Genetic evidence that <i>Celsr3</i> and <i>Celsr2</i> , forebrain wiring in a <i>Vangl</i> -independent manne

Proceedings of the National Academy of Sciences of the Unite 111, E2996-3004

DOI: 10.1073/pnas.1402105111

Citation Report

#	Article	IF	CITATIONS
2	Understanding cadherin <scp>EGF LAG</scp> sevenâ€pass Gâ€ŧype receptors. Journal of Neurochemistry, 2014, 131, 699-711.	3.9	45
3	Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Development, 2015, 10, 21.	2.4	45
4	Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Frontiers in Neuroscience, 2015, 9, 248.	2.8	63
5	International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors. Pharmacological Reviews, 2015, 67, 338-367.	16.0	392
6	Celsr3 and Fzd3 in axon guidance. International Journal of Biochemistry and Cell Biology, 2015, 64, 11-14.	2.8	29
7	Frizzled3 Controls Axonal Polarity and Intermediate Target Entry during Striatal Pathway Development. Journal of Neuroscience, 2015, 35, 14205-14219.	3.6	30
8	Frizzled3Shapes the Development of Retinal Rod Bipolar Cells. , 2016, 57, 2788.		7
9	Neuroanatomical Techniques for Analysis of Axonal Trajectories in the Cerebral Cortex of the Rhesus Monkey. , 2016, , 349-368.		1
10	The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain. Molecular Neuropsychiatry, 2016, 2, 107-114.	2.9	16
11	Feedback regulation of apical progenitor fate by immature neurons through Wnt7–Celsr3–Fzd3 signalling. Nature Communications, 2016, 7, 10936.	12.8	39
12	Adhesion GPCRs Govern Polarity of Epithelia and Cell Migration. Handbook of Experimental Pharmacology, 2016, 234, 249-274.	1.8	9
13	Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, 2016, , .	1.8	7
14	The planar cell polarity protein <scp>V</scp> angl2 is required for retinal axon guidance. Developmental Neurobiology, 2016, 76, 150-165.	3.0	12
15	Celsr3 and Fzd3 Organize a Pioneer Neuron Scaffold to Steer Growing Thalamocortical Axons. Cerebral Cortex, 2016, 26, 3323-3334.	2.9	37
16	Gene expression profiling of rubella virus infected primary endothelial cells of fetal and adult origin. Virology Journal, 2016, 13, 21.	3.4	20
17	The role of G protein-coupled receptors in cochlear planar cell polarity. International Journal of Biochemistry and Cell Biology, 2016, 77, 220-225.	2.8	4
18	Planar cell polarity in moving cells: think globally, act locally. Development (Cambridge), 2017, 144, 187-200.	2.5	109
19	Dietary krill oil enhances neurocognitive functions and modulates proteomic changes in brain tissues of <scp>d</scp> -galactose induced aging mice. Food and Function, 2017, 8, 2038-2045.	4.6	22

		CITATION REPORT		
#	Article	IF	-	Citations
20	Seven pass Cadherins CELSR1-3. Seminars in Cell and Developmental Biology, 2017, 69, 102	2-110. 5	.0	48
21	The role of Celsr3 in the development of central somatosensory projections from dorsal roo ganglia. Neuroscience, 2017, 359, 267-276.	t 2	.3	7
22	Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorde study from Saudi families. Scientific Reports, 2017, 7, 5679.	er: a trio 3	.3	70
23	Neuronal territory formation by the atypical cadherins and clustered protocadherins. Semina Cell and Developmental Biology, 2017, 69, 111-121.	ars in 5	.0	29
24	The Cadherin Superfamily in Neural Circuit Assembly. Cold Spring Harbor Perspectives in Bic 10, a029306.	logy, 2018, 5	.5	19
25	A non-autonomous function of the core PCP protein VANGL2 directs peripheral axon turning developing cochlea. Development (Cambridge), 2018, 145, .	g in the 2	.5	21
26	Genetic analysis of Wnt/PCP genes in neural tube defects. BMC Medical Genomics, 2018, 1	1, 38. 1.	.5	43
27	Mapping human pluripotent stem cell differentiation pathways using high throughput single RNA-sequencing. Genome Biology, 2018, 19, 47.	e-cell 8	.8	96
28	Evolutionary and Developmental Biology Provide Insights Into the Regeneration of Organ of Hair Cells. Frontiers in Cellular Neuroscience, 2018, 12, 252.	Corti 3	.7	28
29	Topologically correct central projections of tetrapod inner ear afferents require Fzd3. Scient Reports, 2019, 9, 10298.	ific 3	.3	13
30	Linking Cell Polarity to Cortical Development and Malformations. Frontiers in Cellular Neuro 2019, 13, 244.	science, 3	.7	45
31	Non-canonical Wnt Signaling through Ryk Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons. Neuron, 2019, 103, 853-864.e4.	8	.1	31
32	<i>Frizzled3</i> and <i>Frizzled6</i> Cooperate with <i>Vangl2</i> to Direct Cochlear Innerva Type II Spiral Ganglion Neurons. Journal of Neuroscience, 2019, 39, 8013-8023.	tion by 3	.6	25
33	Adhesion G Protein-Coupled Receptors as Drug Targets for Neurological Diseases. Trends in Pharmacological Sciences, 2019, 40, 278-293.	8	.7	53
34	Early Forebrain Neurons and Scaffold Fibers in Human Embryos. Cerebral Cortex, 2020, 30, 9	913-928. 2	.9	10
35	Silencing Celsr2 inhibits the proliferation and migration of Schwann cells through suppressi Wnt/l²-catenin signaling pathway. Biochemical and Biophysical Research Communications, 2 623-630.	ng the 2020, 533, 2	.1	4
36	Motor cortex connections. , 2020, , 167-199.			8
37	Inactivating <i>Celsr2</i> promotes motor axon fasciculation and regeneration in mouse ar Brain, 2022, 145, 670-683.	id human. 7	.6	12

#	Article	IF	CITATIONS
38	Loss of Calretinin in L5a impairs the formation of the barrel cortex leading to abnormal whisker-mediated behaviors. Molecular Brain, 2021, 14, 67.	2.6	5
40	Cell-Type-Specific Gene Expression in Developing Mouse Neocortex: Intermediate Progenitors Implicated in Axon Development. Frontiers in Molecular Neuroscience, 2021, 14, 686034.	2.9	12
41	Celsr3 is required for Purkinje cell maturation and regulates cerebellar postsynaptic plasticity. IScience, 2021, 24, 102812.	4.1	8
42	Early construction of the thalamocortical axon pathway requires câ€Jun Nâ€ŧerminal kinase signaling within the ventral forebrain. Developmental Dynamics, 2022, 251, 459-480.	1.8	3
44	PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration. PLoS Genetics, 2016, 12, e1005934.	3.5	39
45	CELSR2 is a candidate susceptibility gene in idiopathic scoliosis. PLoS ONE, 2017, 12, e0189591.	2.5	17
46	Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. ELife, 2020, 9, .	6.0	23
47	Non-Canonical Wnt-Signaling through <i>Ryk</i> Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons. SSRN Electronic Journal, 0, , .	0.4	0
48	The Immunoglobulin Superfamily Members syg-2 and syg-1 Regulate Neurite Development in C. elegans. Journal of Developmental Biology, 2022, 10, 3.	1.7	1
49	Fzd3 Expression Within Inner Ear Afferent Neurons Is Necessary for Central Pathfinding. Frontiers in Neuroscience, 2021, 15, 779871.	2.8	4
50	Celsr family genes are dynamically expressed in embryonic and juvenile zebrafish. Developmental Neurobiology, 2022, 82, 192-213.	3.0	3
51	Human pancreatic microenvironment promotes β-cell differentiation via non-canonical WNT5A/JNK and BMP signaling. Nature Communications, 2022, 13, 1952.	12.8	11
52	Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiological Reviews, 2022, 102, 1587-1624.	28.8	14
53	A classification of genes involved in normal and delayed male puberty. Asian Journal of Andrology, 2023, 25, 230.	1.6	3
54	Planar cell polarity and the pathogenesis of Tourette Disorder: New hypotheses and perspectives. Developmental Biology, 2022, 489, 14-20.	2.0	4
55	Celsr3 Inactivation in the Brainstem Impairs Rubrospinal Tract Development and Mouse Behaviors in Motor Coordination and Mechanic-Induced Response. Molecular Neurobiology, 2022, 59, 5179-5192.	4.0	2
56	Celsr2 regulates NMDA receptors and dendritic homeostasis in dorsal CA1 to enable social memory. Molecular Psychiatry, 0, , .	7.9	2
57	Adhesion G protein-coupled receptor gluing action guides tissue development and disease. Journal of Molecular Medicine, 2022, 100, 1355-1372.	3.9	2

CITATION REPORT

#	Article	IF	CITATIONS
58	Hear the sounds: the role of G protein-coupled receptors in the cochlea. American Journal of Physiology - Cell Physiology, 2022, 323, C1088-C1099.	4.6	6
59	Planar cell polarity protein Celsr2 maintains structural and functional integrity of adult cortical synapses. Progress in Neurobiology, 2022, 219, 102352.	5.7	4
60	WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Frontiers in Molecular Neuroscience, 0, 15, .	2.9	9
61	Feeding a High-Fat Diet for a Limited Duration Increases Cancer Incidence in a Breast Cancer Model. Nutrition and Cancer, 0, , 1-13.	2.0	0
65	Celsr1 and Celsr2 exhibit distinct adhesive interactions and contributions to planar cell polarity. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	5
66	Celsr2 Knockout Alleviates Inhibitory Synaptic Stripping and Benefits Motoneuron Survival and Axon Regeneration After Branchial Plexus Avulsion. Molecular Neurobiology, 0, , .	4.0	0
67	DNA methylation entropy is associated with DNA sequence features and developmental epigenetic divergence. Nucleic Acids Research, 2023, 51, 2046-2065.	14.5	3
68	Celsr2â€mediated morphological polarization and functional phenotype of reactive astrocytes in neural repair. Glia, 2023, 71, 1985-2004.	4.9	1
69	Exonic mutations in cell–cell adhesion may contribute to CADASIL-related CSVD pathology. Human Genetics, 0, , .	3.8	0
71	A phylogenetically-conserved axis of thalamocortical connectivity in the human brain. Nature Communications, 2023, 14, .	12.8	2