Epidemiology of Fosfomycin Resistance in Staphylococcus aureus Isolated From Patients at a Teaching Hospital in China. Frontiers in Microbiology, 2020, 11, 1290.	1.5	17
18	Molecular characterisation of methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) Staphylococcus aureus isolated from bovine subclinical mastitis and Egyptian raw milk cheese. International Dairy Journal, 2020, 104, 104646.	1.5	25

ITATION REDOD

CITATION REPORT

#	Article	IF	CITATIONS
19	Fosfomycin: mechanisms and the increasing prevalence of resistance. Journal of Medical Microbiology, 2019, 68, 11-25.	0.7	39
20	Characterization of Fosfomycin Resistance Gene, fosB, in Methicillin-Resistant Staphylococcus aureus Isolates. PLoS ONE, 2016, 11, e0154829.	1.1	42
21	First Report of the Plasmid-mediated fosB Gene in Enterococcus faecalis from Pigs. Genes, 2021, 12, 1684.	1.0	4
23	Evolution of Enterococcus faecium in Response to a Combination of Daptomycin and Fosfomycin Reveals Distinct and Diverse Adaptive Strategies. Antimicrobial Agents and Chemotherapy, 2022, 66, e0233321.	1.4	6
24	Asp50Glu mutation in MurA results in fosfomycin resistance in Enterococcus faecium. Journal of Global Antimicrobial Resistance, 2022, 30, 50-55.	0.9	2
25	New Mutations in cls Lead to Daptomycin Resistance in a Clinical Vancomycin- and Daptomycin-Resistant Enterococcus faecium Strain. Frontiers in Microbiology, 0, 13, .	1.5	4
26	High Prevalence and Overexpression of Fosfomycin-Resistant Gene fosX in Enterococcus faecium From China. Frontiers in Microbiology, 0, 13, .	1.5	2