Acellular pertussis vaccines protect against disease but transmission in a nonhuman primate model

Proceedings of the National Academy of Sciences of the Unite 111, 787-792

DOI: 10.1073/pnas.1314688110

Citation Report

#	Article	IF	CITATIONS
1	Acellular vaccines may enhance spread of whooping cough. Reactions Weekly, 2013, 1482, 1-1.	0.0	0
2	Proteomics-Identified Bvg-Activated Autotransporters Protect against Bordetella pertussis in a Mouse Model. PLoS ONE, 2014, 9, e105011.	2.5	50
3	Vaccine Risk Perceptions and Ad Hoc Risk Communication: An Empirical Assessment. SSRN Electronic Journal, O, , .	0.4	31
4	Development of improved pertussis vaccine. Human Vaccines and Immunotherapeutics, 2014, 10, 2450-2453.	3.3	34
5	Pertussis vaccination and whooping cough: and now what?. Expert Review of Vaccines, 2014, 13, 1163-1165.	4.4	8
6	Live attenuated vaccines against pertussis. Expert Review of Vaccines, 2014, 13, 1147-1158.	4.4	42
7	Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity. Expert Review of Vaccines, 2014, 13, 1253-1264.	4.4	48
8	Importance of (antibody-dependent) complement-mediated serum killing in protection againstBordetella pertussis. Expert Review of Vaccines, 2014, 13, 1229-1240.	4.4	11
9	The vaccine potential of <i>Bordetella pertussis</i> biofilm-derived membrane proteins. Emerging Microbes and Infections, 2014, 3, 1-9.	6.5	46
10	<i>Bordetella pertussis</i> fimbriae (Fim): relevance for vaccines. Expert Review of Vaccines, 2014, 13, 1205-1214.	4.4	27
11	Pathogenesis and histopathology of pertussis: implications for immunization. Expert Review of Vaccines, 2014, 13, 1115-1123.	4.4	30
12	Waning vaccine immunity in teenagers primed with whole cell and acellular pertussis vaccine: recent epidemiology. Expert Review of Vaccines, 2014, 13, 1081-1106.	4.4	96
13	Editorial Commentary: Pertussis Is Less Severe in Vaccinated Than in Unvaccinated Patients. Clinical Infectious Diseases, 2014, 58, 1530-1532.	5.8	1
14	Acellular Pertussis Vaccines and Pertussis Resurgence: Revise or Replace?. MBio, 2014, 5, e01339-14.	4.1	50
15	The Bordetella bronchiseptica Type III Secretion System Is Required for Persistence and Disease Severity but Not Transmission in Swine. Infection and Immunity, 2014, 82, 1092-1103.	2.2	38
16	Filamentous hemagglutinin of <i>Bordetella pertussis</i> : a key adhesin with immunomodulatory properties?. Future Microbiology, 2014, 9, 1339-1360.	2.0	25
17	Plasticity of fimbrial genotype and serotype within populations of Bordetella pertussis: analysis by paired flow cytometry and genome sequencing. Microbiology (United Kingdom), 2014, 160, 2030-2044.	1.8	7
18	Genetically detoxified pertussis toxin (PT-9K/129G): implications for immunization and vaccines. Expert Review of Vaccines, 2014, 13, 1191-1204.	4.4	36

ATION RED

#	Article	IF	CITATIONS
19	Different Effects of Whole-Cell and Acellular Vaccines on Bordetella Transmission. Journal of Infectious Diseases, 2014, 209, 1981-1988.	4.0	35
20	Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert Review of Vaccines, 2014, 13, 1215-1227.	4.4	40
21	Epidemiological evidence for herd immunity induced by acellular pertussis vaccines. Proceedings of the United States of America, 2014, 111, E716-7.	7.1	31
22	Reply to Domenech de Celles et al.: Infection and transmission of pertussis in the baboon model. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E718-E718.	7.1	6
23	Epithelial Anion Transporter Pendrin Contributes to Inflammatory Lung Pathology in Mouse Models of Bordetella pertussis Infection. Infection and Immunity, 2014, 82, 4212-4221.	2.2	48
24	Bordetella pertussis pathogenesis: current and future challenges. Nature Reviews Microbiology, 2014, 12, 274-288.	28.6	279
25	Maternal and Neonatal Vaccination Protects Newborn Baboons From Pertussis Infection. Journal of Infectious Diseases, 2014, 210, 604-610.	4.0	50
26	Pertussis – an old disease, new challenges. Acta Paediatrica, International Journal of Paediatrics, 2014, 103, 794-795.	1.5	1
27	Adult pertussis in the pre- and post-vaccine eras: lifelong vaccine-induced immunity?. Expert Review of Vaccines, 2014, 13, 1073-1080.	4.4	35
28	Seroprevalence of IgG antibodies to pertussis toxin in children and adolescents in Estonia. Vaccine, 2014, 32, 5311-5315.	3.8	23
29	The baboon model of pertussis: effective use and lessons for pertussis vaccines. Expert Review of Vaccines, 2014, 13, 1241-1252.	4.4	56
30	Unraveling the challenges of pertussis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 575-576.	7.1	26
31	The Complexity of the Resurgence of Childhood Vaccine-Preventable Diseases in the United States. Current Pediatrics Reports, 2014, 2, 195-203.	4.0	4
32	Protecting newborns from pertussis – the challenge of complete cocooning. BMC Infectious Diseases, 2014, 14, 397.	2.9	55
33	Immune Responses to Pertussis Antigens in Infants and Toddlers after Immunization with Multicomponent Acellular Pertussis Vaccine. Vaccine Journal, 2014, 21, 1613-1619.	3.1	14
34	Modelling the effect of changes in vaccine effectiveness and transmission contact rates on pertussis epidemiology. Epidemics, 2014, 7, 13-21.	3.0	13
35	<i>Bordetella pertussis</i> and pertactin-deficient clinical isolates: lessons for pertussis vaccines. Expert Review of Vaccines, 2014, 13, 1135-1146.	4.4	46
36	Can immunological principles and cross-disciplinary science illuminate the path to vaccines for HIV and other global health challenges?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140152.	4.0	4

#	Article	IF	CITATIONS
37	Examining the role of different age groups and of vaccination during the 2012 Minnesota pertussis outbreak. Scientific Reports, 2015, 5, 13182.	3.3	20
38	Pertussis Across the Globe. Pediatric Infectious Disease Journal, 2015, 34, e222-e232.	2.0	204
39	Spatial structure, host heterogeneity and parasite virulence: implications for vaccineâ€driven evolution. Ecology Letters, 2015, 18, 779-789.	6.4	10
40	The re-emergency and persistence of vaccine preventable diseases. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1311-1322.	0.8	25
41	Host–pathogen interaction during bacterial vaccination. Current Opinion in Immunology, 2015, 36, 1-7.	5.5	21
42	Dynamics of Pertussis Transmission in the United States. American Journal of Epidemiology, 2015, 181, 921-931.	3.4	16
43	Cooperative Roles for Fimbria and Filamentous Hemagglutinin in <i>Bordetella</i> Adherence and Immune Modulation. MBio, 2015, 6, e00500-15.	4.1	26
44	The impact of parental postpartum pertussis vaccination on infection in infants: A population-based study of cocooning in Western Australia. Vaccine, 2015, 33, 5654-5661.	3.8	41
45	Detection of Bordetella pertussis using a PCR test in infants younger than one year old hospitalized with whooping cough in five Peruvian hospitals. International Journal of Infectious Diseases, 2015, 41, 36-41.	3.3	26
46	Combating pertussis resurgence: One booster vaccination schedule does not fit all. Proceedings of the United States of America, 2015, 112, E472-7.	7.1	25
47	Whither pertussis?. Expert Review of Anti-Infective Therapy, 2015, 13, 145-148.	4.4	3
48	Editorial Commentary: Tetanus-Diphtheria-Pertussis Immunization in Pregnant Women and the Prevention of Pertussis in Young Infants. Clinical Infectious Diseases, 2015, 60, 338-340.	5.8	30
49	The Bordetella Adenylate Cyclase Repeat-in-Toxin (RTX) Domain Is Immunodominant and Elicits Neutralizing Antibodies. Journal of Biological Chemistry, 2015, 290, 3576-3591.	3.4	30
50	Investigating pertussis toxin and its impact on vaccination. Future Microbiology, 2015, 10, 241-254.	2.0	20
51	Pertussis vaccines and the challenge of inducing durable immunity. Current Opinion in Immunology, 2015, 35, 48-54.	5.5	76
52	T-cell immune responses to <i>Bordetella pertussis</i> infection and vaccination: Graphical Abstract Figure Pathogens and Disease, 2015, 73, ftv051.	2.0	28
53	Universal tetanus, diphtheria, acellular pertussis (Tdap) vaccination of adults: What Canadian health care providers know and need to know. Human Vaccines and Immunotherapeutics, 2015, 11, 2167-2179.	3.3	16
54	Unconventional, adenosine-producing suppressor T cells induced by dendritic cells exposed to BPZE1 pertussis vaccine. Journal of Leukocyte Biology, 2015, 98, 631-639.	3.3	14

#	Article	IF	Citations
55	Changing from whole-cell to acellular pertussis vaccines would trade superior tolerability for inferior protection. Expert Review of Vaccines, 2015, 14, 1065-1072.	4.4	3
56	Immunoproteomic Profiling of <i>Bordetella pertussis</i> Outer Membrane Vesicle Vaccine Reveals Broad and Balanced Humoral Immunogenicity. Journal of Proteome Research, 2015, 14, 2929-2942.	3.7	87
57	Tdap Vaccine Effectiveness in Adolescents During the 2012 Washington State Pertussis Epidemic. Pediatrics, 2015, 135, 981-989.	2.1	93
58	A Change in Vaccine Efficacy and Duration of Protection Explains Recent Rises in Pertussis Incidence in the United States. PLoS Computational Biology, 2015, 11, e1004138.	3.2	85
59	Epidemic Pertussis and Acellular Pertussis Vaccine Failure in the 21st Century. Pediatrics, 2015, 135, 1130-1132.	2.1	28
60	First Pertussis Vaccine Dose and Prevention of Infant Mortality. Pediatrics, 2015, 135, 990-999.	2.1	44
61	Evaluation of the Impact of a Pertussis Cocooning Program on Infant Pertussis Infection. Pediatric Infectious Disease Journal, 2015, 34, 22-26.	2.0	78
62	Seroprevalence of Pertussis in The Gambia. Pediatric Infectious Disease Journal, 2015, 34, 333-338.	2.0	38
63	The History of Pertussis (Whooping Cough); 1906–2015: Facts, Myths, and Misconceptions. Current Epidemiology Reports, 2015, 2, 120-130.	2.4	35
64	New Insight into Filamentous Hemagglutinin Secretion Reveals a Role for Full-Length FhaB in <i>Bordetella</i> Virulence. MBio, 2015, 6, .	4.1	28
65	Structure-Based Design of Human TLR8-Specific Agonists with Augmented Potency and Adjuvanticity. Journal of Medicinal Chemistry, 2015, 58, 7833-7849.	6.4	39
66	Mechanisms of Bacterial Colonization of the Respiratory Tract. Annual Review of Microbiology, 2015, 69, 425-444.	7.3	154
67	Sources of Infant Pertussis Infection in the United States. Pediatrics, 2015, 136, 635-641.	2.1	120
69	<i>Bordetella</i> filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathogens and Disease, 2015, 73, ftv079.	2.0	53
70	Strategies and new developments to control pertussis, an actual health problem: Graphical Abstract Figure Pathogens and Disease, 2015, 73, ftv059.	2.0	8
71	Bordetella pertussisevolution in the (functional) genomics era. Pathogens and Disease, 2015, 73, ftv064.	2.0	25
72	What to do about pertussis vaccines? Linking what we know about pertussis vaccine effectiveness, immunology and disease transmission to create a better vaccine: Graphical Abstract Figure Pathogens and Disease, 2015, 73, ftv057.	2.0	31
73	Genomic Analysis of Isolates From the United Kingdom 2012 Pertussis Outbreak Reveals That Vaccine Antigen Genes Are Unusually Fast Evolving. Journal of Infectious Diseases, 2015, 212, 294-301.	4.0	79

#	Article	IF	CITATIONS
74	Estimated and reported incidence of pertussis in Estonian adults: A seroepidemiological study. Vaccine, 2015, 33, 4756-4761.	3.8	14
75	Roads to the development of improved pertussis vaccines paved by immunology. Pathogens and Disease, 2015, 73, ftv067.	2.0	63
76	Waning and aging of cellular immunity toB. pertussis. Pathogens and Disease, 2015, 73, ftv071.	2.0	26
77	<i>Bordetella pertussis</i> transmission: Graphical Abstract Figure Pathogens and Disease, 2015, 73, ftv068.	2.0	32
78	A cocktail of humanized anti–pertussis toxin antibodies limits disease in murine and baboon models of whooping cough. Science Translational Medicine, 2015, 7, 316ra195.	12.4	48
79	A native outer membrane vesicle vaccine confers protection against meningococcal colonization in human CEACAM1 transgenic mice. Vaccine, 2015, 33, 1317-1323.	3.8	17
80	Defining long-term drivers of pertussis resurgence, and optimal vaccine control strategies. Vaccine, 2015, 33, 5794-5800.	3.8	25
82	Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Medicine, 2015, 13, 146.	5.5	185
83	A critical role for the TLR signaling adapter Mal in alveolar macrophage-mediated protection against Bordetella pertussis. Mucosal Immunology, 2015, 8, 982-992.	6.0	11
84	A novel TLR2 agonist from Bordetella pertussis is a potent adjuvant that promotes protective immunity with an acellular pertussis vaccine. Mucosal Immunology, 2015, 8, 607-617.	6.0	64
85	Pertactin-Negative Bordetella pertussis Strains: Evidence for a Possible Selective Advantage. Clinical Infectious Diseases, 2015, 60, 223-227.	5.8	157
86	Factors influencing the spread of pertussis in households: a prospective study, Catalonia and Navarre, Spain, 2012 to 2013. Eurosurveillance, 2016, 21, .	7.0	17
87	Vaccine Adjuvants a. , 2016, , 67-76.		0
88	New Challenges for Pertussis Vaccines. , 2016, , 205-221.		0
89	Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells. Toxins, 2016, 8, 291.	3.4	3
90	Dismantling the Taboo against Vaccines in Pregnancy. International Journal of Molecular Sciences, 2016, 17, 894.	4.1	16
91	Comparative Epidemiologic Characteristics of Pertussis in 10 Central and Eastern European Countries, 2000-2013. PLoS ONE, 2016, 11, e0155949.	2.5	45
92	Timing of routine infant vaccinations and risk of food allergy and eczema at one year of age. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 541-549.	5.7	28

#	Article	IF	CITATIONS
93	Chronic Chagas disease: can prophylaxis and therapeutic vaccines crack this â€~hard nut'?. Immunotherapy, 2016, 8, 99-101.	2.0	1
94	Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity. Parasitology, 2016, 143, 835-849.	1.5	25
96	Live pertussis vaccines: will they protect against carriage and spread of pertussis?. Clinical Microbiology and Infection, 2016, 22, S96-S102.	6.0	17
97	A novel high-throughput assay to quantify the vaccine-induced inhibition of Bordetella pertussis adhesion to airway epithelia. BMC Microbiology, 2016, 16, 215.	3.3	10
98	Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to a whole-cell vaccine. Scientific Reports, 2016, 6, 38240.	3.3	47
99	The Pertussis Problem and a Possible Solution. JAMA Pediatrics, 2016, 170, 421.	6.2	3
100	Pertussis: Microbiology, Disease, Treatment, and Prevention. Clinical Microbiology Reviews, 2016, 29, 449-486.	13.6	301
101	Epidemiological and Economic Effects of Priming With the Whole-Cell <i>Bordetella pertussis</i> Vaccine. JAMA Pediatrics, 2016, 170, 459.	6.2	22
102	Cost-effectiveness of next-generation vaccines: The case of pertussis. Vaccine, 2016, 34, 3405-3411.	3.8	3
103	Using age-stratified incidence data to examine the transmission consequences of pertussis vaccination. Epidemics, 2016, 16, 1-7.	3.0	2
104	The preparation and characterization of PLG nanoparticles with an entrapped synthetic TLR7 agonist and their preclinical evaluation as adjuvant for an adsorbed DTaP vaccine. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 105, 1-8.	4.3	14
105	Pertussis Vaccine Effectiveness in the Setting of Pertactin-Deficient Pertussis. Pediatrics, 2016, 137, .	2.1	53
106	Characterization of the immune response induced by pertussis OMVs-based vaccine. Vaccine, 2016, 34, 3303-3309.	3.8	63
107	Pertussis: Where did we go wrong and what can we do about it?. Journal of Infection, 2016, 72, S34-S40.	3.3	20
108	Effectiveness of acellular pertussis vaccination during childhood (<7Âyears of age) for preventing pertussis in household contacts 1–9Âyears old in Catalonia and Navarra (Spain). European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 2059-2067.	2.9	2
109	Investigating the pertussis resurgence in England and Wales, and options for future control. BMC Medicine, 2016, 14, 121.	5.5	52
110	PLGA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune response in a murine model. International Journal of Pharmaceutics, 2016, 513, 183-190.	5.2	30
111	Knowledge attitude and practice toward pertussis vaccination during pregnancy among pregnant and postpartum Italian women. Human Vaccines and Immunotherapeutics, 2016, 12, 1982-1988	3.3	37

	CITATION	Report	
# 113	ARTICLE Reining in the "100-day cough― unfinished business. Cmaj, 2016, 188, 1135-1136.	IF 2.0	CITATIONS 2
114	The difficult road to new vaccines for pertussis and serogroup B meningococcal disease. Journal of Chemical Technology and Biotechnology, 2016, 91, 9-15.	3.2	2
115	The predicted persistence and kinetics of antibody decline 9 years after pre-school booster vaccination in UK children. Vaccine, 2016, 34, 4221-4228.	3.8	10
116	Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines. Cellular Immunology, 2016, 309, 37-41.	3.0	61
117	An Assessment of the Cocooning Strategy for Preventing Infant Pertussis—United States, 2011. Clinical Infectious Diseases, 2016, 63, S221-S226.	5.8	34
119	Modeling the Effects of Priming With the Whole-Cell Bordetella Pertussis Vaccine. JAMA Pediatrics, 2016, 170, 1228.	6.2	5
120	The Pertussis resurgence: putting together the pieces of the puzzle. Tropical Diseases, Travel Medicine and Vaccines, 2016, 2, 26.	2.2	28
121	Why Don't We Have a Vaccine Against……….? Part 2. Bacteria. Infectious Diseases in Clinical Practice, 2016, 24, 119-123.	0.3	1
122	How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem?. MBio, 2016, 7, .	4.1	152
123	Just when you think you know someone. Current Opinion in Pediatrics, 2016, 28, 101-106.	2.0	2
124	First Do No Harm: Scientific Evidence Implicating Allopathic Vaccination. Homopathic Links, 2016, 29, 091-096.	0.0	0
125	Better colonisation of newly emerged Bordetella pertussis in the co-infection mouse model study. Vaccine, 2016, 34, 3967-3971.	3.8	40
126	The pertussis enigma: reconciling epidemiology, immunology and evolution. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152309.	2.6	104
127	Predicting future trends in the burden of pertussis in the 21st century: implications for infant pertussis and the success of maternal immunization. Expert Review of Vaccines, 2016, 15, 69-80.	4.4	11
128	Proteome analysis of Bordetella pertussis isolated from human macrophages. Journal of Proteomics, 2016, 136, 55-67.	2.4	19
129	The role of <i>B. pertussis</i> vaccine antigen gene variants in pertussis resurgence and possible consequences for vaccine development. Human Vaccines and Immunotherapeutics, 2016, 12, 1274-1276.	3.3	11
130	Bordetella pertussis filamentous hemagglutinin itself does not trigger anti-inflammatory interleukin-10 production by human dendritic cells. International Journal of Medical Microbiology, 2016, 306, 38-47.	3.6	12
131	Comparison of Three Whole-Cell Pertussis Vaccines in the Baboon Model of Pertussis. Vaccine Journal, 2016, 23, 47-54.	3.1	45

#	Article	IF	CITATIONS
132	Mechanistic Models of Infectious Disease and Their Impact on Public Health. American Journal of Epidemiology, 2016, 183, 415-422.	3.4	46
133	Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infection, Genetics and Evolution, 2016, 40, 136-143.	2.3	64
134	Pertussis: acellular, whole-cell, new vaccines, what to choose?. Expert Review of Vaccines, 2016, 15, 671-673.	4.4	15
135	The potential role of subclinical Bordetella Pertussis colonization in the etiology of multiple sclerosis. Immunobiology, 2016, 221, 512-515.	1.9	10
136	Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunology, 2016, 9, 777-786.	6.0	22
137	Restricted antibody response to <i>Bordetella pertussis</i> filamentous hemagglutinin induced by whole-cell and acellular pertussis vaccines. Infectious Diseases, 2016, 48, 127-132.	2.8	3
138	Risk factors for pertussis in adults and teenagers in England. Epidemiology and Infection, 2017, 145, 1025-1036.	2.1	11
139	<i>Bordetella</i> PlrSR regulatory system controls BvgAS activity and virulence in the lower respiratory tract. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1519-E1527.	7.1	37
140	Fine Epitope Mapping of Two Antibodies Neutralizing the <i>Bordetella</i> Adenylate Cyclase Toxin. Biochemistry, 2017, 56, 1324-1336.	2.5	14
141	Adverse events following primary and secondary immunisation with whole-cell pertussis: a systematic review protocol. BMJ Open, 2017, 7, e012945.	1.9	2
142	Temporally Varying Relative Risks for Infectious Diseases. Epidemiology, 2017, 28, 136-144.	2.7	37
143	Maternal immunisation: collaborating with mother nature. Lancet Infectious Diseases, The, 2017, 17, e197-e208.	9.1	133
145	Age-specific effectiveness following each dose of acellular pertussis vaccine among infants and children in New Zealand. Vaccine, 2017, 35, 177-183.	3.8	19
146	Geospatial analysis of nonmedical vaccine exemptions and pertussis outbreaks in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7101-7105.	7.1	45
147	Live Attenuated Pertussis Vaccine BPZE1 Protects Baboons Against Bordetella pertussis Disease and Infection. Journal of Infectious Diseases, 2017, 216, 117-124.	4.0	67
148	A cross sectional survey measuring sero-incidence of pertussis infection among Japanese junior and senior high school students in 2013 and 2014. Vaccine, 2017, 35, 3859-3864.	3.8	7
149	Pertussis vaccination in pregnancy: State of the art. Vaccine, 2017, 35, 4453-4456.	3.8	10
150	Why does drug resistance readily evolve but vaccine resistance does not?. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162562.	2.6	125

#	Article	IF	CITATIONS
151	What Is Wrong with Pertussis Vaccine Immunity?. Cold Spring Harbor Perspectives in Biology, 2017, 9, a029454.	5.5	82
152	What Is Wrong with Pertussis Vaccine Immunity?. Cold Spring Harbor Perspectives in Biology, 2017, 9, a029553.	5.5	37
153	What Is Wrong with Pertussis Vaccine Immunity?. Cold Spring Harbor Perspectives in Biology, 2017, 9, a029629.	5.5	22
154	Immune persistence after pertussis vaccination. Human Vaccines and Immunotherapeutics, 2017, 13, 744-756.	3.3	52
155	The BvgAS Regulon of <i>Bordetella pertussis</i> . MBio, 2017, 8, .	4.1	61
156	Investigating <i>Bordetella pertussis</i> colonisation and immunity: protocol for an inpatient controlled human infection model. BMJ Open, 2017, 7, e018594.	1.9	26
157	Pertussis seroepidemiology in women and their infants in Sarlahi District, Nepal. Vaccine, 2017, 35, 6766-6773.	3.8	8
158	Use of acellular pertussis vaccines in the United States: can we do better?. Expert Review of Vaccines, 2017, 16, 1175-1179.	4.4	8
159	Differences in innate IFNγ and IL-17 responses to Bordetella pertussis between BALB/c and C57BL/6 mice: role of γÎT cells, NK cells, and dendritic cells. Immunologic Research, 2017, 65, 1139-1149.	2.9	9
160	Impact of the US Maternal Tetanus, Diphtheria, and Acellular Pertussis Vaccination Program on Preventing Pertussis in Infants <2 Months of Age: A Case-Control Evaluation. Clinical Infectious Diseases, 2017, 65, 1977-1983.	5.8	133
161	Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine, 2017, 35, 5256-5263.	3.8	46
162	Hyperbiofilm Formation by Bordetella pertussis Strains Correlates with Enhanced Virulence Traits. Infection and Immunity, 2017, 85, .	2.2	31
163	No pain no gain? Adjuvant effects of alum and monophosphoryl lipid A in pertussis and HPV vaccines. Current Opinion in Immunology, 2017, 47, 17-25.	5.5	53
164	Protective effects of <i>in vivo</i> â€expressed autotransporters against <i>Bordetella pertussis</i> infection. Microbiology and Immunology, 2017, 61, 371-379.	1.4	18
165	Elevated Immune Response Among Children 4 Years of Age With Pronounced Local Adverse Events After the Fifth Diphtheria, Tetanus, Acellular Pertussis Vaccination. Pediatric Infectious Disease Journal, 2017, 36, e223-e229.	2.0	5
166	Pertussis disease and transmission and host responses: insights from the baboon model of pertussis. Journal of Infection, 2017, 74, S114-S119.	3.3	35
167	Whither vaccines?. Journal of Infection, 2017, 74, S2-S9.	3.3	19
168	Use of a Toxin Neutralization Assay To Characterize the Serologic Response to Adenylate Cyclase Toxin after Infection with Bordetella pertussis. Vaccine Journal, 2017, 24, .	3.1	7

#	Article	IF	CITATIONS
169	The pertussis hypothesis: Bordetella pertussis colonization in the pathogenesis of Alzheimer's disease. Immunobiology, 2017, 222, 228-240.	1.9	18
170	Parents as source of pertussis transmission in hospitalized young infants. Infection, 2017, 45, 171-178.	4.7	29
171	Public health measures for pertussis prevention and control. Australian and New Zealand Journal of Public Health, 2017, 41, 557-560.	1.8	4
172	An Extracellular Polysaccharide Locus Required for Transmission of Bordetella bronchiseptica. Journal of Infectious Diseases, 2017, 216, 899-906.	4.0	8
173	Case–control study of household contacts to examine immunological protection from <i>Bordetella pertussis</i> transmission — study protocol. CMAJ Open, 2017, 5, E872-E877.	2.4	1
174	Immunization against Pertussis: An Almost Solved Problem or a Headache in Public Health. , 0, , .		2
175	Functional Contributions of Positive Charges in the Pore-Lining Helix 3 of the Bordetella pertussis CyaA-Hemolysin to Hemolytic Activity and Ion-Channel Opening. Toxins, 2017, 9, 109.	3.4	6
176	A New Whooping Cough Vaccine That May Prevent Colonization and Transmission. Vaccines, 2017, 5, 43.	4.4	4
177	Advancing Public Health Using Regulatory Science to Enhance Development and Regulation of Medical Products: Food and Drug Administration Research at the Center for Biologics Evaluation and Research. Frontiers in Medicine, 2017, 4, 71.	2.6	5
178	Nonhuman Primate Models of Respiratory Disease: Past, Present, and Future. ILAR Journal, 2017, 58, 269-280.	1.8	51
179	Reemergência da coqueluche: perfil epidemiológico dos casos confirmados. Cadernos Saude Coletiva, 2017, 25, 453-459.	0.6	5
180	Adaptation of Bordetella pertussis to the Respiratory Tract. Journal of Infectious Diseases, 2018, 217, 1987-1996.	4.0	35
181	Effectiveness of maternal pertussis vaccination in preventing infection and disease in infants: The NSW Public Health Network case-control study. Vaccine, 2018, 36, 1887-1892.	3.8	73
182	School-age children and adolescents suspected of having been to be infected with pertussis in Japan. Vaccine, 2018, 36, 2910-2915.	3.8	10
183	Diversion of complement-mediated killing by Bordetella. Microbes and Infection, 2018, 20, 512-520.	1.9	8
184	Core pertussis transmission groups in England and Wales: A tale of two eras. Vaccine, 2018, 36, 1160-1166.	3.8	8
185	Construction and evaluation of Bordetella pertussis live attenuated vaccine strain BPZE1 producing Fim3. Vaccine, 2018, 36, 1345-1352.	3.8	10
186	Bordetella pertussis (Pertussis) and Other Bordetella Species. , 2018, , 890-898.e3.		1

		Citation Re	PORT	
#	Article		IF	CITATIONS
187	How Can We Best Protect Infants from Pertussis?. Journal of Infectious Diseases, 2018,	217, 1177-1179.	4.0	1
188	Novel intranasal pertussis vaccine based on bacterium-like particles as a mucosal adjuva Immunology Letters, 2018, 198, 26-32.	ant.	2.5	16
189	The impact of past vaccination coverage and immunity on pertussis resurgence. Science Medicine, 2018, 10, .	e Translational	12.4	76
190	Characterization of Individual Human Antibodies That Bind Pertussis Toxin Stimulated b Immunization. Infection and Immunity, 2018, 86, .	y Acellular	2.2	13
191	Pertussis and Rotavirus Vaccines – Controversies and Solutions. Indian Journal of Ped 53-59.	iatrics, 2018, 85,	0.8	3
192	Resurgence of Pertussis and Emergence of the Ptxp3 Toxin Promoter Allele in South Ital Infectious Disease Journal, 2018, 37, e126-e131.	y. Pediatric	2.0	9
193	Pertussis and parapertussis in children and adults with a persistent cough: an observation Infection, 2018, 46, 83-91.	onal study.	4.7	9
194	Bordetella Pertussis virulence factors in the continuing evolution of whooping cough va improved performance. Medical Microbiology and Immunology, 2018, 207, 3-26.	iccines for	4.8	67
195	Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance Infectious Diseases, The, 2018, 18, e204-e213.	e. Lancet	9.1	63
196	Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acel vaccines. Microbial Genomics, 2018, 4, .	lular pertussis	2.0	21
197	Will we have new pertussis vaccines?. Vaccine, 2018, 36, 5460-5469.		3.8	33
198	Preventive and Protective Properties of Pertussis Vaccines: Current Situation and Future $0, , .$	e Challenges. ,		0
200	Epidemics. Use R!, 2018, , .		0.2	59
201	Fol and Age-Dependent Incidence. Use R!, 2018, , 57-80.		0.2	0
202	Comparison of the Whole Cell Proteome and Secretome of Epidemic Bordetella pertuss the 2008–2012 Australian Epidemic Under Sulfate-Modulating Conditions. Frontiers 2018, 9, 2851.	is Strains From in Microbiology,	3.5	12
203	A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Mod Mycobacterium tuberculosis and Bordetella pertussis. Frontiers in Immunology, 2018, 9	els for 9, 2778.	4.8	41
204	Seroprevalence of diphtheria and pertussis immunoglobulin G among children with pne Ji'nan, China. BMC Pediatrics, 2018, 18, 383.	umonia in	1.7	8
205	Protection against Staphylococcus aureus Colonization and Infection by B- and T-Cell-M Mechanisms. MBio, 2018, 9, .	lediated	4.1	33

#	Article	IF	CITATIONS
206	Prevention of Pertussis, Tetanus, and Diphtheria with Vaccines in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recommendations and Reports, 2018, 67, 1-44.	61.1	269
207	Is Tdap the Best Prevention We Have Against Pertussis Disease?. Journal of Adolescent Health, 2018, 62, 639-640.	2.5	0
208	Did two booster doses for schoolchildren change the epidemiology of pertussis in Israel?. Journal of Public Health Policy, 2018, 39, 304-317.	2.0	5
209	Transcriptomal signatures of vaccine adjuvants and accessory immunostimulation of sentinel cells by toll-like receptor 2/6 agonists. Human Vaccines and Immunotherapeutics, 2018, 14, 1686-1696.	3.3	12
210	Prevention of pertussis: An unresolved problem. Human Vaccines and Immunotherapeutics, 2018, 14, 2452-2459.	3.3	18
211	Infection-acquired versus vaccine-acquired immunity in an SIRWS model. Infectious Disease Modelling, 2018, 3, 118-135.	1.9	8
212	Pertussis Vaccines. , 2018, , 711-761.e16.		20
213	On the Role of Different Age Groups and Pertussis Vaccines During the 2012 Outbreak in Wisconsin. Open Forum Infectious Diseases, 2018, 5, ofy082.	0.9	6
214	CD4 TRM Cells Following Infection and Immunization: Implications for More Effective Vaccine Design. Frontiers in Immunology, 2018, 9, 1860.	4.8	56
215	Whole-Cell or Acellular Pertussis Primary Immunizations in Infancy Determines Adolescent Cellular Immune Profiles. Frontiers in Immunology, 2018, 9, 51.	4.8	67
216	Virulence Associated Gene 8 of Bordetella pertussis Enhances Contact System Activity by Inhibiting the Regulatory Function of Complement Regulator C1 Inhibitor. Frontiers in Immunology, 2018, 9, 1172.	4.8	10
217	Evaluation of Adenylate Cyclase Toxoid Antigen in Acellular Pertussis Vaccines by Using a Bordetella pertussis Challenge Model in Mice. Infection and Immunity, 2018, 86, .	2.2	30
218	Experience and challenges on influenza and pertussis vaccination in pregnant women. Human Vaccines and Immunotherapeutics, 2018, 14, 2183-2188.	3.3	9
219	<i>Bordetella pertussis</i> isolates vary in their interactions with human complement components. Emerging Microbes and Infections, 2018, 7, 1-11.	6.5	20
220	Blood or Serum Exposure Induce Global Transcriptional Changes, Altered Antigenic Profile, and Increased Cytotoxicity by Classical Bordetellae. Frontiers in Microbiology, 2018, 9, 1969.	3.5	17
221	Editorial overview: Immunomodulation: Striking the right balance: using immunomodulators to target infectious diseases, cancer, and autoimmunity. Current Opinion in Pharmacology, 2018, 41, vii-ix.	3.5	10
222	Emerging of <i>ptxP</i> 3 lineage in <i>B</i> ordetella pertussis strains circulating in a population in northeastern Mexico. Epidemiology and Infection, 2018, 146, 2096-2101.	2.1	4
223	IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunology, 2018, 11, 1753-1762.	6.0	55

		CITATION REPORT		
#	Article		IF	CITATIONS
224	In vivo imaging of bacterial colonization of the lower respiratory tract in a baboon mod Bordetella pertussis infection and transmission. Scientific Reports, 2018, 8, 12297.	el of	3.3	9
225	The pertussis hypothesis: Bordetella pertussis colonization in the etiology of asthma ar allergic sensitization. Medical Hypotheses, 2018, 120, 101-115.	nd diseases of	1.5	13
226	Sustained protective immunity against Bordetella pertussis nasal colonization by intrar immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM co Immunology, 2018, 11, 1763-1776.	nasal ells. Mucosal	6.0	98
227	Histopathology of Bordetella pertussis in the Baboon Model. Infection and Immunity, 2	018, 86, .	2.2	18
228	Community Protection. , 2018, , 1512-1531.e5.			17
229	Vaccine Immunology. , 2018, , 16-34.e7.			55
230	Pertussis: New preventive strategies for an old disease. Paediatric Respiratory Reviews,	2019, 29, 68-73.	1.8	22
231	Functional Programming of Innate Immune Cells in Response to Bordetella pertussis In Vaccination. Advances in Experimental Medicine and Biology, 2019, 1183, 53-80.	fection and	1.6	3
232	Designing development programs for non-traditional antibacterial agents. Nature Com 2019, 10, 3416.	munications,	12.8	46
233	Proper pertussis vaccination will probably not increase vaccination coverage: a case– Epidemiology and Infection, 2019, 147, e253.	control study.	2.1	0
234	Superior B. pertussis Specific CD4+ T-Cell Immunity Imprinted by Natural Infection. Adv Experimental Medicine and Biology, 2019, 1183, 81-98.	vances in	1.6	8
235	Pertussis in Latin America and the Hispanic Caribbean: a systematic review. Expert Revi 2019, 18, 829-845.	ew of Vaccines,	4.4	10
236	Assays for Determining Pertussis Toxin Activity in Acellular Pertussis Vaccines. Toxins, 2	2019, 11, 417.	3.4	13
237	BspR/BtrA, an Anti-σ Factor, Regulates the Ability of <i>Bordetella bronchiseptica</i> T Rats. MSphere, 2019, 4, .	o Cause Cough in	2.9	19
238	Seroepidemiology of pertussis in Hangzhou, China, during 2009–2017. Human Vacc Immunotherapeutics, 2019, 15, 2564-2570.	ines and	3.3	4
239	Reactivating Immunity Primed by Acellular Pertussis Vaccines in the Absence of Circula Enhanced Bacterial Control by TLR9 Rather Than TLR4 Agonist-Including Formulation. F Immunology, 2019, 10, 1520.	ting Antibodies: rontiers in	4.8	11
240	Investigation of temporal and spatial heterogeneities of the immune responses to Bord infection in the lung and spleen of mice via analysis and modeling of dynamic microarra expression data. Infectious Disease Modelling, 2019, 4, 215-226.	letella pertussis ay gene	1.9	1
241	Human Immune Responses to Pertussis Vaccines. Advances in Experimental Medicine a 1183, 99-113.	Ind Biology, 2019,	1.6	6

#	Article	IF	CITATIONS
242	Pertussis Vaccines and Vaccination Strategies. An Ever-Challenging Health Problem. Advances in Experimental Medicine and Biology, 2019, 1183, 161-167.	1.6	0
243	Pertussis Prevention: Reasons for Resurgence, and Differences in the Current Acellular Pertussis Vaccines. Frontiers in Immunology, 2019, 10, 1344.	4.8	105
244	Clinical Findings and Management of Pertussis. Advances in Experimental Medicine and Biology, 2019, 1183, 151-160.	1.6	5
245	A Retrospective Cohort Study of Safety Outcomes in New Zealand Infants Exposed to Tdap Vaccine in Utero. Vaccines, 2019, 7, 147.	4.4	12
246	Immune memory induced by intranasal vaccination with a modified-live viral vaccine delivered to colostrum fed neonatal calves. Vaccine, 2019, 37, 7455-7462.	3.8	10
247	Pertussis Toxin: A Key Component in Pertussis Vaccines?. Toxins, 2019, 11, 557.	3.4	15
248	The Potential Role of Subclinical Bordetella pertussis Infection in Epilepsy. Frontiers in Cellular and Infection Microbiology, 2019, 9, 302.	3.9	0
249	The Role of Mucosal Immunity in Pertussis. Frontiers in Immunology, 2018, 9, 3068.	4.8	47
250	<i>Bordetella pertussis</i> antigens encapsulated into N-trimethyl chitosan nanoparticulate systems as a novel intranasal pertussis vaccine. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 2605-2611.	2.8	17
251	Regulated, sequential processing by multiple proteases is required for proper maturation and release of <i>Bordetella</i> filamentous hemagglutinin. Molecular Microbiology, 2019, 112, 820-836.	2.5	15
252	Acellular Pertussis Vaccine Effectiveness Over Time. Pediatrics, 2019, 144, e20183466.	2.1	38
253	Vaccines and the regulatory arm of the immune system. An overview from the Trypanosoma cruzi infection model. Vaccine, 2019, 37, 3628-3637.	3.8	12
254	Exploring the "Multiple-Hit Hypothesis―of Neurodegenerative Disease: Bacterial Infection Comes Up to Bat. Frontiers in Cellular and Infection Microbiology, 2019, 9, 138.	3.9	66
255	On the role of different age groups during pertussis epidemics in California, 2010 and 2014. Epidemiology and Infection, 2019, 147, e184.	2.1	7
256	Pertussis vaccines and protective immunity. Current Opinion in Immunology, 2019, 59, 72-78.	5.5	70
257	Duration of Immunity and Effectiveness of Diphtheria-Tetanus–Acellular Pertussis Vaccines in Children. JAMA Pediatrics, 2019, 173, 588.	6.2	24
258	The burden of pertussis in older adults: what is the role of vaccination? A systematic literature review. Expert Review of Vaccines, 2019, 18, 439-455.	4.4	52
259	Evaluation of Host-Pathogen Responses and Vaccine Efficacy in Mice. Journal of Visualized Experiments, 2019, , .	0.3	4

#	ARTICLE	IF	Citations
260	The 112-Year Odyssey of Pertussis and Pertussis Vaccines—Mistakes Made and Implications for the Future. Journal of the Pediatric Infectious Diseases Society, 2019, 8, 334-341.	1.3	34
261	Neonatal Immunity to <i>Bordetella pertussis</i> Infection and Current Prevention Strategies. Journal of Immunology Research, 2019, 2019, 1-10.	2.2	20
262	Immunization with whole cell but not acellular pertussis vaccines primes CD4 T _{RM} cells that sustain protective immunity against nasal colonization with <i>Bordetella pertussis</i> . Emerging Microbes and Infections, 2019, 8, 169-185.	6.5	75
263	Genetically detoxified pertussis toxin induces superior antigen specific CD4 T cell responses compared to chemically detoxified pertussis toxin. Human Vaccines and Immunotherapeutics, 2019, 15, 1167-1170.	3.3	5
264	LTA1 is a safe, intranasal enterotoxin-based adjuvant that improves vaccine protection against influenza in young, old and B-cell-depleted (î¼MT) mice. Scientific Reports, 2019, 9, 15128.	3.3	25
265	Pertussis Infection and Vaccines. Advances in Experimental Medicine and Biology, 2019, , .	1.6	2
266	Enhancement of immune response against Bordetella spp. by disrupting immunomodulation. Scientific Reports, 2019, 9, 20261.	3.3	22
267	Trends in Hospital Admissions for Pertussis Infection: A Nationwide Retrospective Observational Study in Italy, 2002–2016. International Journal of Environmental Research and Public Health, 2019, 16, 4531.	2.6	15
268	Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Frontiers in Immunology, 2019, 10, 2869.	4.8	10
269	Early Protection against Pertussis Induced by Live Attenuated <i>Bordetella pertussis</i> BPZE1 Depends on TLR4. Journal of Immunology, 2019, 203, 3293-3300.	0.8	17
270	Vaccine development. , 2019, , 167-183.		1
271	Commentary: resolving pertussis resurgence and vaccine immunity using mathematical transmission models. Human Vaccines and Immunotherapeutics, 2019, 15, 683-686.	3.3	6
272	Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology. Npj Vaccines, 2019, 4, 1.	6.0	91
273	PERISCOPE: road towards effective control of pertussis. Lancet Infectious Diseases, The, 2019, 19, e179-e186.	9.1	67
274	Toward a Controlled Human Infection Model of Pertussis. Clinical Infectious Diseases, 2020, 71, 412-414.	5.8	10
275	Controlled Human Infection With Bordetella pertussis Induces Asymptomatic, Immunizing Colonization. Clinical Infectious Diseases, 2020, 71, 403-411.	5.8	40
276	Asymptomatic Infection and Transmission of Pertussis in Households: A Systematic Review. Clinical Infectious Diseases, 2020, 70, 152-161.	5.8	18
277	Impact of the adolescent pertussis booster dose on the incidence of pertussis in British Columbia and Quebec, Canada. Vaccine, 2020, 38, 427-432.	3.8	1

#	Article	IF	CITATIONS
278	Economic impact of implementing decennial tetanus toxoid, reduced diphtheria toxoid and acellular pertussis (Tdap) vaccination in adults in the United States. Vaccine, 2020, 38, 380-387.	3.8	7
281	Discovery of Compounds Inhibiting the ADP-Ribosyltransferase Activity of Pertussis Toxin. ACS Infectious Diseases, 2020, 6, 588-602.	3.8	25
282	Evolution and Conservation of Bordetella Intracellular Survival in Eukaryotic Host Cells. Frontiers in Microbiology, 2020, 11, 557819.	3.5	5
283	Preferential modification of CyaA-hemolysin by CyaC-acyltransferase through the catalytic Ser30-His33 dyad in esterolysis of palmitoyl-donor substrate devoid of acyl carrier proteins. Archives of Biochemistry and Biophysics, 2020, 694, 108615.	3.0	0
284	Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nature Reviews Immunology, 2020, 20, 709-713.	22.7	229
285	Safety and immunogenicity of the live attenuated intranasal pertussis vaccine BPZE1: a phase 1b, double-blind, randomised, placebo-controlled dose-escalation study. Lancet Infectious Diseases, The, 2020, 20, 1290-1301.	9.1	34
286	Whole-cell pertussis vaccine in early infancy for the prevention of allergy. The Cochrane Library, 0, , .	2.8	1
287	Acellular Pertussis Vaccine Inhibits Bordetella pertussis Clearance from the Nasal Mucosa of Mice. Vaccines, 2020, 8, 695.	4.4	25
288	Diagnosis and management of community-acquired pneumonia in children: South African Thoracic Society guidelines. African Journal of Thoracic and Critical Care Medicine, 2020, 26, 98.	0.6	14
289	Prevention of community-acquired pneumonia in children: South African Thoracic Society guidelines (part 4). South African Medical Journal, 2020, 110, 741.	0.6	2
290	Shortening the Lipid A Acyl Chains of Bordetella pertussis Enables Depletion of Lipopolysaccharide Endotoxic Activity. Vaccines, 2020, 8, 594.	4.4	13
291	Expanding the role of bacterial vaccines into life-course vaccination strategies and prevention of antimicrobial-resistant infections. Npj Vaccines, 2020, 5, 84.	6.0	31
292	Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Frontiers in Microbiology, 2020, 11, 2108.	3.5	27
293	Manufacture of a Stable Lyophilized Formulation of the Live Attenuated Pertussis Vaccine BPZE1. Vaccines, 2020, 8, 523.	4.4	6
294	Effect of FHA and Prn on Bordetella pertussis colonization of mice is dependent on vaccine type and anatomical site. PLoS ONE, 2020, 15, e0237394.	2.5	8
295	Immunological Distinctions between Acellular and Whole-Cell Pertussis Immunizations of Baboons Persist for at Least One Year after Acellular Vaccine Boosting. Vaccines, 2020, 8, 729.	4.4	6
296	Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines, 2020, 8, 621.	4.4	27
297	Intranasal immunization with outer membrane vesicle pertussis vaccine confers broad protection through mucosal IgA and Th17 responses. Scientific Reports, 2020, 10, 7396.	3.3	46

#	Article	IF	CITATIONS
298	Acellular Pertussis Vaccine Components: Today and Tomorrow. Vaccines, 2020, 8, 217.	4.4	28
299	Uncovering Distinct Primary Vaccination-Dependent Profiles in Human Bordetella pertussis Specific CD4+ T-Cell Responses Using a Novel Whole Blood Assay. Vaccines, 2020, 8, 225.	4.4	11
300	Tetanus, diphtheria and acellular pertussis (Tdap) vaccine for prevention of pertussis among adults aged 19Âyears and older in the United States: A cost-effectiveness analysis. Preventive Medicine, 2020, 134, 106066.	3.4	2
301	Emergence of pertactin-deficient pertussis strains in Australia can be explained by models of vaccine escape. Epidemics, 2020, 31, 100388.	3.0	9
302	Transcriptional profiling of human macrophages during infection with <i>Bordetella pertussis</i> . RNA Biology, 2020, 17, 731-742.	3.1	15
303	Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Antiâ€pertussis Vaccine. Angewandte Chemie - International Edition, 2020, 59, 6451-6458.	13.8	48
304	Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Antiâ€pertussis Vaccine. Angewandte Chemie, 2020, 132, 6513-6520.	2.0	12
305	<i>Bordetella pertussis</i> Induces Interferon Gamma Production by Natural Killer Cells, Resulting in Chemoattraction by Respiratory Epithelial Cells. Journal of Infectious Diseases, 2022, 225, 1248-1260.	4.0	7
306	Development and Validation of a <i>Bordetella pertussis</i> Whole-Genome Screening Strategy. Journal of Immunology Research, 2020, 2020, 1-11.	2.2	23
307	Valuing the cost of improving Chilean primary vaccination: a cost minimization analysis of a hexavalent vaccine. BMC Health Services Research, 2020, 20, 295.	2.2	7
308	Heat shock enhances outer-membrane vesicle release in Bordetella spp Current Research in Microbial Sciences, 2021, 2, 100009.	2.3	14
309	Pertussis in Italy: how to protect the "unprotectable�. Human Vaccines and Immunotherapeutics, 2021, 17, 1136-1141.	3.3	6
310	Human Gut Microbiome: A Potential Prospective to Counter Antibiotic-Resistant Pathogens. , 2022, , 368-368.		2
311	Seroprevalence of Bordetella pertussis among a nationally representative sample of Iranian pediatric population: The childhood and adolescence surveillance and prevention of adult noncommunicable disease-V study. Journal of Research in Medical Sciences, 2021, 26, 21.	0.9	2
312	Bacterial Vaccines. , 2022, , 530-544.		2
313	Distinct Features and Functions of Systemic and Mucosal Humoral Immunity Among SARS-CoV-2 Convalescent Individuals. Frontiers in Immunology, 2020, 11, 618685.	4.8	87
314	Recombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin. Iranian Biomedical Journal, 2021, 25, 33-40.	0.7	0
315	Conserved Structural Features of Core Oligosaccharides among the Lipopolysaccharides of Respiratory Pathogens from the Genus Bordetella Analyzed Exclusively by NMR Spectroscopy. International Journal of Molecular Sciences, 2021, 22, 1029.	4.1	4

#	Article	IF	CITATIONS
316	Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. Npj Vaccines, 2021, 6, 6.	6.0	30
317	A Clinical Study of the Safety and Tolerability of Live Nasal Vaccines for the Prevention of Pertussis. Drug Development and Registration, 2021, 10, 114-119.	0.6	3
318	Intranasal Immunization with Acellular Pertussis Vaccines Results in Long-Term Immunity to Bordetella pertussis in Mice. Infection and Immunity, 2021, 89, .	2.2	16
319	Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, 184, 861-880.	28.9	1,364
320	Göttingen Minipigs as a Model to Evaluate Longevity, Functionality, and Memory of Immune Response Induced by Pertussis Vaccines. Frontiers in Immunology, 2021, 12, 613810.	4.8	4
321	The Path to New Pediatric Vaccines against Pertussis. Vaccines, 2021, 9, 228.	4.4	9
322	Is there a potential for novel, nasal pertussis vaccines?. Expert Review of Vaccines, 2021, 20, 1-9.	4.4	1
323	The Potential Role of Nonhuman Primate Models to Better Comprehend Early Life Immunity and Maternal Antibody Transfer. Vaccines, 2021, 9, 306.	4.4	3
324	Responses to an acellular pertussis booster vaccination in children, adolescents, and young and older adults: A collaborative study in Finland, the Netherlands, and the United Kingdom. EBioMedicine, 2021, 65, 103247.	6.1	18
326	Estimating population-level effects of the acellular pertussis vaccine using routinely collected immunization data. Clinical Infectious Diseases, 2021, 73, 2101-2107.	5.8	1
327	A system-view of Bordetella pertussis booster vaccine responses in adults primed with whole-cell versus acellular vaccine in infancy. JCI Insight, 2021, 6, .	5.0	10
328	Pertactin-Deficient <i>Bordetella pertussis</i> , Vaccine-Driven Evolution, and Reemergence of Pertussis. Emerging Infectious Diseases, 2021, 27, 1561-1566.	4.3	29
330	DegP Initiates Regulated Processing of Filamentous Hemagglutinin in Bordetella bronchiseptica. MBio, 2021, 12, e0146521.	4.1	6
331	Cost-Effectiveness of Pertussis Vaccination Schedule in Israel. Vaccines, 2021, 9, 590.	4.4	1
332	Reinvestigating the Coughing Rat Model of Pertussis To Understand <i>Bordetella pertussis</i> Pathogenesis. Infection and Immunity, 2021, 89, e0030421.	2.2	8
333	Mucosal Immunization Against Pertussis: Lessons From the Past and Perspectives. Frontiers in Immunology, 2021, 12, 701285.	4.8	17
334	Non-human primate models of human respiratory infections. Molecular Immunology, 2021, 135, 147-164.	2.2	17
335	Modeling Immune Evasion and Vaccine Limitations by Targeted Nasopharyngeal <i>Bordetella pertussis</i> Inoculation in Mice. Emerging Infectious Diseases, 2021, 27, 2107-2116.	4.3	9

#	Article	IF	CITATIONS
336	Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines, 2021, 9, 877.	4.4	8
337	Effectiveness of experimental and commercial pertussis vaccines in the elimination of Bordetella pertussis isolates with different genetic profiles in murine model. Medical Microbiology and Immunology, 2021, 210, 251-262.	4.8	4
338	Study of Normal Flora in the Pharynx of Healthy Children. Japanese Journal of Infectious Diseases, 2021, 74, 450-457.	1.2	8
339	Lessons from a mature acellular pertussis vaccination program and strategies to overcome suboptimal vaccine effectiveness. Expert Review of Vaccines, 2022, 21, 899-907.	4.4	0
340	PTX Instructs the Development of Lung-Resident Memory T Cells in Bordetella pertussis Infected Mice. Toxins, 2021, 13, 632.	3.4	0
341	Wholeâ€eell pertussis vaccine in early infancy for the prevention of allergy in children. The Cochrane Library, 2021, 9, CD013682.	2.8	2
342	Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathogens, 2021, 17, e1009920.	4.7	9
343	The History of Pertussis Toxin. Toxins, 2021, 13, 623.	3.4	14
344	Mucosal Immunization with DTaP Confers Protection against <i>Bordetella pertussis</i> Infection and Cough in Sprague-Dawley Rats. Infection and Immunity, 2021, 89, e0034621.	2.2	7
345	Pertussis (Whooping Cough). Journal of Infectious Diseases, 2021, 224, S310-S320.	4.0	25
346	More than 10 years after introduction of an acellular pertussis vaccine in infancy: a cross-sectional serosurvey of pertussis in the Netherlands. Lancet Regional Health - Europe, The, 2021, 10, 100196.	5.6	7
347	Duration of protection against Bordetella pertussis infection elicited by whole-cell and acellular vaccine priming in Polish children and adolescents. Vaccine, 2021, 39, 6067-6073.	3.8	2
348	Intention to accept pertussis vaccination among Chinese people older than age 5. Human Vaccines and Immunotherapeutics, 2021, 17, 1686-1692.	3.3	0
349	Impact of Vaccination and Pathogen Exposure Dosage on Shedding Kinetics of Infectious Hematopoietic Necrosis Virus (IHNV) in Rainbow Trout. Journal of Aquatic Animal Health, 2020, 32, 95-108.	1.4	7
350	Pathogen adaptation to vaccination: the Australian Bordetella pertussis story. Microbiology Australia, 2019, , .	0.4	1
351	Outer Membrane Vesicles (OMV)-based and Proteomics-driven Antigen Selection Identifies Novel Factors Contributing to Bordetella pertussis Adhesion to Epithelial Cells. Molecular and Cellular Proteomics, 2018, 17, 205-215.	3.8	38
352	Antenatal vaccination to decrease pertussis in infants: safety, effectiveness, timing, and implementation. Journal of Maternal-Fetal and Neonatal Medicine, 2019, 32, 1541-1546.	1.5	9
353	Molecular epidemiology of Bordetella pertussis in Greece, 2010–2015. Journal of Medical Microbiology, 2018, 67, 400-407.	1.8	5

#	Article	IF	CITATIONS
354	Review of vaccination in pregnancy to prevent pertussis in early infancy. Journal of Medical Microbiology, 2018, 67, 1426-1456.	1.8	80
358	Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. Journal of Clinical Investigation, 2018, 128, 3853-3865.	8.2	107
359	Composition of pertussis vaccine given to infants determines long-term T cell polarization. Journal of Clinical Investigation, 2018, 128, 3742-3744.	8.2	6
360	Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. Journal of Clinical Investigation, 2020, 130, 2332-2346.	8.2	37
361	The relationship between mucosal immunity, nasopharyngeal carriage, asymptomatic transmission and the resurgence of Bordetella pertussis. F1000Research, 2017, 6, 1568.	1.6	28
362	Potential Role of Bordetella Pertussis in Celiac Disease. International Journal of Celiac Disease, 2016, 3, 75-76.	0.2	2
363	Molecular Signatures of the Evolving Immune Response in Mice following a Bordetella pertussis Infection. PLoS ONE, 2014, 9, e104548.	2.5	40
364	The Use of Innovative Two-Component Cluster Analysis and Serodiagnostic Cut-Off Methods to Estimate Prevalence of Pertussis Reinfections. PLoS ONE, 2016, 11, e0148507.	2.5	3
365	Association of Vitamin D Receptor Polymorphism with Susceptibility to Symptomatic Pertussis. PLoS ONE, 2016, 11, e0149576.	2.5	9
366	Is Pertussis Infection Neglected in China? Evidence from a Seroepidemiology Survey in Zhejiang, an Eastern Province of China. PLoS ONE, 2016, 11, e0155965.	2.5	23
367	Immunological Signatures after Bordetella pertussis Infection Demonstrate Importance of Pulmonary Innate Immune Cells. PLoS ONE, 2016, 11, e0164027.	2.5	20
368	Prevention of pertussis: from clinical trials to Real World Evidence. Journal of Preventive Medicine and Hygiene, 2018, 59, E177-E186.	0.9	5
369	Use of Tetanus Toxoid, Reduced Diphtheria Toxoid, and Acellular Pertussis Vaccines: Updated Recommendations of the Advisory Committee on Immunization Practices — United States, 2019. Morbidity and Mortality Weekly Report, 2020, 69, 77-83.	15.1	116
370	Knowledge, Attitude and Practice Regarding Pertussis among a Public University Students in Malaysia. Pesquisa Brasileira Em Odontopediatria E Clinica Integrada, 0, 20, .	0.9	1
371	Incidence of whooping cough in Russia, its causes and ways to reduce. Medical Almanac, 2019, , 24-32.	0.1	2
372	Maternal pertussis immunisation: clinical gains and epidemiological legacy. Eurosurveillance, 2017, 22,	7.0	8
373	Enhanced Bordetella pertussis acquisition rate in adolescents during the 2012 epidemic in the Netherlands and evidence for prolonged antibody persistence after infection. Eurosurveillance, 2017, 22, .	7.0	20
374	Preclinical studies of safety, immunogenicity and protective activity of attenuated Bordetella pertussis bacteria on the Macaca mulatta model. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2020, 97, 312-323.	1.0	8

#	Article	IF	CITATIONS
375	Old Disease and New Challenges: Major Obstacles of Current Strategies in the Prevention of Pertussis. Iranian Journal of Pediatrics, 2016, 26, e5514.	0.3	7
376	Evaluation of outbreak response immunization in the control of pertussis using agent-based modeling. PeerJ, 2016, 4, e2337.	2.0	10
377	Immunogenicity of a new enhanced tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine against Bordetella pertussis in a murine model. BMC Immunology, 2021, 22, 68.	2.2	2
378	Modification of innate immune responses to Bordetella pertussis in babies from pertussis vaccinated pregnancies. EBioMedicine, 2021, 72, 103612.	6.1	6
379	Dose-Sparing Intradermal DTaP-sIPV Immunization With a Hollow Microneedle Leads to Superior Immune Responses. Frontiers in Microbiology, 2021, 12, 757375.	3.5	5
380	Intranasal inoculation with Bordetella pertussis confers protection without inducing classical whooping cough in baboons. Current Research in Microbial Sciences, 2021, 2, 100072.	2.3	4
381	AGENT BASED MODELING: FINE-SCALE SPATIO-TEMPORAL ANALYSIS OF PERTUSSIS. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-4/W2, 37-46.	0.0	0
382	Does Bordetella pertussis have enough fitness to adopt the biofilm mode of life?. International Journal of Molecular Biology Open Access, 2018, 3, .	0.2	0
383	Introductory Chapter: Pertussis - Disease, Control and Challenges. , 0, , .		0
386	Pre-Clinical Toxicity Study and Safety Assessment of Candidate Live Pertussis Vaccine for Intranasal Administration. Epidemiologiya I Vaktsinoprofilaktika, 2019, 17, 98-108.	0.8	3
387	Pertussis in children in an era of vaccination. Pediatric Respirology and Critical Care Medicine, 2019, 3, 12.	0.0	0
388	Local Epidemic of Childhood Pertussis in a Rural Area of Akita Prefecture. Journal of the Japanese Association of Rural Medicine, 2019, 68, 155-163.	0.0	0
389	The problem of pertussis in some regions of the world. Russian Journal of Infection and Immunity, 2019, 9, 354-362.	0.7	9
391	Multicenter Performance Evaluation of the Simplexa Bordetella Direct Kit in Nasopharyngeal Swab Specimens. Journal of Clinical Microbiology, 2020, 59, .	3.9	4
392	Evaluation of Outer Membrane Vesicles Obtained from Predominant Local Isolate of Bordetella pertussis as a Vaccine Candidate. Iranian Biomedical Journal, 2021, 25, 399-407.	0.7	1
393	Transplacental Antibody Transfer of Respiratory Syncytial Virus Specific IgG in Non-Human Primate Mother-Infant Pairs. Pathogens, 2021, 10, 1441.	2.8	3
394	The contribution of non-human primate models to the development of human vaccines. Discovery Medicine, 2014, 18, 313-22.	0.5	26
397	Human macrophage polarization shapes <i>B. pertussis</i> intracellular persistence. Journal of Leukocyte Biology, 2022, 112, 173-184.	3.3	9

#	Article	IF	CITATIONS
398	Age and Primary Vaccination Background Influence the Plasma Cell Response to Pertussis Booster Vaccination. Vaccines, 2022, 10, 136.	4.4	11
399	Immunogenicity of the drug "Live intranasal vaccine for the prevention of pertussis" (GamLPV) with a single use in healthy volunteers. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2022, 98, 706-720.	1.0	2
400	Reduced Bordetella pertussis-specific CD4+ T-Cell Responses at Older Age. Frontiers in Aging, 2022, 2, .	2.6	3
401	Precision Vaccine Development: Cues From Natural Immunity. Frontiers in Immunology, 2021, 12, 662218.	4.8	11
402	Pharmacoeconomic analysis of pertussis booster dose in adolescents in Bulgaria. Biotechnology and Biotechnological Equipment, 2021, 35, 1977-1989.	1.3	0
403	Bbvac: A Live Vaccine Candidate That Provides Long-Lasting Anamnestic and Th17-Mediated Immunity against the Three Classical <i>Bordetella</i> spp MSphere, 2022, 7, e0089221.	2.9	9
404	BCG-induced trained immunity enhances acellular pertussis vaccination responses in an explorative randomized clinical trial. Npj Vaccines, 2022, 7, 21.	6.0	5
405	Pal depletion results in hypervesiculation and affects cell morphology and outer-membrane lipid asymmetry in bordetellae. Research in Microbiology, 2022, , 103937.	2.1	3
406	The role of Bordetella pertussis in the development of multiple sclerosis. BMC Neurology, 2022, 22, 70.	1.8	1
407	The Mechanism of Pertussis Cough Revealed by the Mouse-Coughing Model. MBio, 2022, 13, e0319721.	4.1	8
408	Pertussis toxin neutralizing antibody response after an acellular booster vaccination in Dutch and Finnish participants of different age groups. Emerging Microbes and Infections, 2022, 11, 956-963.	6.5	6
409	Modeling the catarrhal stage of <i>Bordetella pertussis</i> upper respiratory tract infections in mice. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	4
410	Assessing the <i>In Vivo</i> Effectiveness of Cationic Lipid Nanoparticles with a Triple Adjuvant for Intranasal Vaccination against the Respiratory Pathogen <i>Bordetella pertussis</i> . Molecular Pharmaceutics, 2022, 19, 1814-1824.	4.6	5
411	Bordetella pertussis-infected innate immune cells drive the anti-pertussis response of human airway epithelium. Scientific Reports, 2022, 12, 3622.	3.3	5
412	The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model. PLoS Pathogens, 2022, 18, e1010402.	4.7	9
413	A Gonococcal Vaccine Has the Potential to Rapidly Reduce the Incidence of <i>Neisseria gonorrhoeae</i> Infection Among Urban Men Who Have Sex With Men. Journal of Infectious Diseases, 2022, 225, 983-993.	4.0	20
414	Immunogenicity of a Candidate DTacP-sIPV Combined Vaccine and Its Protection Efficacy against Pertussis in a Rhesus Macaque Model. Vaccines, 2022, 10, 47.	4.4	0
415	Intranasal Immunization With a c-di-GMP-Adjuvanted Acellular Pertussis Vaccine Provides Superior Immunity Against Bordetella pertussis in a Mouse Model. Frontiers in Immunology, 2022, 13, 878832.	4.8	7

#	Article	IF	CITATIONS
443	Pertussis epidemiology including direct and indirect effects of the childhood pertussis booster vaccinations, Norway, 1998–2019. Vaccine, 2022, 40, 3142-3149.	3.8	2
444	Long-Term Immunogenicity upon Pertussis Booster Vaccination in Young Adults and Children in Relation to Priming Vaccinations in Infancy. Vaccines, 2022, 10, 693.	4.4	1
445	The unfulfilled potential of mucosal immunization. Journal of Allergy and Clinical Immunology, 2022, 150, 1-11.	2.9	11
446	Safety and immunogenicity of live intranasal pertussis vaccine GamLVP in the experimental infant hamadryas baboon model. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2022, 99, 203-214.	1.0	0
447	Conditional growth defect of <i>Bordetella pertussis</i> and <i>Bordetella bronchiseptica</i> ferric uptake regulator (fur) mutants. FEMS Microbiology Letters, 2022, 369, .	1.8	2
448	Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes. PLoS Pathogens, 2022, 18, e1010577.	4.7	5
449	Whole-Cell and Acellular Pertussis Vaccine: Reflections on Efficacy. Medical Principles and Practice, 2022, 31, 313-321.	2.4	5
450	Prioritarianism and the COVID-19 Pandemic. , 2022, , 572-650.		3
451	Controlled Human Infection Models To Accelerate Vaccine Development. Clinical Microbiology Reviews, 2022, 35, .	13.6	12
452	To err is human, to forgive may require different vaccines. Cell Host and Microbe, 2022, 30, 1070-1071.	11.0	0
453	CpG 1018® adjuvant enhances Tdap immune responses against Bordetella pertussis in mice. Vaccine, 2022, 40, 5229-5240.	3.8	6
454	Krztusiec I "Efekt Czerwonej Królowej― Postepy Mikrobiologii, 2022, 61, 133-145.	0.1	0
455	Development of a Method and a Scheme for the Use of a Live Recombinant Vaccine "GamLPV". Safety and Tolerability of Double Intranasal Vaccination of Healthy Adult Volunteers. Drug Development and Registration, 2022, 11, 202-208.	0.6	1
456	<i>Bordetella pertussis</i> and outer membrane vesicles. Pathogens and Global Health, 2023, 117, 342-355.	2.3	0
458	Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to DTaP vaccination. Scientific Reports, 2022, 12, .	3.3	5
459	Development of carbohydrate based next-generation anti-pertussis vaccines. Bioorganic and Medicinal Chemistry, 2022, 74, 117066.	3.0	1
460	Safety and immunogenicity of live, attenuated intranasal Bordetella pertussis vaccine (BPZE1) in healthy adults. Vaccine, 2022, 40, 6740-6746.	3.8	6
461	The role of bactericidal and opsonic activity in immunity against Bordetella pertussis. Expert Review of Vaccines, 2022, 21, 1727-1738.	4.4	3

#	Article	IF	CITATIONS
462	Novel approaches to reactivate pertussis immunity. Expert Review of Vaccines, 2022, 21, 1787-1797.	4.4	3
463	The Catalytic Model. Use R!, 2023, , 87-103.	0.2	0
464	Intranasal Vaccination with rePcrV Protects against Pseudomonas aeruginosa and Generates Lung Tissue-Resident Memory T Cells. Journal of Immunology Research, 2022, 2022, 1-15.	2.2	2
465	Prior exposure to B. pertussis shapes the mucosal antibody response to acellular pertussis booster vaccination. Nature Communications, 2022, 13, .	12.8	6
466	Evaluation of Whole-Cell and Acellular Pertussis Vaccines in the Context of Long-Term Herd Immunity. Vaccines, 2023, 11, 1.	4.4	3
467	Phosphorylation chemistry of the <i>Bordetella</i> PlrSR TCS and its contribution to bacterial persistence in the lower respiratory tract. Molecular Microbiology, 2023, 119, 174-190.	2.5	0
468	Distinct early cellular kinetics in participants protected against colonization upon Bordetella pertussis challenge. Journal of Clinical Investigation, 2023, 133, .	8.2	8
469	Antigen Discovery for Next-Generation Pertussis Vaccines Using Immunoproteomics and Transposon-Directed Insertion Sequencing. Journal of Infectious Diseases, 2023, 227, 583-591.	4.0	4
470	Bystander activation of <i>Bordetella pertussis</i> â€induced nasal tissueâ€resident memory CD4 T cells confers heterologous immunity to <i>Klebsiella pneumoniae</i> . European Journal of Immunology, 2023, 53, .	2.9	7
471	Genome Sequences of Bordetella pertussis Isolates from Outbreaks in Northeastern Mexico. Microbiology Resource Announcements, 0, , .	0.6	0
472	Incidence and Transmission Dynamics of <i>Bordetella pertussis</i> Infection in Rural and Urban Communities, South Africa, 2016‒2018. Emerging Infectious Diseases, 2023, 29, 294-303.	4.3	2
473	A semi high-throughput whole blood-based flow cytometry assay to detect and monitor Bordetella pertussis-specific Th1, Th2 and Th17 responses. Frontiers in Immunology, 0, 14, .	4.8	2
474	Generating enhanced mucosal immunity against Bordetella pertussis: current challenges and new directions. Frontiers in Immunology, 0, 14, .	4.8	1
475	Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium. PLoS Pathogens, 2023, 19, e1011193.	4.7	2
476	Pasteurian Contributions to the Study of Bordetella pertussis Toxins. Toxins, 2023, 15, 176.	3.4	0
477	Immunogenicity and safety of BPZE1, an intranasal live attenuated pertussis vaccine, versus tetanus–diphtheria–acellular pertussis vaccine: a randomised, double-blind, phase 2b trial. Lancet, The, 2023, 401, 843-855.	13.7	7
478	An alternative route to pertussis protection?. Lancet, The, 2023, 401, 800-801.	13.7	0
479	Chapter Controlled Human Infection with Bordetella pertussis. Current Topics in Microbiology and Immunology, 2022, , .	1.1	0

ARTICLE IF CITATIONS Immunization with autotransporter Vag8 prevents coughing induced by <i>Bordetella pertussis</i> 481 1.4 1 infection in mice. Microbiology and Immunology, 2023, 67, 314-317. A novel vaccine formulation candidate based on lipooligosaccharides and pertussis toxin against 482 4.8 Bordetella pertussis. Frontiers in Immunology, 0, 14, . Intranasal COVID-19 vaccine induces respiratory memory T cells and protects K18-hACE mice against 483 6.0 8 SARS-CoV-2 infection. Npj Vaccines, 2023, 8, . Systemic priming and intranasal booster with a BcfA-adjuvanted acellular pertussis vaccine generates CD4+ IL-17+ nasal tissue resident T cells and reduces B. pertussis nasal colonization. Frontiers in 484 4.8 Immunology, 0, 14, . Biological differences between FIM2 and FIM3 fimbriae of Bordetella pertussis: not just the serotype. 485 1.9 1 Microbes and Infection, 2023, 25, 105152. Nasal vaccines for pertussis. Current Opinion in Immunology, 2023, 84, 102355. 5.5487 The Neonatal Immune System and Respiratory Pathogens. Microorganisms, 2023, 11, 1597. 3.6 1 Liposome and QS-21 Combined Adjuvant Induces the Humoral and Cellular Responses of Acellular 4.4 Pertussis Vaccine in a Mice Model. Vaccines, 2023, 11, 914. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, 489 13.6 2 Immuno-Modulation, and Vaccine Considerations. Clinical Microbiology Reviews, 2023, 36, . Impact of maternal whole-cell or acellular pertussis primary immunization on neonatal immune 4.8 response. Frontiers in Immunology, 0, 14, . Case-Control Study to Estimate the Association Between Tdap Vaccination During Pregnancy and Reduced Risk of Pértussis in Newborn Infants in Peru, 2019–2021. Open Forum Infectious Diseases, 2023, 491 0.9 1 10. T cell reactivity to Bordetella pertussis is highly diverse regardless of childhood vaccination. Cell 11.0 Host and Microbe, 2023, 31, 1404-1416.e4 Vaccine Immunology., 2023, , 17-36.e7. 493 0 Community Protection., 2023, , 1603-1624.e8. 494 495 Pertussis Vaccines., 2023, , 763-815.e19. 0 The potential impact of a vaccine on Neisseria gonorrhoeae prevalence among heterosexuals living in a high prevalence setting. Vaccine, 2023, 41, 5553-5561. Maternal acellular pertussis vaccination in mice impairs cellular immunity to Bordetella pertussis 497 5.00 infection in offspring. JCI Insight, 0, , . Improving Tdap maternal immunization rate in Saudi Arabia. Human Vaccines and Immunotherapeutics, 498 3.3 2023, 19, .

#	Article	IF	CITATIONS
499	Repeated <i>Bordetella pertussis</i> Infections Are Required to Reprogram Acellular Pertussis Vaccine–Primed Host Responses in the Baboon Model. Journal of Infectious Diseases, 2024, 229, 376-383.	4.0	0
500	DAT (deacylating autotransporter toxin) from <i>Bordetella parapertussis</i> demyristoylates Cα _i GTPases and contributes to cough. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
501	How immunology can help reverse the pertussis vaccine failure. Nature Immunology, 0, , .	14.5	0
502	Intranasal challenge with B. pertussis leads to more severe disease manifestations in mice than aerosol challenge. PLoS ONE, 2023, 18, e0286925.	2.5	1
503	Antibody and B-cell Immune Responses Against Bordetella Pertussis Following Infection and Immunization. Journal of Molecular Biology, 2023, 435, 168344.	4.2	0
504	Evaluation of Asymptomatic <i>Bordetella</i> Carriage in a Convenience Sample of Children and Adolescents in Atlanta, Georgia, United States. Journal of the Pediatric Infectious Diseases Society, 0, ,	1.3	0
505	Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria. Ecological Modelling, 2024, 487, 110569.	2.5	0
506	<i>Bordetella pertussis</i> targets the basolateral membrane of polarized respiratory epithelial cells, gets internalized, and survives in intracellular locations. Pathogens and Disease, 2023, 81, .	2.0	0
507	Genome-based prediction of cross-protective, HLA-DR-presented epitopes as putative vaccine antigens for multiple <i>Bordetella</i> species. Microbiology Spectrum, 0, , .	3.0	0
508	Bordetella pertussis. , 2024, , 1463-1478.		0
509	Comparative Evaluation of Recombinant and Acellular Pertussis Vaccines in a Murine Model. Vaccines, 2024, 12, 108.	4.4	0
511	IL-17 and IFN-γ–producing Respiratory Tissue-Resident Memory CD4 T Cells Persist for Decades in Adults Immunized as Children With Whole-Cell Pertussis Vaccines. Journal of Infectious Diseases, 0, , .	4.0	0
512	BECC438b TLR4 agonist supports unique immune response profiles from nasal and muscular DTaP pertussis vaccines in murine challenge models. Infection and Immunity, 2024, 92, .	2.2	0
513	Impact de la vaccination sur l'évolution de <i>Bordetella pertussis</i> . Medecine/Sciences, 2024, 40, 161-166.	0.2	0
514	Antiviral responses induced by Tdap-IPV vaccination are associated with persistent humoral immunity to Bordetella pertussis. Nature Communications, 2024, 15, .	12.8	0
516	A multi-omics systems vaccinology resource to develop and test computational models of immunity. Cell Reports Methods, 2024, 4, 100731.	2.9	0
517	Koch's curse: How models of extreme pathology bias studies of host–pathogen interactions. PLoS Pathogens, 2024, 20, e1011997.	4.7	0