Numerical simulation of basaltic lava flows in the Auck Zealandâ€"implication for volcanic hazard assessment

Bulletin of Volcanology 76, 1 DOI: 10.1007/s00445-014-0879-6

Citation Report

#	Article	IF	CITATIONS
1	Impact of effusive eruptions from the Eguas–Carvão fissure system, São Miguel Island, Azores Archipelago (Portugal). Journal of Volcanology and Geothermal Research, 2015, 291, 1-13.	2.1	21
2	Spatio-volumetric hazard estimation in the Auckland volcanic field. Bulletin of Volcanology, 2015, 77, 1.	3.0	29
3	Lava flow hazards—An impending threat at Miyakejima volcano, Japan. Journal of Volcanology and Geothermal Research, 2015, 308, 1-9.	2.1	21
4	Exploring lavaâ€flow hazards at Pico Island, Azores Archipelago (Portugal). Terra Nova, 2015, 27, 156-161.	2.1	25
5	Lava flow hazard modeling during the 2014–2015 Fogo eruption, Cape Verde. Journal of Geophysical Research: Solid Earth, 2016, 121, 2290-2303.	3.4	69
6	Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand). Journal of Volcanology and Geothermal Research, 2016, 324, 41-56.	2.1	30
7	Models for the estimation of Fe ³⁺ /Fe _{tot} ratio in terrestrial and extraterrestrial alkali- and iron-rich silicate glasses using Raman spectroscopyk. American Mineralogist, 2016, 101, 943-952.	1.9	48
8	Long-lived shield volcanism within a monogenetic basaltic field: The conundrum of Rangitoto volcano, New Zealand. Bulletin of the Geological Society of America, 2016, 128, 1160-1172.	3.3	16
9	Quantifying lava flow hazards in response to effusive eruption. Bulletin of the Geological Society of America, 2016, 128, 752-763.	3.3	29
10	Emplacement conditions of the 1256 AD Al-Madinah lava flow field in Harrat Rahat, Kingdom of Saudi Arabia — Insights from surface morphology and lava flow simulations. Journal of Volcanology and Geothermal Research, 2016, 309, 14-30.	2.1	30
11	MAGFLOW: a physics-based model for the dynamics of lava-flow emplacement. Geological Society Special Publication, 2016, 426, 357-373.	1.3	29
12	Investigating the consequences of urban volcanism using a scenario approach I: Development and application of a hypothetical eruption in the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 2017, 336, 192-208.	2.1	35
13	Geoheritage Values of a Mature Monogenetic Volcanic Field in Intra-continental Settings: Harrat Khaybar, Kingdom of Saudi Arabia. Geoheritage, 2017, 9, 311-328.	2.8	45
14	Probing the subsurface of the Auckland Volcanic Field with ambient seismic noise. New Zealand Journal of Geology, and Geophysics, 2017, 60, 341-352.	1.8	8
15	The Role of Cultural and Indigenous Values in Geosite Evaluations on a Quaternary Monogenetic Volcanic Landscape at IhumÁŧao, Auckland Volcanic Field, New Zealand. Geoheritage, 2017, 9, 373-393.	2.8	30
16	Conceptual Development of a National Volcanic Hazard Model for New Zealand. Frontiers in Earth Science, 2017, 5, .	1.8	3
17	Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes' volcanic province. Journal of Volcanology and Geothermal Research, 2019, 383, 77-87.	2.1	28
18	â€~A'ĕlava emplacement and the significance of rafted pyroclastic material: Marcath volcano (Nevada,) Tj E	TQg1_1 0.7	′84314 rgBT

#	Article	IF	CITATIONS
19	Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel-2 Images and Machine Learning Techniques. Remote Sensing, 2019, 11, 1916.	4.0	33
20	Olivine phenocryst origins and mantle magma sources for monogenetic basalt volcanoes in northern New Zealand from textural, geochemical and δ180 isotope data. Lithos, 2019, 344-345, 232-246.	1.4	6
21	Role of Emissivity in Lava Flow â€~Distance-to-Run' Estimates from Satellite-Based Volcano Monitoring. Remote Sensing, 2019, 11, 662.	4.0	17
22	Spaceborne EO and a Combination of Inverse and Forward Modelling for Monitoring Lava Flow Advance. Remote Sensing, 2019, 11, 3032.	4.0	9
23	Changing Eruptive Styles at the South-East Crater of Mount Etna: Implications for Assessing Lava Flow Hazards. Frontiers in Earth Science, 2019, 7, .	1.8	17
24	Influence of topographic data uncertainties and model resolution on the numerical simulation of lava flows. Environmental Modelling and Software, 2019, 112, 1-15.	4.5	25
25	Developing a suite of multi-hazard volcanic eruption scenarios using an interdisciplinary approach. Journal of Volcanology and Geothermal Research, 2020, 392, 106763.	2.1	31
26	How the variety of satellite remote sensing data over volcanoes can assist hazard monitoring efforts: The 2011 eruption of Nabro volcano. Remote Sensing of Environment, 2020, 236, 111426.	11.0	38
27	The influence of surficial features in lava flow modelling. Journal of Applied Volcanology, 2020, 9, .	2.0	4
28	Thermal impacts of basaltic lava flows to buried infrastructure: workflow to determine the hazard. Journal of Applied Volcanology, 2020, 9, .	2.0	6
29	Auckland Volcanic Field magmatism, volcanism, and hazard: a review. New Zealand Journal of Geology, and Geophysics, 0, , 1-22.	1.8	36
30	Characterization, origin, and evolution of one of the most eroded mafic monogenetic fields within the central Andes: The case of El PaÃs lava flow field, northern Chile. Journal of South American Earth Sciences, 2021, 105, 102942.	1.4	8
31	Combining Radar and Optical Satellite Imagery with Machine Learning to Map Lava Flows at Mount Etna and Fogo Island. Energies, 2021, 14, 197.	3.1	17
32	The Southern End of the Pacific Ring of Fire: Quaternary Volcanism in New Zealand. , 2017, , 35-66.		2
33	Modeling lava flow propagation over a flat landscape by using MrLavaLoba: the case of the 2014–2015 eruption at Holuhraun, Iceland. Annals of Geophysics, 2018, 61, .	1.0	11
34	Effusion rate estimation based on solidified lava flows: Implications for volcanic hazard assessment in the Negros de Aras monogenetic volcanic field, northern Chile. Journal of Volcanology and Geothermal Research, 2022, 422, 107454.	2.1	7
35	Estimating the Pre-Historical Volcanic Eruption in the Hantangang River Volcanic Field: Experimental and Simulation Study. Remote Sensing, 2022, 14, 894.	4.0	4
36	The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption. Remote Sensing, 2022, 14, 1641.	4.0	5

CITATION REPORT

#	Article	IF	CITATIONS
37	Petrology of Koko Rift basalts: Hawaiâ€~i's most recent and atypical rejuvenation stage eruptive sequence. Journal of Volcanology and Geothermal Research, 2022, 424, 107504.	2.1	1
39	Data-Driven Random Forest Models for Detecting Volcanic Hot Spots in Sentinel-2 MSI Images. Remote Sensing, 2022, 14, 4370.	4.0	7
40	Attempt to Model Lava Flow Faster Than Real Time: An Example of La Palma Using VolcFlow. GeoHazards, 2022, 3, 529-563.	1.4	0
41	Eruption Scenario Builder Based on the most Recent Fissure-Feed Lava-Producing Eruptions of the Arxan-Chaihe Volcanic Field (ACVF), NE China. , 0, , .		0
42	The role of phreatomagmatism in the formation of complex monogenetic volcanic systems in a low-lying coastal plain. Journal of Volcanology and Geothermal Research, 2023, 442, 107899.	2.1	1
43	CatVolc: A new database of geochemical and geochronological data of volcanic-related materials from the Catalan Volcanic Zone (Spain). Journal of Volcanology and Geothermal Research, 2024, 446, 107998.	2.1	0