Alpha-synuclein biology in Lewy body diseases

Alzheimer's Research and Therapy 6, 73

DOI: 10.1186/s13195-014-0073-2

Citation Report

#	Article	IF	CITATIONS
1	The associations between Parkinson's disease and cancer: the plot thickens. Translational Neurodegeneration, 2015, 4, 20.	3.6	77
2	Isolation of Endoplasmic Reticulum, Mitochondria, and Mitochondriaâ€Associated Membrane and Detergent Resistant Membrane Fractions from Transfected Cells and from Human Cytomegalovirusâ€Infected Primary Fibroblasts. Current Protocols in Cell Biology, 2015, 68, 3.27.1-3.27.33.	2.3	61
3	Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Frontiers in Aging Neuroscience, 2015, 7, 52.	1.7	592
4	Direct and/or Indirect Roles for SUMO in Modulating Alpha-Synuclein Toxicity. Biomolecules, 2015, 5, 1697-1716.	1.8	28
5	Î'lpha-Synuclein as a Mediator in the Interplay between Aging and Parkinson's Disease. Biomolecules, 2015, 5, 2675-2700.	1.8	49
6	Aggregates feel the strain. Nature, 2015, 522, 296-297.	13.7	12
7	Candidate genes for Parkinson disease: Lessons from pathogenesis. Clinica Chimica Acta, 2015, 449, 68-76.	0.5	25
8	SOLOMON: An ontology for Sensory-Onset, Language-Onset and Motor-Onset dementias. , 2015, , .		5
9	Regulation of protein homeostasis in neurodegenerative diseases: the role of coding and non-coding genes. Cellular and Molecular Life Sciences, 2015, 72, 4027-4047.	2.4	29
10	Dimerization propensities of Synucleins are not predictive for Synuclein aggregation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1658-1664.	1.8	15
11	Design, Synthesis, and Characterization of 3-(Benzylidene)indolin-2-one Derivatives as Ligands for \hat{l}_{\pm} -Synuclein Fibrils. Journal of Medicinal Chemistry, 2015, 58, 6002-6017.	2.9	92
12	Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson's disease. Pharmacological Research, 2015, 97, 16-26.	3.1	226
13	Neuroinflammation in Lewy body dementia. Parkinsonism and Related Disorders, 2015, 21, 1398-1406.	1.1	68
14	Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathologica Communications, 2015, 3, 53.	2.4	25
15	Etiology and Progression of Parkinson's Disease: Cross-Talk Between Environmental Factors and Genetic Vulnerability. Handbook of Behavioral Neuroscience, 2016, 24, 803-819.	0.7	1
16	G2019S Mutation of LRRK2 Increases Autophagy via MEK/ERK Pathway. , 2016, , 123-142.		2
17	A Rapid, Semi-Quantitative Assay to Screen for Modulators of Alpha-Synuclein Oligomerization Ex vivo. Frontiers in Neuroscience, 2015, 9, 511.	1.4	5
18	Unconventional Protein Secretion in Animal Cells. Methods in Molecular Biology, 2016, 1459, 31-46.	0.4	19

#	Article	IF	CITATIONS
19	Alpha-synuclein (SNCA) polymorphisms exert protective effects on memory after mild traumatic brain injury. Neuroscience Letters, 2016, 630, 241-246.	1.0	3
20	Parkinson Disease and Dementia. Journal of Geriatric Psychiatry and Neurology, 2016, 29, 261-270.	1.2	52
21	Review: Sporadic Parkinson's disease: development and distribution of <i>α</i> â€synuclein pathology. Neuropathology and Applied Neurobiology, 2016, 42, 33-50.	1.8	309
22	Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10328-10333.	3.3	252
23	Recent developments in circulating biomarkers in Parkinson's disease: the potential use of miRNAs in a clinical setting. Bioanalysis, 2016, 8, 2497-2518.	0.6	16
24	The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation. Acta Neuropathologica Communications, 2016, 4, 128.	2.4	35
25	Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies. Neurobiology of Disease, 2016, 94, 55-62.	2.1	55
26	Development of <scp>P</scp> assive <scp>I</scp> mmunotherapies for <scp>S</scp> ynucleinopathies. Movement Disorders, 2016, 31, 203-213.	2.2	79
27	Neuropathological relationship between major depression and dementia: A hypothetical model and review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67, 51-57.	2.5	89
28	Up-regulation of SNCA gene expression: implications to synucleinopathies. Neurogenetics, 2016, 17, 145-157.	0.7	56
29	The analysis of association between SNCA, HUSEYO and CSMD1 gene variants and Parkinson's disease in Iranian population. Neurological Sciences, 2016, 37, 731-736.	0.9	20
30	Transcriptome profiling in Parkinson's leukocytes: from early diagnostics to neuroimmune therapeutic prospects. Current Opinion in Pharmacology, 2016, 26, 102-109.	1.7	12
31	Amyloid- \hat{l}^2 suppresses AMP-activated protein kinase (AMPK) signaling and contributes to \hat{l}_\pm -synuclein-induced cytotoxicity. Experimental Neurology, 2016, 275, 84-98.	2.0	32
33	An enhanced recombinant aminoâ€terminal acetylation system and novel <i>in vivo</i> highâ€throughput screen for molecules affecting αâ€synuclein oligomerisation. FEBS Letters, 2017, 591, 833-841.	1.3	18
34	Mechanisms of Parkinson's disease-related proteins in mediating secondary brain damage after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1910-1926.	2.4	51
35	PI3K/AKT signaling mediated by G protein-coupled receptors is involved in neurodegenerative Parkinson's disease (Review). International Journal of Molecular Medicine, 2017, 39, 253-260.	1.8	72
37	Validating the Predicted Effect of Astemizole and Ketoconazole Using a <i> Drosophila < /i > Model of Parkinson's Disease. Assay and Drug Development Technologies, 2017, 15, 106-112.</i>	0.6	9
38	Immune and myodegenerative pathomechanisms in inclusion body myositis. Annals of Clinical and Translational Neurology, 2017, 4, 422-445.	1.7	41

#	Article	IF	CITATIONS
39	Cross talk between neurometals and amyloidogenic proteins at the synapse and the pathogenesis of neurodegenerative diseases. Metallomics, 2017, 9, 619-633.	1.0	55
40	Inflammatory pre-conditioning restricts the seeded induction of \hat{l}_{\pm} -synuclein pathology in wild type mice. Molecular Neurodegeneration, 2017, 12, 1.	4.4	104
41	Current understanding of the molecular mechanisms in Parkinson's disease: Targets for potential treatments. Translational Neurodegeneration, 2017, 6, 28.	3.6	353
42	A Systems Model of Parkinson's Disease Using Biochemical Systems Theory. OMICS A Journal of Integrative Biology, 2017, 21, 454-464.	1.0	14
43	Small-molecule PET Tracers for Imaging Proteinopathies. Seminars in Nuclear Medicine, 2017, 47, 553-575.	2.5	91
44	Cytokine profiling in the prefrontal cortex of Parkinson's Disease and Multiple System Atrophy patients. Neurobiology of Disease, 2017, 106, 269-278.	2.1	58
45	A pH-dependent switch promotes \hat{l}^2 -synuclein fibril formation via glutamate residues. Journal of Biological Chemistry, 2017, 292, 16368-16379.	1.6	41
46	Minimal Nucleation State of α-Synuclein Is Stabilized by Dynamic Threonine–Water Networks. ACS Chemical Neuroscience, 2017, 8, 1859-1864.	1.7	10
47	Polo-like kinase 2 modulates α-synuclein protein levels by regulating its mRNA production. Neurobiology of Disease, 2017, 106, 49-62.	2.1	21
48	Alpha-synuclein and oxidative stress enzymes as biomarkers of Parkinson's disease. Neurochemical Journal, 2017, 11, 121-128.	0.2	0
49	Circular RNA: a new star in neurological diseases. International Journal of Neuroscience, 2017, 127, 726-734.	0.8	50
50	Mini-review on initiatives to interfere with the propagation and clearance of alpha-synuclein in Parkinson's disease. Translational Neurodegeneration, 2017, 6, 33.	3.6	10
51	Metabolic Investigations of the Molecular Mechanisms Associated with Parkinson's Disease. Metabolites, 2017, 7, 22.	1.3	39
53	Hypermethylation of Synphilin-1, Alpha-Synuclein-Interacting Protein (SNCAIP) Gene in the Cerebral Cortex of Patients with Sporadic Parkinson's Disease. Brain Sciences, 2017, 7, 74.	1.1	9
54	Refinement of a neuronal differentiation protocol predominantly yields human iPS cell-derived dopaminergic neurons for the investigation of neurodegenerative pathomechanisms in vitro. Journal of Cellular Biotechnology, 2017, 3, 61-80.	0.1	0
55	Autonomic dysfunction in genetic forms of synucleinopathies. Movement Disorders, 2018, 33, 359-371.	2.2	17
56	Regulation of theÂExtracellular Matrix byÂHeat Shock Proteins and Molecular Chaperones. , 2018, , 97-121.		1
57	When Do α-Synucleinopathies Start? An Epidemiological Timeline. JAMA Neurology, 2018, 75, 503.	4.5	69

#	Article	IF	CITATIONS
58	Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. Journal of Neural Transmission, 2018, 125, 591-613.	1.4	16
59	Overactive BRCA1 Affects Presenilin 1 in Induced Pluripotent Stem Cell-Derived Neurons in Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 175-202.	1.2	36
60	Are dementia with Lewy bodies and Parkinson's disease dementia the same disease?. BMC Medicine, 2018, 16, 34.	2.3	232
61	Decreased expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) promotes alpha-synuclein increase related with down-regulation of dopaminergic cell in the Substantia Nigra of chronic MPTP-induced Parkinsonism mice and in SH-SY5Y cells. Gene, 2018, 661, 189-195.	1.0	8
63	Distinct \hat{l}_{\pm} -Synuclein strains and implications for heterogeneity among \hat{l}_{\pm} -Synucleinopathies. Neurobiology of Disease, 2018, 109, 209-218.	2.1	121
64	Aβ exacerbates αâ€synucleinâ€induced neurotoxicity through impaired insulin signaling in αâ€synucleinâ€overexpressed human SKâ€Nâ€MC neuronal cells. CNS Neuroscience and Therapeutics, 2018, 24, 47-57.	1.9	8
65	Dementia with Lewy bodies and Parkinson's disease-dementia: current concepts and controversies. Journal of Neural Transmission, 2018, 125, 615-650.	1.4	200
66	Multiple System Atrophy: Many Lessons from the Transcriptome. Neuroscientist, 2018, 24, 294-307.	2.6	7
67	miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson's disease. Oncotarget, 2018, 9, 17455-17465.	0.8	94
68	Current state of Alzheimer's fluid biomarkers. Acta Neuropathologica, 2018, 136, 821-853.	3.9	370
69	Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opinion on Therapeutic Targets, 2018, 22, 833-848.	1.5	83
70	Clearing Extracellular Alpha-Synuclein from Cerebrospinal Fluid: A New Therapeutic Strategy in Parkinson's Disease. Brain Sciences, 2018, 8, 52.	1.1	13
71	An Inducible Alpha-Synuclein Expressing Neuronal Cell Line Model for Parkinson's Disease1. Journal of Alzheimer's Disease, 2018, 66, 453-460.	1.2	11
72	Major or Mild Neurocognitive Disorders with Lewy Bodies. , 2018, , 429-443.		0
73	Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control. Frontiers in Molecular Neuroscience, 2018, 11, 68.	1.4	25
74	Sir-2.1 mediated attenuation of \hat{l}_{\pm} -synuclein expression by Alaskan bog blueberry polyphenols in a transgenic model of Caenorhabditis elegans. Scientific Reports, 2018, 8, 10216.	1.6	17
75	Co-aggregation of pro-inflammatory S100A9 with α-synuclein in Parkinson's disease: ex vivo and in vitro studies. Journal of Neuroinflammation, 2018, 15, 172.	3.1	50
76	Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. International Journal of Molecular Sciences, 2018, 19, 2449.	1.8	15

#	Article	IF	CITATIONS
77	Ceftriaxone Treatment for Neuronal Deficits: A Histological and MEMRI Study in a Rat Model of Dementia with Lewy Bodies. Behavioural Neurology, 2018, 2018, 1-9.	1.1	11
78	Ammon's Horn 2 (CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration. Neuroscientist, 2019, 25, 167-180.	2.6	37
79	Dementia associated with disorders of the basal ganglia. Journal of Neuroscience Research, 2019, 97, 1728-1741.	1.3	10
80	The Landscape of SNCA Transcripts Across Synucleinopathies: New Insights From Long Reads Sequencing Analysis. Frontiers in Genetics, 2019, 10, 584.	1.1	15
81	<i>STXBP1</i> encephalopathy. Neurology, 2019, 93, 114-123.	1.5	37
82	Prion-Like Mechanisms in Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 552.	1.4	88
83	Injection of \hat{l} ±-syn-98 Aggregates Into the Brain Triggers \hat{l} ±-Synuclein Pathology and an Inflammatory Response. Frontiers in Molecular Neuroscience, 2019, 12, 189.	1.4	7
84	Iron Redox Chemistry and Implications in the Parkinson's Disease Brain. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	1.9	25
85	Initiation and Transmission of α-Synuclein Pathology in Parkinson's Disease. Neurochemical Research, 2019, 44, 2685-2694.	1.6	6
86	Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Molecular and Cellular Neurosciences, 2019, 101, 103416.	1.0	30
87	Neurodegenerative Diseases and Their Therapeutic Approaches. , 0, , .		1
88	Synaptic vesicle mimics affect the aggregation of wild-type and A53T α-synuclein variants differently albeit similar membrane affinity. Protein Engineering, Design and Selection, 2019, 32, 59-66.	1.0	6
89	Impairment of Nrf2- and Nitrergic-Mediated Gastrointestinal Motility in an MPTP Mouse Model of Parkinson's Disease. Digestive Diseases and Sciences, 2019, 64, 3502-3517.	1.1	12
90	Use of Ceftriaxone in Treating Cognitive and Neuronal Deficits Associated With Dementia With Lewy Bodies. Frontiers in Neuroscience, 2019, 13, 507.	1.4	9
91	Erectile Dysfunction Preceding Clinically Diagnosed α-Synucleinopathies: A Case-Control Study in Olmsted County. Parkinson's Disease, 2019, 2019, 1-6.	0.6	7
92	Acupuncture Inhibits the Increase in Alpha-Synuclein by Modulating SGK1 in an MPTP Induced Parkinsonism Mouse Model. The American Journal of Chinese Medicine, 2019, 47, 527-539.	1.5	9
93	Neurochemical Aspects of Lewy Body Dementia. , 2019, , 113-150.		0
94	Neurochemical Aspects of Neurological Disorders. , 2019, , 1-22.		1

#	Article	IF	Citations
95	Curcumin in Neurological Disorders: An Overview. , 2019, , 63-84.		1
96	Therapeutic Potentials of Curcumin in Parkinson's Disease. , 2019, , 333-344.		4
97	AAA+ Protein-Based Technologies to Counter Neurodegenerative Disease. Biophysical Journal, 2019, 116, 1380-1385.	0.2	17
98	α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease. Acta Neuropathologica, 2019, 138, 1-21.	3.9	109
99	A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behavioural Brain Research, 2019, 364, 149-156.	1.2	26
100	Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics. Reviews in the Neurosciences, 2019, 30, 339-358.	1.4	84
101	rAAV-based brain slice culture models of Alzheimer's and Parkinson's disease inclusion pathologies. Journal of Experimental Medicine, 2019, 216, 539-555.	4.2	48
102	Physiological, molecular and genetic aspects of alpha-synuclein and its correlation with high alcohol consumption. Revista Facultad De Medicina, 2019, 67, 315-322.	0.0	0
103	Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion, 2019, 47, 151-173.	1.6	85
104	Heterogeneity in αâ€synuclein subtypes and their expression in cortical brain tissue lysates from Lewy body diseases and Alzheimer's disease. Neuropathology and Applied Neurobiology, 2019, 45, 597-608.	1.8	27
105	When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders. Advances in Protein Chemistry and Structural Biology, 2019, 114, 221-264.	1.0	13
106	Quantification of Protein Aggregates Using Bimolecular Fluorescence Complementation. Methods in Molecular Biology, 2019, 1873, 183-193.	0.4	0
107	Available and future treatments for atypical parkinsonism. A systematic review. CNS Neuroscience and Therapeutics, 2019, 25, 159-174.	1.9	22
108	Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors, 2020, 46, 5-20.	2.6	100
109	Structural analysis of the effects of mutations in Ubl domain of Parkin leading to Parkinson's disease. Gene, 2020, 726, 144186.	1.0	12
110	Glycogen synthase kinase 3 \hat{l}^2 activity is essential for Polo-like kinase 2- and Leucine-rich repeat kinase 2-mediated regulation of \hat{l}_{\pm} -synuclein. Neurobiology of Disease, 2020, 136, 104720.	2.1	9
111	Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases. Advanced Healthcare Materials, 2020, 9, e1901589.	3.9	50
112	Molecular mechanism of olesoxime-mediated neuroprotection through targeting α-synuclein interaction with mitochondrial VDAC. Cellular and Molecular Life Sciences, 2020, 77, 3611-3626.	2.4	39

#	ARTICLE	IF	CITATIONS
113	High-Resolution Respirometry Reveals MPP+ Mitochondrial Toxicity Mechanism in a Cellular Model of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 7809.	1.8	37
114	The Role of Glial Mitochondria in α-Synuclein Toxicity. Frontiers in Cell and Developmental Biology, 2020, 8, 548283.	1.8	13
115	Roles, Characteristics, and Analysis of Intrinsically Disordered Proteins: A Minireview. Life, 2020, 10, 320.	1.1	11
116	Anti-prion and α-Synuclein Aggregation Inhibitory Sterols from the Sponge <i>Lamellodysidea</i> cf. <i>chlorea</i> . Journal of Natural Products, 2020, 83, 3751-3757.	1.5	8
117	Influence of serum concentration in retinoic acid and phorbol ester induced differentiation of SH-SY5Y human neuroblastoma cell line. Molecular Biology Reports, 2020, 47, 8775-8788.	1.0	9
118	Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. Biochemistry (Moscow), 2020, 85, 1011-1034.	0.7	17
119	The role of natural killer cells in Parkinson's disease. Experimental and Molecular Medicine, 2020, 52, 1517-1525.	3.2	42
120	BAG5 Promotes Alpha-Synuclein Oligomer Formation and Functionally Interacts With the Autophagy Adaptor Protein p62. Frontiers in Cell and Developmental Biology, 2020, 8, 716.	1.8	6
121	Copper Dyshomeostasis in Neurodegenerative Diseasesâ€"Therapeutic Implications. International Journal of Molecular Sciences, 2020, 21, 9259.	1.8	125
122	Nanotheranostic Applications for Detection and Targeting Neurodegenerative Diseases. Frontiers in Neuroscience, 2020, 14, 305.	1.4	41
123	Insulin resistance and Parkinson's disease. , 2020, , 293-347.		0
124	Targeting the Multiple Physiologic Roles of VDAC With Steroids and Hydrophobic Drugs. Frontiers in Physiology, 2020, 11, 446.	1.3	24
125	Dual Targeting of Monomeric Tau and \hat{l}_{\pm} -Synuclein Aggregation: A New Multitarget Therapeutic Strategy for Neurodegeneration. ACS Chemical Neuroscience, 2020, 11, 2051-2057.	1.7	13
126	LRRK2-Related Parkinson's Disease Due to Altered Endolysosomal Biology With Variable Lewy Body Pathology: A Hypothesis. Frontiers in Neuroscience, 2020, 14, 556.	1.4	19
127	Inhibition of alpha-synuclein seeded fibril formation and toxicity by herbal medicinal extracts. BMC Complementary Medicine and Therapies, 2020, 20, 73.	1.2	22
128	How We Think about Targeting RNA with Small Molecules. Journal of Medicinal Chemistry, 2020, 63, 8880-8900.	2.9	109
129	Fatty Acid Binding Protein 3 Enhances the Spreading and Toxicity of α-Synuclein in Mouse Brain. International Journal of Molecular Sciences, 2020, 21, 2230.	1.8	28
130	Cynomolgus Monkeys With Spontaneous Type-2-Diabetes-Mellitus-Like Pathology Develop Alpha-Synuclein Alterations Reminiscent of Prodromal Parkinson's Disease and Related Diseases. Frontiers in Neuroscience, 2020, 14, 63.	1.4	17

#	Article	IF	CITATIONS
131	Perspective: Current Pitfalls in the Search for Future Treatments and Prevention of Parkinson's Disease. Frontiers in Neurology, 2020, 11, 686.	1.1	6
133	Order–disorder skewness in alpha-synuclein: a key mechanism to recognize membrane curvature. Physical Chemistry Chemical Physics, 2020, 22, 5255-5263.	1.3	16
134	miRNA-31 Improves Cognition and Abolishes Amyloid-β Pathology by Targeting APP and BACE1 in an Animal Model of Alzheimer's Disease. Molecular Therapy - Nucleic Acids, 2020, 19, 1219-1236.	2.3	56
135	Fineâ€Mapping of <i>SNCA</i> in Rapid Eye Movement Sleep Behavior Disorder and Overt Synucleinopathies. Annals of Neurology, 2020, 87, 584-598.	2.8	39
136	Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases. Ageing Research Reviews, 2021, 65, 101202.	5.0	104
137	Biophysical processes underlying cross-seeding in amyloid aggregation and implications in amyloid pathology. Biophysical Chemistry, 2021, 269, 106507.	1.5	101
138	Isolongifolene mitigates rotenone-induced dopamine depletion and motor deficits through anti-oxidative and anti-apoptotic effects in a rat model of Parkinson's disease. Journal of Chemical Neuroanatomy, 2021, 112, 101890.	1.0	20
139	Inflammation and Parkinson's disease pathogenesis: Mechanisms and therapeutic insight. Progress in Molecular Biology and Translational Science, 2021, 177, 175-202.	0.9	21
140	Gut-Brain axis in Parkinson's disease etiology: The role of lipopolysaccharide. Chemistry and Physics of Lipids, 2021, 235, 105029.	1.5	20
141	Analysis of α-synuclein levels related to LRRK2 kinase activity: from substantia nigra to urine of patients with Parkinson's disease. Animal Cells and Systems, 2021, 25, 28-36.	0.8	8
142	Correlation between Alzheimer's Disease and Dementia with Lewy Bodies Scores Using VSRAD Advance. Advances in Alzheimer's Disease, 2021, 10, 33-45.	0.3	0
144	Role of Medicinal Plants against Neurodegenerative Diseases. Current Pharmaceutical Biotechnology, 2022, 23, 123-139.	0.9	18
145	Heterogeneity in \hat{l}_{\pm} -synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathologica, 2021, 141, 547-564.	3.9	23
146	Cerebrospinal Fluid Biomarkers of Alzheimer's Disease: Current Evidence and Future Perspectives. Brain Sciences, 2021, 11, 215.	1.1	58
147	Mind the Gap: Mitochondria and the Endoplasmic Reticulum in Neurodegenerative Diseases. Biomedicines, 2021, 9, 227.	1.4	25
148	Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients, 2021, 13, 986.	1.7	63
149	Fasâ€associated factor 1 induces the accumulation of αâ€synuclein through autophagic suppression in dopaminergic neurons. FASEB Journal, 2021, 35, e21363.	0.2	2
150	The Neurophysiology of Sleep in Parkinson's Disease. Movement Disorders, 2021, 36, 1526-1542.	2.2	34

#	Article	IF	CITATIONS
151	Genome instability and loss of protein homeostasis: converging paths to neurodegeneration?. Open Biology, 2021, 11, 200296.	1.5	26
152	Interactions of α-synuclein oligomers with lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183536.	1.4	49
153	The Contribution of Microglia to Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 4676.	1.8	114
154	Prion-like C-Terminal Domain of TDP-43 and α-Synuclein Interact Synergistically to Generate Neurotoxic Hybrid Fibrils. Journal of Molecular Biology, 2021, 433, 166953.	2.0	40
155	α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport. Cell Calcium, 2021, 95, 102355.	1.1	27
157	"Janus-Faced―α-Synuclein: Role in Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 673395.	1.8	8
158	The <i>O</i> i>-Glycome of Human Nigrostriatal Tissue and Its Alteration in Parkinson's Disease. Journal of Proteome Research, 2021, 20, 3913-3924.	1.8	20
159	Poly (ADP-ribose) Interacts With Phosphorylated α-Synuclein in Post Mortem PD Samples. Frontiers in Aging Neuroscience, 2021, 13, 704041.	1.7	14
160	Parkinson's Disease: A Prionopathy?. International Journal of Molecular Sciences, 2021, 22, 8022.	1.8	12
161	Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Frontiers in Neurology, 2021, 12, 661117.	1.1	23
162	Parkinson's Disease and the Gut: Symptoms, Nutrition, and Microbiota. Journal of Parkinson's Disease, 2021, 11, 1491-1505.	1.5	21
163	The Impact of SNCA Variations and Its Product Alpha-Synuclein on Non-Motor Features of Parkinson's Disease. Life, 2021, 11, 804.	1.1	10
164	Association of lewy bodies, hippocampal sclerosis and amyloid angiopathy with dementia in community-dwelling elderly: A systematic review and meta-analysis. Journal of Clinical Neuroscience, 2021, 90, 124-131.	0.8	1
165	<scp>RNA</scp> –ligand molecular docking: Advances and challenges. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1571.	6.2	20
166	Mass spectrometryâ€based methods for robust measurement of Alzheimer's disease biomarkers in biological fluids. Journal of Neurochemistry, 2021, 159, 211-233.	2.1	29
167	A novel yeastâ€based screening system for potential compounds that can alleviate human αâ€synuclein toxicity. Journal of Applied Microbiology, 2021, , .	1.4	3
168	Modelling the functional genomics of Parkinson's disease in <i>Caenorhabditis elegans</i> LRRK2and beyond. Bioscience Reports, 2021, 41, .	1.1	8
169	The role of neuroimaging in Parkinson's disease. Journal of Neurochemistry, 2021, 159, 660-689.	2.1	35

#	Article	IF	CITATIONS
170	Role of Inflammation in Lewy Body Dementia., 2021, , 190-212.		0
171	Imaging of α-Synuclein Aggregates in a Rat Model of Parkinson's Disease Using Raman Microspectroscopy. Frontiers in Cell and Developmental Biology, 2021, 9, 664365.	1.8	5
172	Contribution of neuroinflammation, resolution, and neuroprotection in neurodegenerative diseases. , 2022, , 121-160.		0
173	QSAR and QAAR Studies on Mixtures of 3-(Benzylidene)Indolin-2-One Isomers as Leads to Develop PET Radiotracers for Detection of Parkinson's Disease., 2021,, 366-385.		0
174	Liposomes loaded with polyphenol-rich grape pomace extracts protect from neurodegeneration in a rotenone-based <i>in vitro</i> model of Parkinson's disease. Biomaterials Science, 2021, 9, 8171-8188.	2.6	18
175	Ferrosenescence: The iron age of neurodegeneration?. Mechanisms of Ageing and Development, 2018, 174, 63-75.	2.2	56
176	The emerging role of \hat{l}_{\pm} -synuclein truncation in aggregation and disease. Journal of Biological Chemistry, 2020, 295, 10224-10244.	1.6	99
178	Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers. , 2018, , .		5
179	Magnetic resonance imaging and tensor-based morphometry in the MPTP non-human primate model of Parkinson's disease. PLoS ONE, 2017, 12, e0180733.	1.1	9
180	Quantitative proteomics in A30P*A53T α-synuclein transgenic mice reveals upregulation of Sel1l. PLoS ONE, 2017, 12, e0182092.	1.1	9
181	Modeling α-Synuclein Propagation with Preformed Fibril Injections. Journal of Movement Disorders, 2019, 12, 139-151.	0.7	65
182	Chronic exposure to cerebrospinal fluid of multiple system atrophy in neuroblastoma and glioblastoma cells induces cytotoxicity via ER stress and autophagy activation. Oncotarget, 2015, 6, 13278-13294.	0.8	6
183	Key Peptides and Proteins in Alzheimer's Disease. Current Protein and Peptide Science, 2019, 20, 577-599.	0.7	30
184	Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Current Topics in Medicinal Chemistry, 2020, 20, 1154-1168.	1.0	10
185	Therapeutic genetic variation revealed in diverse Hsp104 homologs. ELife, 2020, 9, .	2.8	17
186	Recent advances in nanosensors development for biomarker alpha-synuclein protein detection. Process Biochemistry, 2021, 111, 105-113.	1.8	7
187	Polo-like kinase 2 inhibition reduces serine-129 phosphorylation of physiological nuclear alpha-synuclein but not of the aggregated alpha-synuclein. PLoS ONE, 2021, 16, e0252635.	1.1	18
188	Computational Approach towards Targeting Aggregate Formation in Synucleinopathies. MOJ Proteomics & Bioinformatics, 2015, 2, .	0.1	0

#	Article	IF	Citations
189	Transmission Mechanism of Lewy Body-Like α-Synucleinopathies in Dopaminergic Neurons Derived from Human Induced Pluripotent Stem Cells. Research Ideas and Outcomes, 0, 4, e25423.	1.0	0
191	QSAR and QAAR Studies on Mixtures of 3-(Benzylidene)Indolin-2-One Isomers as Leads to Develop PET Radiotracers for Detection of Parkinson's Disease. International Journal of Quantitative Structure-Property Relationships, 2018, 3, 95-114.	1.1	1
193	Neurodegenerative Diseases: Lewy Body Dementia. , 2019, , 933-944.		0
195	Chronic α-Synuclein Accumulation in Rat Hippocampus Induces Lewy Bodies Formation and Specific Cognitive Impairments. ENeuro, 2020, 7, ENEURO.0009-20.2020.	0.9	11
199	Promising molecular targets for pharmacological therapy of neurodegenerative pathologies. Acta Naturae, 2020, 12, 60-80.	1.7	3
201	Evidence that the Kennedy and polyamine pathways are dysregulated in human brain in cases of dementia with Lewy bodies. Brain Research, 2020, 1743, 146897.	1.1	5
202	Dementia with Lewy bodies and Parkinson's disease dementia-two independent disorders or one clinical entity within a clinical spectrum of synucleinopathies?. Current Problems of Psychiatry, 2020, 21, 161-166.	0.1	0
203	Clinical and Biochemical Heterogeneity of Parkinson's Disease. Neuroscience and Behavioral Physiology, 2021, 51, 1073-1078.	0.2	0
204	O-GlcNAcylation in health and neurodegenerative diseases. Experimental and Molecular Medicine, 2021, 53, 1674-1682.	3.2	53
205	Sycosterol A, an α-Synuclein Inhibitory Sterol from the Australian Ascidian <i>Sycozoa cerebriformis</i>). Journal of Natural Products, 2021, 84, 3039-3043.	1.5	6
206	Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 1089.	1.8	4
208	Insights into the Interactions that Trigger the Primary Nucleation of Polymorphic α-Synuclein Dimers. ACS Chemical Neuroscience, 2022, 13, 370-378.	1.7	10
209	Time-Course of Alterations in the Endocannabinoid System after Viral-Mediated Overexpression of \hat{l}_{\pm} -Synuclein in the Rat Brain. Molecules, 2022, 27, 507.	1.7	6
210	Upregulation of $\hat{l}\pm$ -synuclein following immune activation: Possible trigger of Parkinson's disease. Neurobiology of Disease, 2022, 166, 105654.	2.1	27
211	Leukotriene Signaling as a Target in α-Synucleinopathies. Biomolecules, 2022, 12, 346.	1.8	5
212	ldentification of alphaâ€Synuclein Disaggregator from <i>Camellia sp</i> . Insight of Molecular Docking and Molecular Dynamics Simulations. ChemistrySelect, 2022, 7, .	0.7	2
213	Pathological Relevance of Post-Translationally Modified Alpha-Synuclein (pSer87, pSer129, nTyr39) in Idiopathic Parkinson's Disease and Multiple System Atrophy. Cells, 2022, 11, 906.	1.8	14
214	Network Theoretical Approach to Explore Factors Affecting Signal Propagation and Stability in Dementia's Protein-Protein Interaction Network. Biomolecules, 2022, 12, 451.	1.8	11

#	ARTICLE	IF	CITATIONS
215	Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review. European Journal of Neuroscience, 2022, 56, 5650-5713.	1.2	4
216	Chapter 5 – "Parkinson's disease – A role of non-enzymatic posttranslational modifications in disease onset and progression?― Molecular Aspects of Medicine, 2022, 86, 101096.	2.7	8
217	α-Synuclein arginylation in the human brain. Translational Neurodegeneration, 2022, 11, 20.	3.6	8
229	The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Frontiers in Aging Neuroscience, 0, 14, .	1.7	3
230	Dysregulation of a Heme Oxygenase–Synuclein Axis in Parkinson Disease. NeuroSci, 2022, 3, 284-299.	0.4	2
231	Curcumin-loaded human endometrial stem cells derived exosomes as an effective carrier to suppress alpha-synuclein aggregates in 6OHDA-induced Parkinson's disease mouse model. Cell and Tissue Banking, 2023, 24, 75-91.	0.5	13
232	The Value of Neuroimaging in Dementia Diagnosis. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 800-821.	0.4	2
233	GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. International Journal of Molecular Sciences, 2022, 23, 7373.	1.8	4
234	Frontal Atrophy and Executive Dysfunction Relate to Complex Numbers Impairment in Progressive Supranuclear Palsy. Journal of Alzheimer's Disease, 2022, 88, 1553-1566.	1.2	2
235	Therapeutic Strategies for Immune Transformation in Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S201-S222.	1.5	7
236	Polymorphism in alpha-synuclein oligomers and its implications in toxicity under disease conditions. Frontiers in Molecular Biosciences, 0, 9, .	1.6	6
237	Cocoa Extract Provides Protection against 6-OHDA Toxicity in SH-SY5Y Dopaminergic Neurons by Targeting PERK. Biomedicines, 2022, 10, 2009.	1.4	9
238	Role of Impaired Insulin Signaling in the Pathogenesis of Dementia. , 2022, , 63-84.		0
239	Interplay of alpha-synuclein pathology and gut microbiome in Parkinson's disease. , 2022, , 159-178.		1
240	Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Frontiers in Pharmacology, $0,13,.$	1.6	15
241	Gut dysfunction may be the source of pathological aggregation of alpha-synuclein in the central nervous system through Paraquat exposure in mice. Ecotoxicology and Environmental Safety, 2022, 246, 114152.	2.9	6
242	The Role of Inflammasomes in the Pathogenesis of Neurodegenerative Diseases. Neurochemical Journal, 2022, 16, 271-282.	0.2	0
243	Surgical Management of Synucleinopathies. Biomedicines, 2022, 10, 2657.	1.4	2

#	ARTICLE	IF	CITATIONS
244	Influence of TiO2 and ZnO Nanoparticles on \hat{l}_{\pm} -Synuclein and \hat{l}^{2} -Amyloid Aggregation and Formation of Protein Fibrils. Materials, 2022, 15, 7664.	1.3	4
245	Gastric Enteric Glial Cells: A New Contributor to the Synucleinopathies in the MPTP-Induced Parkinsonism Mouse. Molecules, 2022, 27, 7414.	1.7	3
246	How binding to surfaces affects disorder?. , 2023, , 455-489.		2
247	Recent development of analytical methods for disease-specific protein <i>O < /i>-GlcNAcylation. RSC Advances, 2022, 13, 264-280.</i>	1.7	4
248	The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients, 2022, 14, 5086.	1.7	9
249	The effect of diphenylethane side-chain substituents on dibenzocyclohexadiene formation and their inhibition of α-synuclein aggregation in vitro. Bioorganic and Medicinal Chemistry, 2023, 78, 117147.	1.4	1
250	Optical pulse labeling studies reveal exogenous seeding slows α-synuclein clearance. Npj Parkinson's Disease, 2022, 8, .	2.5	1
251	Lysophospholipids: A Potential Drug Candidates for Neurodegenerative Disorders. Biomedicines, 2022, 10, 3126.	1.4	3
252	Models of Neurodegenerative Diseases. Learning Materials in Biosciences, 2023, , 179-209.	0.2	0
253	Unravelling the genetic links between Parkinson's disease and lung cancer. Biological Chemistry, 2023, 404, 551-567.	1.2	1
254	Alpha-synuclein: a pathological factor with $A\hat{l}^2$ and tau and biomarker in Alzheimer $\hat{a} \in \mathbb{I}^M$ s disease. Alzheimer's Research and Therapy, 2022, 14, .	3.0	12
255	Novel FABP3 ligand, HY-11-9, ameliorates neuropathological deficits in MPTP-induced Parkinsonism in mice. Journal of Pharmacological Sciences, 2023, 152, 30-38.	1.1	4
256	Inflammation-Mediated Responses in the Development of Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2023, , 39-70.	0.8	1
281	Macro and micro-sleep dysfunctions as translational biomarkers for Parkinson's disease. International Review of Neurobiology, 2024, , 187-209.	0.9	O