What‧[™]Past Is Prologue

Educational Researcher 43, 352-360 DOI: 10.3102/0013189x14553660

Citation Report

#	Article	IF	CITATIONS
1	To Love, Honor, and Inform from This Site Forward: A Model of Dyadic Information Behavior in Online-Initiated Relationships. , 2013, , .		1
2	State and Trait Effects on Individual Differences in Children's Mathematical Development. Psychological Science, 2014, 25, 2017-2026.	3.3	80
3	Conceptual knowledge of fraction arithmetic Journal of Educational Psychology, 2015, 107, 909-918.	2.9	93
4	The Role of Mediators in the Development of Longitudinal Mathematics Achievement Associations. Child Development, 2015, 86, 1892-1907.	3.0	45
5	Role of Parent Literacy and Numeracy Expectations and Activities in Predicting Early Numeracy Skills. Mathematical Thinking and Learning, 2015, 17, 219-236.	1.2	59
6	Processes in the development of mathematics in kindergarten children from Title 1 schools. Journal of Experimental Child Psychology, 2015, 140, 56-73.	1.4	19
7	Discussion From a Mathematics Education Perspective. Mathematical Thinking and Learning, 2015, 17, 244-252.	1.2	4
8	Early Literacy Promotion in the Digital Age. Pediatric Clinics of North America, 2015, 62, 1273-1295.	1.8	7
9	Decreasing the SES math achievement gap: Initial math proficiency and home learning environments. Contemporary Educational Psychology, 2015, 43, 25-38.	2.9	77
10	Teachers' Effortful Control and Student Functioning: Mediating and Moderating Processes. Social Development, 2016, 25, 623-645.	1.3	8
11	Continuity and Change in the Field of Cognitive Development and in the Perspectives of One Cognitive Developmentalist. Child Development Perspectives, 2016, 10, 128-133.	3.9	47
12	Maternal Math Talk in the Home and Math Skills in Preschool Children. Early Education and Development, 2016, 27, 841-857.	2.6	92
13	Effects of MyTeachingPartner–Math/Science on Teacher–Child Interactions in Prekindergarten Classrooms. Early Education and Development, 2016, 27, 110-127.	2.6	17
14	Mathematics Content Coverage and Student Learning in Kindergarten. Educational Researcher, 2016, 45, 293-300.	5.4	66
15	Magnitude knowledge: the common core of numerical development. Developmental Science, 2016, 19, 341-361.	2.4	136
16	Exploración de diferencias de género en los predictores de dominio general y especÃfico de las habilidades matemáticas tempranas. Suma Psicologica, 2016, 23, 71-79.	0.4	0
17	Evaluating Longitudinal Mathematics Achievement Growth. Educational Researcher, 2016, 45, 347-357.	5.4	25
18	Cultivating Knowledge. , 2016, , .		2

#	Article	IF	CITATIONS
19	Early Mathematical Development: How the Home Environment Matters. , 2016, , 7-28.		28
20	Challenges Faced by Entry-level University Students in Word Problems Involving Fractions Terminology. International Journal of Educational Sciences, 2016, 15, 461-473.	0.1	1
21	Facilitating the Transition to Kindergarten. AERA Open, 2016, 2, 233285841665576.	2.1	27
22	A focus on exploratory tasks in lesson study: The Canadian â€~Math for Young Children' project. ZDM - International Journal on Mathematics Education, 2016, 48, 541-554.	2.2	21
23	Differential and long-term language impact on math. Language Testing, 2016, 33, 577-605.	3.2	15
24	Construct Confounding Among Predictors of Mathematics Achievement. AERA Open, 2016, 2, 233285841664893.	2.1	10
25	Which preschool mathematics competencies are most predictive of fifth grade achievement?. Early Childhood Research Quarterly, 2016, 36, 550-560.	2.7	231
26	Is Kindergarten the New First Grade?. AERA Open, 2016, 2, 233285841561635.	2.1	229
27	Improving low-income preschoolers mathematics achievement with Math Shelf, a preschool tablet computer curriculum. Computers in Human Behavior, 2016, 55, 223-229.	8.5	65
28	Math Shelf: A Randomized Trial of a Prekindergarten Tablet Number Sense Curriculum. Early Education and Development, 2016, 27, 74-88.	2.6	40
29	Executive functioning deficits increase kindergarten children's risk for reading and mathematics difficulties in first grade. Contemporary Educational Psychology, 2017, 50, 23-32.	2.9	55
30	Does Early Mathematics Intervention Change the Processes Underlying Children's Learning?. Journal of Research on Educational Effectiveness, 2017, 10, 96-115.	1.6	21
31	Rasch Modeling of the Test of Early Mathematics Ability–Third Edition With a Sample of K1 Children in Singapore. Journal of Psychoeducational Assessment, 2017, 35, 615-627.	1.5	12
32	Fluid reasoning predicts future mathematical performance among children and adolescents. Journal of Experimental Child Psychology, 2017, 157, 125-143.	1.4	55
33	Preschoolers' mathematical play and colour preferences: a new window into the development of gendered beliefs about math. Early Child Development and Care, 2017, 187, 1273-1283.	1.3	7
34	The 15-Minute Audition: Translating a Proof of Concept Into a Domain-Specific Screening Device for Mathematical Talent. Gifted Child Quarterly, 2017, 61, 164-171.	2.0	5
35	Improving preschoolers' mathematics achievement with tablets: a randomized controlled trial. Mathematics Education Research Journal, 2017, 29, 313-327.	1.7	40
36	Early Math Trajectories: Lowâ€Income Children's Mathematics Knowledge From Ages 4 to 11. Child Development, 2017, 88, 1727-1742.	3.0	103

#	Article	IF	CITATIONS
37	Persistent Genetic and Family-Wide Environmental Contributions to Early Number Knowledge and Later Achievement in Mathematics. Psychological Science, 2017, 28, 1707-1718.	3.3	7
38	Encouraging Spatial Talk: Using Children's Museums to Bolster Spatial Reasoning. Mind, Brain, and Education, 2017, 11, 144-152.	1.9	36
39	Strategic Staffing? How Performance Pressures Affect the Distribution of Teachers Within Schools and Resulting Student Achievement. American Educational Research Journal, 2017, 54, 1079-1116.	2.7	30
40	Covariation between reading and arithmetic skills from Grade 1 to Grade 7. Contemporary Educational Psychology, 2017, 51, 131-140.	2.9	45
41	Numerical Development. Annual Review of Psychology, 2017, 68, 187-213.	17.7	71
42	The DREME Network: Research and Interventions in Early Childhood Mathematics. Advances in Child Development and Behavior, 2017, 53, 1-41.	1.3	8
43	Early Childhood Educators' Issues and Perspectives in Mathematics Education. ICME-13 Monographs, 2018, , 267-289.	1.0	5
44	Contemporary Research and Perspectives on Early Childhood Mathematics Education. ICME-13 Monographs, 2018, , .	1.0	7
45	Early developmental trajectories of number knowledge and math achievement from 4 to 10†years: Low-persistent profile and early-life predictors. Journal of School Psychology, 2018, 68, 84-98.	2.9	35
46	Full- Versus Part-Day Kindergarten for Children With Disabilities: Effects on Executive Function Skills. Early Education and Development, 2018, 29, 288-305.	2.6	3
47	EmMa – Fortbildung für elementarpÃ d agogische Fachperson zur frühen mathematischen Bildung. Konzepte Und Studien Zur Hochschuldidaktik Und Lehrerbildung Mathematik, 2018, , 417-434.	0.1	2
48	What Is the Longâ€Run Impact of Learning Mathematics During Preschool?. Child Development, 2018, 89, 539-555.	3.0	58
49	A Systematic Review of Longitudinal Studies of Mathematics Difficulty. Journal of Learning Disabilities, 2018, 51, 523-539.	2.2	70
50	Early mathematical competencies and later achievement: insights from the Longitudinal Study of Australian Children. Mathematics Education Research Journal, 2018, 30, 429-444.	1.7	13
51	Young children's mathematical learning opportunities in family shopping experiences. European Early Childhood Education Research Journal, 2018, 26, 481-494.	1.9	6
52	MaGrid: A Language-Neutral Early Mathematical Training and Learning Application. International Journal of Emerging Technologies in Learning, 2018, 13, 4.	1.3	7
53	The Open Algorithm Based on Numbers (ABN) Method: An Effective Instructional Approach to Domain-Specific Precursors of Arithmetic Development. Frontiers in Psychology, 2018, 9, 1811.	2.1	13
54	Relations between preschoolers' mathematical language understanding and specific numeracy skills. Journal of Experimental Child Psychology, 2018, 176, 84-100.	1.4	55

#	Article	IF	CITATIONS
55	Preschool Executive Function Profiles: Implications for Math Achievement in Grades 1 and 3. Journal of Research in Childhood Education, 2018, 32, 404-418.	1.0	14
56	Revisiting the Marshmallow Test: A Conceptual Replication Investigating Links Between Early Delay of Gratification and Later Outcomes. Psychological Science, 2018, 29, 1159-1177.	3.3	293
57	Investigating the relationship between fetal growth and academic attainment: secondary analysis of the Born in Bradford (BiB) cohort. International Journal of Epidemiology, 2018, 47, 1475-1484.	1.9	11
58	The Chicago School Readiness Project: Examining the long-term impacts of an early childhood intervention. PLoS ONE, 2018, 13, e0200144.	2.5	60
59	Meaning before order: Cardinal principle knowledge predicts improvement in understanding the successor principle and exact ordering. Cognition, 2018, 180, 59-81.	2.2	36
60	Forecasting youth adjustment at age 15 from school readiness profiles at 54 months. Applied Developmental Science, 2019, 23, 353-370.	1.7	4
61	An analysis of Australian STEM education strategies. Policy Futures in Education, 2019, 17, 122-139.	1.8	72
62	Integrating STEM into Preschool Education; Designing a Professional Development Model in Diverse Settings. Early Childhood Education Journal, 2019, 47, 15-28.	2.7	58
63	Explanations and Implications of Diminishing Intervention Impacts Across Time. , 2019, , 321-346.		6
64	A Case for Domain-Specific Curiosity in Mathematics. Educational Psychology Review, 2019, 31, 807-832.	8.4	25
65	Quality and Continuity in Young Children's Educational Experiences. , 2019, , 160-181.		1
66	The interplay of learning approaches and self-efficacy in secondary school students' academic achievement in science. International Journal of Science Education, 2019, 41, 1723-1743.	1.9	20
68	Verbal counting skill predicts later math performance and difficulties in middle school. Contemporary Educational Psychology, 2019, 59, 101803.	2.9	20
69	Assessing Mathematical School Readiness. Frontiers in Psychology, 2019, 10, 1173.	2.1	6
69 70	Assessing Mathematical School Readiness. Frontiers in Psychology, 2019, 10, 1173. Not Just IQ: Patterning Predicts Preschoolers' Math Knowledge Beyond Fluid Reasoning. Journal of Cognition and Development, 2019, 20, 752-771.	2.1 1.3	6 27
	Not Just IQ: Patterning Predicts Preschoolers' Math Knowledge Beyond Fluid Reasoning. Journal of		
70	Not Just IQ: Patterning Predicts Preschoolers' Math Knowledge Beyond Fluid Reasoning. Journal of Cognition and Development, 2019, 20, 752-771. Dual language learners and four areas of early childhood learning and development: what do we	1.3	27

#	Article	IF	CITATIONS
74	Math homework: Parental help and children's academic outcomes. Contemporary Educational Psychology, 2019, 59, 101784.	2.9	30
76	Parent-child interaction and children's learning from a coding application. Computers and Education, 2019, 140, 103601.	8.3	44
77	Mathematics education for children under four years of age: a systematic review of the literature. Early Years, 2021, 41, 522-539.	1.0	23
78	Elementary-age children's conceptions about mathematics utility and their home-based mathematics engagement. Journal of Educational Research, 2019, 112, 431-446.	1.6	8
79	Early Identification of, and Interventions for, Kindergarten Students at Risk for Mathematics Difficulties. , 2019, , 57-78.		1
80	MathemAntics: a model for computer-based mathematics education for young children / <i>MathemAntics: un modelo de enseñanza de matemáticas asistida por ordenador para niños</i> . Infancia Y Aprendizaje, 2019, 42, 247-302.	0.9	3
81	Evaluation of a Math Intervention Program Implemented With Community Support. Journal of Research on Educational Effectiveness, 2019, 12, 391-412.	1.6	8
82	"Can you help me count these pennies?†Surfacing preschoolers' understandings of counting. Mathematical Thinking and Learning, 2019, 21, 237-264.	1.2	6
84	Associations between Fine Motor and Mathematics Instruction and Kindergarten Mathematics Achievement. Early Education and Development, 2019, 30, 678-693.	2.6	2
85	Role of Play and Games in Building Children's Foundational Numerical Knowledge. , 2019, , 69-90.		7
86	Mathematical Cognition: In the Elementary Years [6â \in "12]. , 2019, , 1-9.		0
87	Augmented realityâ€based virtual manipulatives versus physical manipulatives for teaching geometric shapes to preschool children. British Journal of Educational Technology, 2019, 50, 3376-3390.	6.3	38
88	Predictors of Early Numeracy: Applied Measures in Two Childcare Contexts. , 0, , .		0
89	UNEQUAL RETURNS TO CHILDREN'S EFFORTS. Du Bois Review, 2019, 16, 417-438.	0.6	7
90	Socioeconomic status gaps in child cognitive development in Germany and the United States. Social Science Research, 2019, 79, 1-31.	2.0	25
91	Short Danish Version of the Tools for Early Assessment in Math (TEAM) for 3–6-Year-Olds. Early Education and Development, 2019, 30, 238-258.	2.6	3
92	The roles of patterning and spatial skills in early mathematics development. Early Childhood Research Quarterly, 2019, 46, 166-178.	2.7	97
93	Digging deeper: Shared deep structures of early literacy and mathematics involve symbolic mapping and relational reasoning. Early Childhood Research Quarterly, 2019, 46, 201-212.	2.7	18

#	Article	IF	CITATIONS
94	Executive function in Chilean preschool children: Do short-term memory, working memory, and response inhibition contribute differentially to early academic skills?. Early Childhood Research Quarterly, 2019, 46, 187-200.	2.7	37
95	Prediction of English and Spanish kindergarten mathematics from English and Spanish cognitive and linguistic abilities in Hispanic dual language learners. Early Childhood Research Quarterly, 2019, 46, 213-227.	2.7	17
96	The home math environment: More than numeracy. Early Childhood Research Quarterly, 2020, 50, 4-15.	2.7	85
97	Expanding the Home Numeracy Model to Chilean children: Relations among parental expectations, attitudes, activities, and children's mathematical outcomes. Early Childhood Research Quarterly, 2020, 50, 16-28.	2.7	76
98	Reasoning about Representations: Effects of an Early Math Intervention. Scandinavian Journal of Educational Research, 2020, 64, 782-800.	1.7	15
99	Benefits of Playing Numerical Card Games on Head Start Children's Mathematical Skills. Journal of Experimental Education, 2020, 88, 200-220.	2.6	18
100	Comparing German and Taiwanese secondary school students' knowledge in solving mathematical modelling tasks requiring their assumptions. ZDM - International Journal on Mathematics Education, 2020, 52, 59-72.	2.2	11
101	Pre-Schoolers' Home Numeracy and Home Literacy Experiences and Their Relationships with Early Number Skills: Evidence from a UK Study. Early Education and Development, 2020, 31, 113-136.	2.6	16
102	What role do comprehensionâ€oriented learning strategies have in solving math calculation and word problems at the end of middle school?. British Journal of Educational Psychology, 2020, 90, 105-123.	2.9	15
103	Racing dragons and remembering aliens: Benefits of playing number and working memory games on kindergartners' numerical knowledge. Developmental Science, 2020, 23, e12908.	2.4	18
104	Number Representations Drive Number‣ine Estimates. Child Development, 2020, 91, e952-e967.	3.0	13
105	A Synthesis of Elementary Mathematics Interventions: Comparisons of Students With Mathematics Difficulty With and Without Comorbid Reading Difficulty. Journal of Learning Disabilities, 2020, 53, 244-276.	2.2	22
106	Do children use language structure to discover the recursive rules of counting?. Cognitive Psychology, 2020, 117, 101263.	2.2	12
107	Controlling, Confounding, and Construct Clarity: Responding to Criticisms of "Revisiting the Marshmallow Test―by Doebel, Michaelson, and Munakata (2020) and Falk, Kosse, and Pinger (2020). Psychological Science, 2020, 31, 105-108.	3.3	12
108	Effective Early Childhood STEM Education: Findings from the Little Scientists Evaluation. Early Childhood Education Journal, 2020, 48, 353-363.	2.7	34
109	Changes in academic instructional experiences in Head Start classrooms from 2001–2015. Early Childhood Research Quarterly, 2020, 53, 534-550.	2.7	11
110	Easy as 1, 2, 3, ABC: Integrating Number Sense and Shared Storybook Readings. Young Exceptional Children, 2020, , 109625062095966.	0.7	0
111	Academic gains in kindergarten related to eight classroom practices. Early Childhood Research Quarterly, 2020, 53, 638-649.	2.7	19

#	Article	IF	CITATIONS
112	Infants' and Toddlers' Language, Math and Socio-Emotional Development: Evidence for Reciprocal Relations and Differential Gender and Age Effects. Frontiers in Psychology, 2020, 11, 580297.	2.1	20
113	Triangulating Multi-Method Assessments of Parental Support for Early Math Skills. Frontiers in Education, 2020, 5, .	2.1	14
114	The Importance of Early STEM Education. , 2020, , 87-100.		10
115	The Effect of Peer-Assisted Mathematics Learning Opportunities in First Grade Classrooms: What Works for Whom?. Journal of Research on Educational Effectiveness, 2020, 13, 601-624.	1.6	5
116	Academic Achievement and Economic Attainment: Reexamining Associations Between Test Scores and Long-Run Earnings. AERA Open, 2020, 6, 233285842092898.	2.1	17
117	Responsive home numeracy as children progress from kindergarten through Grade 1. Early Childhood Research Quarterly, 2020, 53, 484-495.	2.7	16
118	Examining the Efficacy of a Kindergarten Mathematics Intervention by Group Size and Initial Skill. Elementary School Journal, 2020, 121, 125-153.	1.4	10
119	Construct-Specific and Timing-Specific Aspects of the Home Environment for Children's School Readiness. Frontiers in Psychology, 2020, 11, 1959.	2.1	1
120	Mathematics education beliefs and practices of Under 3s educators in Australia. European Early Childhood Education Research Journal, 2020, 28, 758-769.	1.9	6
121	Finding Rigor Within a Large-Scale Expansion of Preschool to Test Impacts of a Professional Development Program. AERA Open, 2020, 6, 233285842097539.	2.1	3
122	The intergenerational transmission of mathematics achievement in middle childhood: A prospective adoption design. Developmental Science, 2020, 23, e12974.	2.4	7
123	How Prioritizing Number Skills Can Act as a Mediator for Socioeconomic Inequality within a National Math Compulsory Curriculum. Elementary School Journal, 2020, 120, 580-610.	1.4	0
124	When do preschoolers learn specific mathematics skills? Mapping the development of early numeracy knowledge. Journal of Experimental Child Psychology, 2020, 195, 104846.	1.4	40
125	Impact of Children's math self-concept, math self-efficacy, math anxiety, and teacher competencies on math development. Teaching and Teacher Education, 2020, 94, 103096.	3.2	30
126	Are the acuities of magnitude representations of different types and ranges of numbers related? Testing the core assumption of the integrated theory of numerical development. Cognitive Development, 2020, 54, 100888.	1.3	2
127	Early maternal autonomy support and mathematical achievement trajectories during elementary school. Learning and Individual Differences, 2020, 79, 101855.	2.7	4
128	Learning Gains From the KinderTEK [®] iPad Math Program: Does Timing of a Preventative Intervention Matter?. Journal of Special Education Technology, 2021, 36, 321-335.	2.2	3
129	What does math curriculum tell us about continuity for PreKâ€3?. Curriculum Journal, 2020, 31, 48-76.	1.5	1

#	Article	IF	CITATIONS
130	Mathematical development in Williams syndrome: A systematic review. Research in Developmental Disabilities, 2020, 100, 103609.	2.2	5
131	Parental Math Talk During Home Cooking and Math Skills in Head Start Children: The Role of Task Management Talk. Journal of Research in Childhood Education, 2020, 34, 406-426.	1.0	18
132	Preschool Quality Effects on Learning Behavior and Later Achievement in Germany: Moderation by Socioeconomic Status. Child Development, 2020, 91, 2237-2254.	3.0	26
133	The foundations of mathematical development in Williams syndrome and Down syndrome. Journal of Applied Research in Intellectual Disabilities, 2020, 33, 1080-1089.	2.0	7
134	Family Cohesion Facilitates Learning-Related Behaviors and Math Competency at the Transition to Elementary School. Early Education and Development, 2021, 32, 134-147.	2.6	7
135	Investigating U.S. Preschool Teachers' Math Teaching Knowledge in Counting and Numbers. Early Education and Development, 2021, 32, 589-607.	2.6	3
136	Modulation of general and specific cognitive precursors to early mathematical competencies in preschool children. European Journal of Psychology of Education, 2021, 36, 405-422.	2.6	2
137	Using Number Games to Support Mathematical Learning in Preschool and Home Environments. Early Education and Development, 2021, 32, 459-479.	2.6	9
138	What counts in number books? A content-domain specific typology to evaluate children's books for mathematics. Mathematical Thinking and Learning, 2021, 23, 145-169.	1.2	8
139	Examining Certification Requirements in Early Math and Literacy: What Do States Expect Prekindergarten Teachers to Know?. Journal of Teacher Education, 2021, 72, 72-85.	3.5	6
140	Mathematics Learning Opportunities in Preschool: Where Does the Classroom Library Fit In?. Early Education and Development, 2021, 32, 66-81.	2.6	9
141	Observing mathematical learning experiences in preschool. Early Child Development and Care, 2021, 191, 68-82.	1.3	4
142	A Physically-Active Approach to Early Number Learning. Early Childhood Education Journal, 2021, 49, 515-526.	2.7	2
143	Why the Son-bias in Caregiving? Testing Sex-differences in the Associations Between Paternal Caregiving and Child Outcomes in England. Journal of Family Issues, 2021, 42, 1354-1383.	1.6	6
144	The role of spatial abilities in young children's spatially-focused touchscreen game play. Cognitive Development, 2021, 57, 100970.	1.3	13
145	University students' misconceptions about rational numbers: Implications for developmental mathematics and instruction of younger students. Psychology in the Schools, 2021, 58, 307-331.	1.8	4
146	Learning at home: What preschool children's parents do and what they want to learn from their children's teachers. Journal of Early Childhood Research, 2021, 19, 309-322.	1.6	19
147	Pathways from socioeconomic status to early academic achievement: The role of specific executive functions. Early Childhood Research Quarterly, 2021, 54, 321-331.	2.7	46

#	Article	IF	CITATIONS
148	Direct numeracy activities and early math skills: Math language as a mediator. Early Childhood Research Quarterly, 2021, 54, 252-259.	2.7	17
149	Validating the Research-Based Early Math Assessment (REMA) among rural children in Southwest United States. Studies in Educational Evaluation, 2021, 68, 100944.	2.3	6
150	An evaluation of the incremental impact of math intervention on early literacy performance. Psychology in the Schools, 2021, 58, 431-442.	1.8	1
151	Cognitive regulation outdoes behavior regulation in predicting state standardized test scores over time. Metacognition and Learning, 2021, 16, 113-134.	2.7	3
152	An ecological approach to adolescent mathematics ability development: differences in demographics, parenting, mathematics teaching, and student behaviors and emotions. Educational Studies, 2021, 47, 155-178.	2.4	1
153	The Enhancing of Numeracy Skills Through Pencil-and-Paper orÂComputerized Training for Kindergarteners. Cognition and Exploratory Learning in the Digital Age, 2021, , 3-18.	0.5	0
154	Preschoolers' self-regulation and early mathematical skill differentials. Education Economics, 2021, 29, 173-193.	1.1	0
155	The Genesis of Modeling in Kindergarten. Early Mathematics Learning and Development, 2021, , 311-336.	0.3	1
156	Are translated mathematics items a valid accommodation for dual language learners? Evidence from ECLS-K. Early Childhood Research Quarterly, 2021, 57, 89-101.	2.7	2
157	Neurocognitive Aspects of Mathematical Achievement in Children. , 2021, , 203-225.		0
158	Toddlers' Mathematics: Whole Body Learning. , 2021, , 201-215.		3
159	Teaching STEM through play in kindergarten: analysis towards pre-service early childhood teachers preparing the lesson plan. Journal of Physics: Conference Series, 2021, 1764, 012130.	0.4	0
160	Akasha: Custom Application to Support Elementary Geometry Learning First-Grade Children in Colombia. Technology, Knowledge and Learning, 0, , 1.	4.9	3
161	Symbolic Magnitude Understanding Predicts Preschoolers' Later Addition Skills. Journal of Cognition and Development, 2021, 22, 185-202.	1.3	14
162	Dynamic maths interviews to identify educational needs of students showing low math achievement. European Journal of Special Needs Education, 0, , 1-15.	3.0	0
163	Trends in Cognitive Skill Inequalities by Socio-Economic Status across Canada. Canadian Public Policy/ Analyse De Politiques, 2021, 47, 88-116.	1.6	2
164	Just do it! Study time increases mathematical achievement scores for grade 4-10 students in a large longitudinal cross-country study. European Journal of Psychology of Education, 2022, 37, 39-53.	2.6	13
	Integrating Embodied Cognition and Information Processing: A Combined Model of the Role of		

#	Article	IF	CITATIONS
166	Long-term relevance and interrelation of symbolic and non-symbolic abilities in mathematical-numerical development: Evidence from large-scale assessment data. Cognitive Development, 2021, 58, 101008.	1.3	6
167	Reconceptualizing Symbolic Magnitude Estimation Training Using Non-declarative Learning Techniques. Frontiers in Psychology, 2021, 12, 638004.	2.1	0
168	Experimental effects of a preschool STEM professional learning model on educators' attitudes, beliefs, confidence, and knowledge. Journal of Early Childhood Teacher Education, 2022, 43, 509-539.	1.5	11
169	Examining the relevance of basic numerical skills for mathematical achievement in secondary school using a within-task assessment approach. Acta Psychologica, 2021, 215, 103289.	1.5	2
170	Erken Çocuklukta STEM Eğitimi. Erken Çocukluk Çalışmaları Dergisi, 2021, 5, 255-284.	0.2	4
171	Systematic Modeling and Prompting to Teach Math Skills to Preschoolers With Disabilities. Topics in Early Childhood Special Education, 0, , 027112142110127.	2.2	0
172	The Effects of a Multicomponent Motivational System Intervention Using Peer-Tutoring for Implementation on the Automation of Single-Digit Addition Tasks of Four Struggling Elementary Students. Education Sciences, 2021, 11, 265.	2.6	0
173	Investigating the associations of early numeracy activities and skills with mathematics dispositions, engagement, and achievement among fourth graders in the United Arab Emirates. Large-Scale Assessments in Education, 2021, 9, .	2.0	2
174	Investigating the Dimensionality of Early Numeracy Using the Bifactor Exploratory Structural Equation Modeling Framework. Frontiers in Psychology, 2021, 12, 680124.	2.1	5
175	Math talk during traditional and digital number board game play. Journal of Applied Developmental Psychology, 2021, 76, 101312.	1.7	6
176	Gray matter volume in left intraparietal sulcus predicts longitudinal gains in subtraction skill in elementary school. NeuroImage, 2021, 235, 118021.	4.2	4
177	"Maybe we do more Science than I had Initially Thought― How Parental Efficacy Affects Preschool-Aged Children's Science and Math Activities and Media Use. Early Childhood Education Journal, 0, , 1.	2.7	2
178	Pupils' Summative Assessments in Mathematics as Dependent on Selected Factors. Eurasia Journal of Mathematics, Science and Technology Education, 2021, 17, em1995.	1.3	0
179	Developing a rigorous measure of the pre-school home mathematics environment. Journal of Numerical Cognition, 2021, 7, 172-194.	1.2	6
180	Developmental disparities based on socioeconomic status and sex: an analysis of two large, population-based early childhood development assessments in Uruguay. Early Child Development and Care, 2022, 192, 1857-1875.	1.3	4
181	Parent and child spontaneous focus on number, mathematical abilities, and mathematical talk during play activities. Cognitive Development, 2021, 59, 101076.	1.3	5
182	Next directions in measurement of the home mathematics environment: An international and interdisciplinary perspective. Journal of Numerical Cognition, 2021, 7, 195-220.	1.2	50
183	Give yourself a hand: The role of gesture and working memory in preschoolers' numerical knowledge. Journal of Experimental Child Psychology, 2021, 208, 105145.	1.4	2

#	Article	IF	CITATIONS
184	The power of parent attitudes: Examination of parent attitudes toward traditional and emerging technology. Human Behavior and Emerging Technologies, 2021, 3, 540-551.	4.4	11
185	Measuring Early Childhood Mathematical Cognition: Validating and Equating Two Forms of the Research-Based Early Mathematics Assessment. Journal of Psychoeducational Assessment, 2021, 39, 983-998.	1.5	7
186	When one size does not fit all: A latent profile analysis of low-income preschoolers' math skills. Journal of Experimental Child Psychology, 2021, 209, 105156.	1.4	6
187	Relations among spatial skills, number line estimation, and exact and approximate calculation in young children. Journal of Experimental Child Psychology, 2021, 212, 105251.	1.4	5
189	Virtual Versus Concrete: A Comparison of Mathematics Manipulatives for Three Elementary Students With Autism. Focus on Autism and Other Developmental Disabilities, 2021, 36, 71-82.	1.3	6
190	Towards a Theoretical Framework on Individual Differences in Numerical Abilities: Role of Home Numeracy Experiences. , 2016, , 71-86.		3
191	Changes in School Readiness of America's Entering Kindergarteners (1998–2010). , 2018, , 111-138.		5
192	Risky business: Correlation and causation in longitudinal studies of skill development American Psychologist, 2018, 73, 81-94.	4.2	72
193	Domain-specific anxiety relates to children's math and spatial performance Developmental Psychology, 2018, 54, 2126-2138.	1.6	35
194	Chilean kindergarten children's beliefs about mathematics: Family matters Developmental Psychology, 2019, 55, 687-702.	1.6	38
195	Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study Journal of Educational Psychology, 2017, 109, 680-693.	2.9	111
196	Predicting success on high-stakes math tests from preschool math measures among children from low-income homes Journal of Educational Psychology, 2019, 111, 402-413.	2.9	19
197	Effects of parent coaching on Filipino children's numeracy, language, and literacy skills Journal of Educational Psychology, 2019, 111, 641-662.	2.9	19
198	Conducting a Cost-Effectiveness Analysis of an Early Numeracy Intervention. School Psychology Review, 2020, 49, 359-373.	3.0	2
199	Using an Assessment of Early Mathematical Knowledge and Skills to Inform Policy and Practice: Examples from the Early Grade Mathematics Assessment. International Journal of Education in Mathematics, Science and Technology, 2016, 4, 163.	0.9	13
200	STEM Media in the Family Context: The Effect of STEM Career and Media Use on Preschoolers' Science and Math Skills. European Journal of STEM Education, 2018, 3, .	1.5	18
201	NUMERACY SKILLS EMPOWERMENT FROM PRESCHOOL. , 2019, , .		1
202	Narrowing the early mathematics gap: A play-based intervention to promote low-income preschoolers' number skills. Journal of Numerical Cognition, 2017, 3, 559-581.	1.2	31

#	Article	IF	CITATIONS
203	The Impact of Big Math for Little Kids on Children's Number Sense. Ankara Üniversitesi Eğitim Bilimleri Fakültesi Dergisi, 0, , .	0.6	0
204	The relative effect of student, family and school-related factors on math achievement by location of the school. Large-Scale Assessments in Education, 2021, 9, .	2.0	4
205	Exploring opportunities for math learning within parent–infant interactions. Infant and Child Development, 0, , e2271.	1.5	1
206	Relational quantitative reasoning in kindergarten predicts mathematical achievement in third grade. Journal of Numerical Cognition, 2016, 2, 77-90.	1.2	3
207	Envisioning an Alternative Future for the Corrections Sector Within the U.S. Criminal Justice System. , 2017, , .		0
208	Early Childhood Mathematics Education: Reflections and Moving Forward. ICME-13 Monographs, 2018, , 313-326.	1.0	0
209	Study on the Cultivation of Observation Ability of Secondary School Students. , 2018, , .		0
210	"Küçük ‡ocuklar için Büyük Matematik―Eğitim Programının Okul Öncesi Dönem Çoc Duyusuna Etkisi. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 0, , .	uklarınÄ 0.8	±n _o Sayı
211	Preschool Children's Errors in Mathematical Concepts, in Terms of Teachers' Views. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 0, 7, 171-192.	0.5	0
212	The impact of the quality of early mathematics instruction on mathematics achievement outcomes. Journal of Childhood Education & Society, 2020, 1, 216-228.	0.6	4
213	The Roles of Initial Mathematics, Reading, and Cognitive Skills in Subsequent Mathematics Performance: A Meta-Analytic Structural Equation Modeling Approach. Review of Educational Research, 2022, 92, 288-325.	7.5	13
214	Development of Numeracy and Literacy Skills in Early Childhood—A Longitudinal Study on the Roles of Home Environment and Familial Risk for Reading and Math Difficulties. Frontiers in Education, 2021, 6, .	2.1	11
215	Approximate number system discrimination training for 7-8 year olds improves approximate, but not exact, arithmetics, and only in children with low pre-training arithmetic scores. Journal of Numerical Cognition, 2020, 6, 275-303.	1.2	4
216	Mathematical Cognition: In the Elementary Years [6â \in 12]. , 2020, , 530-538.		0
218	Making STEM Visible in Early Childhood Curriculum Frameworks. , 2020, , 87-112.		6
219	Analysis of Mixed Reality Tools for Learning Math in Primary and Secondary School. Lecture Notes in Computer Science, 2020, , 112-121.	1.3	3
220	Family related variables effect on later educational outcome: a further geospatial analysis on TIMSS 2015 Finland. Large-Scale Assessments in Education, 2020, 8, .	2.0	11
221	The role of federal and state policy in addressing early childhood achievement gaps: parent perceptions and student outcomes related to 21st Century Learning Centers programming in the United States. International Journal of Child Care and Education Policy, 2021, 15, 16.	1.8	2

#	Article	IF	CITATIONS
222	It matters how you start: Early numeracy mastery predicts high school math <scp>courseâ€ŧaking</scp> and college attendance. Infant and Child Development, 2022, 31, e2281.	1.5	16
223	Science and Engineering Students' Difficulties With Fractions At Entry-Level To University. International Electronic Journal of Mathematics Education, 2017, 12, 281-310.	0.7	4
224	Unlocking Creative Productivity: A Talent Development Approach. Sovremennaâ Zarubežnaâ PsihologiŢ, 2021, 10, 17-32.	0.7	2
226	Numeracy skills mediate the relation between executive function and mathematics achievement in early childhood. Cognitive Development, 2022, 62, 101154.	1.3	11
227	Home learning activities and parental autonomy support as predictors of pre-academic skills: The mediating role of young children's school liking. Learning and Individual Differences, 2022, 94, 102127.	2.7	7
228	Why Subsidize Independent Schools? Estimating the Effect of a Unique Canadian Schooling Model on Educational Attainment. Mathematics, 2022, 10, 605.	2.2	0
229	School readiness losses during the COVIDâ€19 outbreak. A comparison of two cohorts of young children. Child Development, 2022, 93, 910-924.	3.0	24
230	Deconstructing Mathematics Computation Fluency: Does Handwriting Matter?. Contemporary School Psychology, 0, , 1.	1.3	0
231	Development of Numerical Knowledge. , 2022, , 361-382.		0
232	Are high school students accurate in predicting their AP exam scores?: Examining inaccuracy and overconfidence of students' predictions. Assessment in Education, 2022, 29, 27-50.	1.2	3
233	Mathematical Ability atÂa Very Young Age: The Contributions of Relationship Quality with Parents and Teachers via Children's Language and Literacy Abilities. Early Childhood Education Journal, 0, , 1.	2.7	4
234	Numeracy skills in young children as predictors of mathematical competence. British Journal of Developmental Psychology, 2022, 40, 224-241.	1.7	6
235	Children Receiving a Nutrition and High-Quality Early Childhood Education Intervention Are Associated with Greater Math and Fluid Intelligence Scores: The Guatemala City Municipal Nurseries. Nutrients, 2022, 14, 1366.	4.1	2
236	Early Childhood STEM Education for Sustainable Development. Sustainability, 2022, 14, 3524.	3.2	14
237	Subtract? That's a Math Word! Unpacking Teachers' Language Choices in Preschool and Kindergarten Classrooms. European Journal of Science and Mathematics Education, 2022, 10, 366-379.	1.1	0
238	A Conceptual Replication of a Kindergarten Math Intervention Within the Context of a Research-Based Core. Exceptional Children, 2022, 89, 42-59.	2.2	1
239	Efficacy of an Adaptive Game-Based Math Learning App to Support Personalized Learning and Improve Early Elementary School Students' Learning. Early Childhood Education Journal, 2023, 51, 717-732.	2.7	9
240	A video-based approach to investigating intentional teaching of mathematics in Chinese kindergartens. Teaching and Teacher Education, 2022, 114, 103716.	3.2	4

ARTICLE IF CITATIONS # Effects of a Game-Based app on Primary Students' Self Efficacy and Achievements in Learning Fractions 241 0.2 0 During Distance Education. Turkish Psychological Counseling and Guidance Journal, 2021, 11, 505-520. 242 Early childhood mathematics: a case study. Early Years, 2023, 43, 763-777. 1.0 Facilitating Preschool Children's Mathematics Development in China, Japan, and the United States: Is 243 2.6 3 the Classroom Library Considered?. Education Sciences, 2021, 11, 792. A Weight and Meta-Analysis on the Academic Achievement of High School Students. Education 244 Sciences, 2022, 12, 287. Latino kindergarteners' math growth, approaches to learning, and home numeracy practices. Journal 245 1.7 8 of Applied Developmental Psychology, 2022, 80, 101417. The Cognitive Foundations of Early Childhood Numeracy. Advances in Early Childhood and K-12 0.2 Education, 2022, , 317-348. School-entry predictors of lower primary reading and mathematics achievement in Kenya. Research in 251 1.3 3 Comparative and International Education, 2022, 17, 441-459. Educational achievement and bullying: The mediating role of psychological difficulties. British 2.9 Journal of Educational Psychology, 2022, 92, 1487-1501. Associations among socioeconomic status and preschool-aged children's, number skills, and spatial 253 2 1.4 skills: The role of executive function. Journal of Experimental Child Psychology, 2022, 221, 105453. Usability Heuristics for Early Primary Children: A Case Study in Sri Lanka., 2021, , . Bee-Bot Robots and Their STEM Learning Potential in the Play-Based Behaviour of Preschool Children 257 1 in Canada., 2022, , 181-198. Cooperation between preschool peers in relation to their math learning. Journal of Educational 1.6 Research, 2022, 115, 199-208. Can training in the approximate number system improve the informal mathematics ability of 259 1.5 2 preschoolers?. Acta Psychologica, 2022, 228, 103638. A six months' prospective study of the relations between children's self-regulated learning skills and 1.3 maternal supportive behaviors. Cognitive Development, 2022, 63, 101220. The effect of STEAM education with tales on problem solving and creativity skills. European Early 262 1.9 8 Childhood Education Research Journal, 2023, 31, 243-258. Core foundations of early mathematics: refining the number sense framework. Current Opinion in 3.9 Behavioral Sciences, 2022, 46, 101181. A Makey-Makey based STEM activity for children. Science Activities, 2021, 58, 166-182. 264 0.6 2 The relation of school achievement with self-esteem and bullying in Chilean children. Current 2.8 Psychology, 0, , .

#	Article	IF	CITATIONS
266	The Effect of Kindergarten Instructional Policies on Reading and Math Achievement Gaps. , 2022, , 495-518.		0
267	Play based activities for mathematical thinking at infancy: Nursery teachers' and parents' beliefs. Journal of Childhood Education & Society, 2022, 3, 86-97.	0.6	0
268	Examination of a Modified Incremental Rehearsal Approach to Explore Causal Mechanisms. Journal of Behavioral Education, 0, , .	1.3	0
269	A Rasch modeling approach for measuring young children's informal mathematics in Peru. Eurasia Journal of Mathematics, Science and Technology Education, 2022, 18, em2147.	1.3	0
270	Early childhood educators' beliefs about mathematics education for children under three years of age. International Journal of Early Years Education, 2022, 30, 847-862.	0.8	1
271	Moving Toward an Equitable Approach to STEM Education for Minority Males. Diversity in Higher Education, 2022, 25, 163-181.	0.1	0
272	Longitudinal relations between behavioral engagement and academic achievement: The moderating roles of socio-economic status and early achievement. Journal of School Psychology, 2022, 94, 15-27.	2.9	4
273	Widening the lens of family math engagement: A conceptual framework and systematic review. Developmental Review, 2022, 66, 101046.	4.7	10
274	Governing early learning among the American states. Children and Youth Services Review, 2022, 143, 106625.	1.9	1
275	Developing mathematics learning media to introduce the concept of numbers to early childhood. AIP Conference Proceedings, 2022, , .	0.4	0
276	Taking a Closer Look: The Relationship between Pre-School Domain General Cognition and School Mathematics Achievement When Controlling for Intelligence. Journal of Intelligence, 2022, 10, 70.	2.5	1
277	A developmental perspective on feedback: How corrective feedback influences children's literacy, mathematics, and problem solving. Educational Psychologist, 2023, 58, 130-145.	9.0	3
278	Do executive functions gained through two-way dual-Language education translate into math achievement?. International Journal of Bilingual Education and Bilingualism, 2023, 26, 457-471.	2.1	1
279	Number Sense Development During the Preschool Years: Relations Within and Between Key Skill Indicators. Early Education and Development, 2023, 34, 1631-1646.	2.6	3
280	Grandparenting Role on Math Online Learning in Chinese Multigenerational Households. Sustainability, 2022, 14, 11551.	3.2	3
281	The Roles of Arithmetic Fluency and Executive Functioning in Mathematical Problem-Solving. Elementary School Journal, 2022, 123, 271-291.	1.4	3
282	Associations between preschool cognitive and behavioral skills and college enrollment: Evidence from the Chicago School Readiness Project Developmental Psychology, 2023, 59, 474-486.	1.6	2
283	Teacher-delivered virtual manipulative mathematics intervention to individuals with extensive support needs. Research in Developmental Disabilities, 2022, 131, 104339.	2.2	1

#	Article	IF	CITATIONS
284	Validation of an e-instrument for assessing five-year-old children's development in Estonia: a comparison of children's skills and teachers' evaluations. Education 3-13, 0, , 1-16.	1.0	0
285	Maternal homework approach and adolescents' academic skills: The mediating role of task values. Frontiers in Education, 0, 7, .	2.1	1
286	Parental mathematical expectations and children's early mathematical attitudes: Moderated mediation effect of parental mathematical involvement and parent gender. Current Psychology, 0, , .	2.8	0
287	Developmental cascades and educational attainment. Advances in Child Development and Behavior, 2022, , .	1.3	1
288	Adding family math to the equation: Promoting Head Start preschoolers' mathematics learning at home and school. Early Childhood Research Quarterly, 2023, 63, 43-58.	2.7	4
289	Media Digital Menstimulasi Keterampilan Numerasi Anak Usia Dini di Lembaga PAUD. Jurnal Obsesi, 2022, 6, 6027-6034.	1.2	0
290	The effects of a large-scale school readiness intervention on Danish preschool children's emergent mathematics skills. Scandinavian Journal of Educational Research, 2024, 68, 488-503.	1.7	1
291	Fiber Arts Require Spatial Skills: How a Stereotypically Feminine Practice Can Help Us Understand Spatial Skills and Improve Spatial Learning. Sex Roles, 0, , .	2.4	0
292	With a little help from our pediatrician: An intervention to promote mathematics-related home activities through regular well-child visits. Frontiers in Psychology, 0, 13, .	2.1	0
293	Links between repeating and growing pattern knowledge and math outcomes in children and adults. Child Development, 2023, 94, .	3.0	1
294	The effects of an early childhood-elementary teacher preparation program in STEM on pre-service teachers. Eurasia Journal of Mathematics, Science and Technology Education, 2022, 18, em2197.	1.3	4
295	Psychometric Evaluation of the Preschool Early Numeracy Skills Test–Brief Version within the Item Response Theory Framework. Educational Measurement: Issues and Practice, 0, , .	1.4	0
296	The relationship between numerical mapping abilities, maths achievement and socioeconomic status in 4―and 5â€yearâ€old children. British Journal of Educational Psychology, 0, , .	2.9	0
297	The influence of home environmental factors on kindergarten children's addition strategy use. Frontiers in Psychology, 0, 13, .	2.1	2
298	Latine Caregivers' Approaches to Engaging Young Children in Mathematics. Early Childhood Research Quarterly, 2023, 64, 26-35.	2.7	3
299	Training arithmetical skills when finger counting and working memory cannot be used: A single case study in a child with cerebral palsy. Applied Neuropsychology: Child, 0, , 1-13.	1.4	1
300	Finger Use and Arithmetic Skills in Children and Adolescents: a Scoping Review. Educational Psychology Review, 2023, 35, .	8.4	5
301	Executive function and mathematics in preschool children: Training and transfer effects. Journal of Experimental Child Psychology, 2023, 232, 105663.	1.4	4

	CITATION R	EPORT	
#	Article	IF	CITATIONS
302	The mathematical brain at rest. Current Opinion in Behavioral Sciences, 2023, 49, 101246.	3.9	0
303	Maternal cognitions and cognitive, behavior and emotional development in middle childhood. Current Research in Behavioral Sciences, 2023, 4, 100098.	4.1	0
304	Effectiveness of Different Teaching Resources for Forming the Concept of Magnitude in Older Preschoolers with Varied Levels of Executive Functions. Psychology in Russia: State of the Art, 2022, , 62-82.	0.6	4
305	Ordinal models to analyze strategy sophistication: Evidence from a learning trajectory efficacy study. Journal of School Psychology, 2023, 97, 77-100.	2.9	2
306	Evaluating the Impact of Supplemental Computer-Assisted Math Instruction in Elementary School: A Conceptual Replication. Journal of Research on Educational Effectiveness, 2024, 17, 94-118.	1.6	0
307	The role of executive function in shaping the longitudinal stability of math achievement during early elementary grades. Early Childhood Research Quarterly, 2023, 64, 84-93.	2.7	4
308	Erken çocukluk dönemi matematik eğitiminde öğrenme rotaları yaklaşımı ve M.E.B. okul öncesi e programının karşılaştırılması. International Journal of Educational Studies in Mathematics, 0, , .	ÄŸitim 0.1	0
309	Relationship Between Inhibitory Control and Arithmetic in Elementary School Children With ADHD: The Mediating Role of Working Memory. Journal of Attention Disorders, 2023, 27, 899-911.	2.6	1
310	Evaluating the Consequential Validity of the Research-Based Early Mathematics Assessment. Journal of Psychoeducational Assessment, 0, , 073428292311658.	1.5	0
311	Teachers' perceptions of the effectiveness of a planning framework on content sequencing for the teaching and learning of mathematics. Eurasia Journal of Mathematics, Science and Technology Education, 2023, 19, em2252.	1.3	0
312	Kindergarten Directors' Perceptions and Implementation of STEM Education. Research in Science Education, 2023, 53, 791-807.	2.3	1
313	The real preschoolers of Orange County: Early number learning in a diverse group of children. Journal of Numerical Cognition, 2023, 9, 65-88.	1.2	0
314	The relation between math anxiety and play behaviors in 4- to 6-year-old children. Journal of Numerical Cognition, 2023, 9, 89-106.	1.2	1
315	An investigation of Head Start preschool children's executive function, early literacy, and numeracy learning in the midst of the COVID-19 pandemic. Early Childhood Research Quarterly, 2023, 64, 255-265.	2.7	4
316	Early Mathematical Competencies and Key Context Features That Promote Their Development. Social Sciences and Humanities Studies, 2023, 8, 419-434.	0.1	0
317	How do socioeconomic attainment gaps in early mathematical ability arise?. Child Development, 2023, 94, 1550-1565.	3.0	1
318	Understanding Heterogeneity in the Impact of Public Preschool Programs. Monographs of the Society for Research in Child Development, 2023, 88, 7-182.	6.8	1
319	STEM professional learning in early childhood education: A scoping review. Journal of Early Childhood Teacher Education, 2024, 45, 79-95.	1.5	1

#	Article	IF	CITATIONS
320	Approaches to investigating young children's mathematical activity. Mathematics Education Research Journal, 0, , .	1.7	0
321	Prevalence of Number, Number Relations, and Number Operations Indicators in State Early Learning Standards. Early Childhood Education Journal, 0, , .	2.7	0
322	To what extent do home numeracy practices and parental number talk relate to children's math skills? A pre-registered study in 5-year-old children. Learning and Individual Differences, 2023, 106, 102328.	2.7	1
323	Pengembangan Instrumen Kemampuan Berpikir Matematika dalam Perkembangan Kognitif anak usia dini. Jurnal Obsesi, 2023, 7, 3819-3830.	1.2	Ο
324	International comparisons of the home mathematics environment and relations with children's mathematical achievement. British Journal of Educational Psychology, 0, , .	2.9	0
325	Investigating the contributions of active, playful learning to student interest and educational outcomes. Acta Psychologica, 2023, 238, 103983.	1.5	2
326	Beyond linearity: Using IRTâ€scaled level models to describe the relation between prior proportional reasoning skills and fraction learning outcomes. Child Development, 0, , .	3.0	0
327	Editorial: The impact of home and school environment on early literacy and mathematic skills. Frontiers in Psychology, 0, 14, .	2.1	0
328	Research and Pedagogies for Early Math. Education Sciences, 2023, 13, 839.	2.6	2
329	The effect of learning trajectories-based coding education program on preschoolers' mathematical measurement skills. Education and Information Technologies, 0, , .	5.7	0
330	Length, area, volume, and angle and turn measurement in early childhood: validating the early measurement assessment tool. International Journal of Early Years Education, 0, , 1-16.	0.8	0
331	The Study of Early Child Care and Youth Development (SECCYD): Studying Development from Infancy to Adulthood. Annual Review of Developmental Psychology, 2023, 5, .	2.9	0
332	A scaled-up mathematics intervention in preschool classes. Scandinavian Journal of Educational Research, 0, , 1-11.	1.7	0
333	It All Adds Up: Connecting Home and School through Family Math. , 0, , .		0
334	Parents' approaches to numeracy support: what parents do is rarely what they think is most important. Frontiers in Education, 0, 8, .	2.1	0
335	Patterns of children's readiness at school entry and their association with kindergarten academic and social-emotional outcomes: Do classroom interactions matter?. Early Childhood Research Quarterly, 2024, 66, 112-123.	2.7	0
336	The longitudinal contributions of preschool executive functions and early math abilities to arithmetic skills in elementary school. Cognitive Development, 2023, 68, 101388.	1.3	0
337	Consistency and inconsistency in learning experiences across the early grades. Frontiers in Education, 0, 8, .	2.1	0

ARTICLE IF CITATIONS The math talk learning environment: Testing an early childhood math intervention. Early Childhood 338 2.7 0 Research Quarterly, 2024, 66, 224-233. Making mathematics meaningful for culturally and linguistically diverse students with a mathematics 2.1 learning disability: a focus on culturally responsive practices. Frontiers in Education, 0, 8, . Cognitive Foundations of Early Mathematics: Investigating the Unique Contributions of Numerical, 340 2.5 0 Executive Function, and Spatial Skills. Journal of Intelligence, 2023, 11, 221. Observant on Learning? Finding a Screening Tool to Support Social Workers' Monitoring of Learning. 341 Nordic Social Work Research, Ö, , 1-14. Young Mathematicians: A Successful Model of a Family Math Community., 2022, 4, . 342 1 A systematic literature review of math interventions across educational settings from early childhood education to high school. Frontiers in Education, 0, 8, .2.1 General and math vocabulary contributions to early numeracy skills in a large 344 0 population-representative sample., 0, 1, . Executive Functioning and Early Math Skills in Young Children at Risk for Mathematical Difficulties: 345 2.6 Evaluation of Interventions Efficacy and Transfer Effects. Early Education and Development, 0, , 1-28. 346 Assessment of math abilities before school entry: a tool development. Frontiers in Education, 0, 8, . 2.1 0 A Meta-Analysis of Mathematics Interventions: Examining the Impacts of Intervention Characteristics. 347 8.4 Educational Psychology Review, 2024, 36, . Grounding understanding of the home numeracy environment: Withinâ€group variation in 348 0 1.5 <scp>Latine</scp> families. Infant and Child Development, 0, , . Increasing Self-Concept and Decreasing Gender Stereotypes in STEM through Professional 349 2.6 Development for Early Childhood Educators. Education Sciences, 2024, 14, 81. Teachers' mathematics pedagogical content knowledge and quality of early mathematics instruction 350 0.6 0 in Turkey. South African Journal of Education, 2023, 43, 1-19. Welfare state policy and educational inequality: a cross-national multicohort study. European 2.3 Sociological Review, 0, , . Contributions of preschool behavioral self-regulation and social skills to growth in different 352 0 1.4 domains of early math knowledge. Journal of Experimental Child Psychology, 2024, 241, 105867. Designing classroom assessments with the end user in mind. International Journal of Testing, 2024, 24, 103-129

CITATION REPORT

#