Western diet induces dysbiosis with increased<i>E colihost barrier function favouring AIEC colonisation

Gut

63, 116-124

DOI: 10.1136/gutjnl-2012-304119

Citation Report

#	Article	IF	CITATIONS
1	Oral Supplementation with Non-Absorbable Antibiotics or Curcumin Attenuates Western Diet-Induced Atherosclerosis and Glucose Intolerance in LDLRâ^'/â^' Mice â€" Role of Intestinal Permeability and Macrophage Activation. PLoS ONE, 2014, 9, e108577.	1.1	125
2	Increased Gut Permeability and Bacterial Translocation after Chronic Chlorpyrifos Exposure in Rats. PLoS ONE, 2014, 9, e102217.	1.1	77
3	Manipulation of Microbiome, a Promising Therapy for Inflammatory Bowel Diseases. Journal of Clinical $\&$ Cellular Immunology, 2014, 05, .	1.5	3
4	<i>Escherichia coli</i> in chronic inflammatory bowel diseases: An update on adherent invasive <i>Escherichia coli</i> pathogenicity. World Journal of Gastrointestinal Pathophysiology, 2014, 5, 213.	0.5	171
5	Polymorphisms in Autophagy-Related Genes in Crohn's Disease. , 2014, , 93-110.		1
6	Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features. BMC Research Notes, 2014, 7, 748.	0.6	77
7	Dietary Clues to the Pathogenesis of Crohn's Disease. Digestive Diseases, 2014, 32, 389-394.	0.8	37
8	Western lifestyle: a â€~master' manipulator of the intestinal microbiota?. Gut, 2014, 63, 5-6.	6.1	46
9	Susceptibility to <i>Campylobacter</i> Infection Is Associated with the Species Composition of the Human Fecal Microbiota. MBio, 2014, 5, e01212-14.	1.8	75
10	Escherichia coli Dysbiosis Correlates With Gastrointestinal Dysfunction in Children With Cystic Fibrosis. Clinical Infectious Diseases, 2014, 58, 396-399.	2.9	82
11	Partial Enteral Nutrition with a Crohnʽs Disease Exclusion Diet Is Effective for Induction of Remission in Children and Young Adults with Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 1353-1360.	0.9	211
12	Carbohydrate Intake in the Etiology of Crohn's Disease and Ulcerative Colitis. Inflammatory Bowel Diseases, 2014, 20, 2013-2021.	0.9	78
13	Recent advances in adherence and invasion of pathogenic Escherichia coli. Current Opinion in Infectious Diseases, 2014, 27, 459-464.	1.3	78
14	An intestinal arsonist: pathobiont ignites IBD and flees the scene. Gut, 2014, 63, 1034-1035.	6.1	13
15	Dysbiotic Events in Gut Microbiota: Impact on Human Health. Nutrients, 2014, 6, 5786-5805.	1.7	169
16	Exclusive Enteral Nutrition: Clues to the Pathogenesis of Crohn's Disease. Nestle Nutrition Institute Workshop Series, 2014, 79, 131-140.	1.5	6
17	Understanding Host-Adherent-Invasive <i>Escherichia coli</i> Interaction in Crohn's Disease: Opening Up New Therapeutic Strategies. BioMed Research International, 2014, 2014, 1-16.	0.9	51
18	Intestinal barrier dysfunction triggered by invasive bacteria. Current Opinion in Microbiology, 2014, 17, 91-98.	2.3	92

#	Article	IF	Citations
19	Specialized Metabolites from the Microbiome in Health and Disease. Cell Metabolism, 2014, 20, 719-730.	7.2	454
20	Environmental Triggers for IBD. Current Gastroenterology Reports, 2014, 16, 396.	1.1	32
21	High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection. American Journal of Physiology - Renal Physiology, 2014, 307, G459-G470.	1.6	82
22	Nicotinamide treatment ameliorates the course of experimental colitis mediated by enhanced neutrophilâ€specific antibacterial clearance. Molecular Nutrition and Food Research, 2014, 58, 1474-1490.	1.5	32
23	Fusobacterium and Enterobacteriaceae: Important players for CRC?. Immunology Letters, 2014, 162, 54-61.	1.1	119
24	Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World Journal of Gastroenterology, 2014, 20, 16498.	1.4	89
25	Sexual Dysfunction in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 939-947.	0.9	23
26	Polyunsaturated fatty acids and inflammation. IUBMB Life, 2015, 67, 659-667.	1.5	129
27	Nutritional therapy in inflammatory bowel disease. Current Opinion in Gastroenterology, 2015, 31, 303-308.	1.0	22
28	Systematic review: bile acids and intestinal inflammationâ€luminal aggressors or regulators of mucosal defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817.	1.9	106
29	Escherichia coli LF82 Differentially Regulates ROS Production and Mucin Expression in Intestinal Epithelial T84 Cells. Inflammatory Bowel Diseases, 2015, 21, 1018-1026.	0.9	23
30	Combinatorial Effects of Diet and Genetics on Inflammatory Bowel Disease Pathogenesis. Inflammatory Bowel Diseases, 2015, 21, 912-922.	0.9	82
31	Reciprocal interaction of diet and microbiome in inflammatory bowel diseases. Current Opinion in Gastroenterology, 2015, 31, 464-470.	1.0	31
32	Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota. Microorganisms, 2015, 3, 725-745.	1.6	76
33	Mechanisms of Microbe–Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. Frontiers in Immunology, 2015, 6, 555.	2.2	83
34	Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators of Inflammation, 2015, 2015, 1-10.	1.4	463
35	Review article: dietary fibre-microbiota interactions. Alimentary Pharmacology and Therapeutics, 2015, 42, 158-179.	1.9	430
36	Food, Immunity, and the Microbiome. Gastroenterology, 2015, 148, 1107-1119.	0.6	278

#	Article	IF	CITATIONS
37	The intestinal microbiota: its role in health and disease. European Journal of Pediatrics, 2015, 174, 151-167.	1.3	144
38	IBD and the Gut Microbiota—from Bench to Personalized Medicine. Current Gastroenterology Reports, 2015, 17, 15.	1.1	54
39	Professor Arlette Darfeuille-Michaud: The Discovery of Adherent-invasive Escherichia coli. Journal of Crohn's and Colitis, 2015, 9, 373-375.	0.6	1
40	Functional Impacts of the Intestinal Microbiome in the Pathogenesis of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 139-153.	0.9	112
41	Vitamin D Deficiency Predisposes to Adherent-invasive Escherichia coli-induced Barrier Dysfunction and Experimental Colonic Injury. Inflammatory Bowel Diseases, 2015, 21, 297-306.	0.9	71
42	The immunity–diet–microbiota axis in the development of metabolic syndrome. Current Opinion in Lipidology, 2015, 26, 73-81.	1.2	41
43	Why Is Initial Bacterial Colonization of the Intestine Important to Infants' and Children's Health?. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 294-307.	0.9	252
44	Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin. Gut Microbes, 2015, 6, 78-83.	4.3	74
45	Adherent-Invasive Escherichia coli Production of Cellulose Influences Iron-Induced Bacterial Aggregation, Phagocytosis, and Induction of Colitis. Infection and Immunity, 2015, 83, 4068-4080.	1.0	41
46	Microbiota in Inflammatory Bowel Disease Pathogenesis and Therapy. Nutrition in Clinical Practice, 2015, 30, 760-779.	1.1	60
47	Diet-induced hypoxia responsive element demethylation increases CEACAM6 expression, favouring Crohn's disease-associatedEscherichia colicolonisation. Gut, 2015, 64, 428-437.	6.1	35
48	Environmental risk factors in inflammatory bowel disease: a population-based case-control study in Asia-Pacific. Gut, 2015, 64, 1063-1071.	6.1	320
49	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
50	Dietary Patterns and Risk of Inflammatory Bowel Disease in Europe. Inflammatory Bowel Diseases, 2016, 22, 345-354.	0.9	207
51	Genome-based Definition of an Inflammatory Bowel Disease-associated Adherent-Invasive Escherichia coli Pathovar. Inflammatory Bowel Diseases, 2016, 22, 1-12.	0.9	54
52	Preclinical disease and preventive strategies in IBD: perspectives, challenges and opportunities. Gut, 2016, 65, 1061-1069.	6.1	68
53	European Crohn's and Colitis Organisation Topical Review on environmental factors in IBD. Journal of Crohn's and Colitis, 2017, 11, jjw223.	0.6	27
54	Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation Scientific Reports, 2016, 6, 19032.	1.6	328

#	Article	IF	Citations
55	IBD: In Food We Trust. Journal of Crohn's and Colitis, 2016, 10, 1351-1361.	0.6	56
56	The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therapeutic Advances in Gastroenterology, 2016, 9, 606-625.	1.4	152
57	Linking the Microbiota, Chronic Disease, and the Immune System. Trends in Endocrinology and Metabolism, 2016, 27, 831-843.	3.1	195
58	Targeting the complex interactions between microbiota, host epithelial and immune cells in inflammatory bowel disease. Pharmacological Research, 2016, 113, 574-584.	3.1	26
59	The microbiome–systemic diseases connection. Oral Diseases, 2016, 22, 719-734.	1.5	96
60	Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10376-10381.	3.3	369
61	Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health. Annals of the New York Academy of Sciences, 2016, 1372, 20-28.	1.8	36
62	Patients Perceive Clinical Benefit with the Specific Carbohydrate Diet for Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2016, 61, 3255-3260.	1.1	83
63	Impact of Cranberries on Gut Microbiota and Cardiometabolic Health: Proceedings of the Cranberry Health Research Conference 2015. Advances in Nutrition, 2016, 7, 759S-770S.	2.9	55
64	Therapeutic modulation of gut microbiota in inflammatory bowel disease: More questions to be answered. Journal of Digestive Diseases, 2016, 17, 800-810.	0.7	33
65	High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22. Scientific Reports, 2016, 6, 28990.	1.6	243
66	Gut Microbiota Dysbiosis as Risk and Premorbid Factors of IBD and IBS Along the Childhood–Adulthood Transition. Inflammatory Bowel Diseases, 2016, 22, 487-504.	0.9	117
67	Gut microbiota and immune crosstalk in metabolic disease. Molecular Metabolism, 2016, 5, 771-781.	3.0	141
68	The human milk oligosaccharide 2′-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut, 2016, 65, 33-46.	6.1	217
69	Genetics and Pathogenesis of Inflammatory Bowel Disease. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 127-148.	9.6	201
70	Diet and Microbiome in Inflammatory Bowel Diseases. , 2016, , 3-16.		2
71	<i>Escherichia coli</i> : an old friend with new tidings. FEMS Microbiology Reviews, 2016, 40, 437-463.	3.9	225
72	High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65, 1812-1821.	6.1	1,092

#	Article	IF	Citations
73	Specific carbohydrate diet for pediatric inflammatory bowel disease in clinical practice within an academic IBD center. Nutrition, 2016, 32, 418-425.	1.1	131
74	A role for whey-derived lactoferrin and immunoglobulins in the attenuation of obesity-related inflammation and disease. Critical Reviews in Food Science and Nutrition, 2017, 57, 1593-1602.	5.4	21
75	Three months of Western diet induces small intestinal mucosa alteration in TLR KO mice. Microscopy Research and Technique, 2017, 80, 563-569.	1.2	10
76	Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. International Journal of Cancer, 2017, 140, 2545-2556.	2.3	164
77	The Gut Microbiome: Connecting Spatial Organization to Function. Cell Host and Microbe, 2017, 21, 433-442.	5.1	453
78	Foodomics: A novel approach for food microbiology. TrAC - Trends in Analytical Chemistry, 2017, 96, 14-21.	5.8	41
79	Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before and after the onset of obesity. Biochimie, 2017, 141, 97-106.	1.3	196
80	Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 2017, 74, 2959-2977.	2.4	401
81	The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Research, 2017, 77, 1783-1812.	0.4	270
82	ESPEN guideline: Clinical nutrition in inflammatory bowel disease. Clinical Nutrition, 2017, 36, 321-347.	2.3	457
83	LPS enhances expression of CD204 through the MAPK/ERK pathway in murine bone marrow macrophages. Atherosclerosis, 2017, 266, 167-175.	0.4	17
85	Research Gaps in Diet and Nutrition in Inflammatory Bowel Disease. A Topical Review by D-ECCO Working Group [Dietitians of ECCO]. Journal of Crohn's and Colitis, 2017, 11, 1407-1419.	0.6	84
86	Efficacy of the Autoimmune Protocol Diet for Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2017, 23, 2054-2060.	0.9	72
87	Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific Reports, 2017, 7, 7267.	1.6	9
88	Diet, Gut Microbiota, and Colorectal Cancer Prevention: a Review of Potential Mechanisms and Promising Targets for Future Research. Current Colorectal Cancer Reports, 2017, 13, 429-439.	1.0	32
89	The intestinal barrier: a fundamental role in health and disease. Expert Review of Gastroenterology and Hepatology, 2017, 11, 821-834.	1.4	703
90	The commensal microbiota exacerbate infectious colitis in stressor-exposed mice. Brain, Behavior, and Immunity, 2017, 60, 44-50.	2.0	42
91	Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterology Clinics of North America, 2017, 46, 689-729.	1.0	27

#	Article	IF	CITATIONS
92	Diet and Asthma: Is It Time to Adapt Our Message?. Nutrients, 2017, 9, 1227.	1.7	141
93	The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Frontiers in Immunology, 2017, 8, 838.	2.2	349
94	Gut Microbiota Dysbiosis Drives and Implies Novel Therapeutic Strategies for Diabetes Mellitus and Related Metabolic Diseases. Frontiers in Immunology, 2017, 8, 1882.	2.2	149
95	Different Types of Dietary Fibers Trigger Specific Alterations in Composition and Predicted Functions of Colonic Bacterial Communities in BALB/c Mice. Frontiers in Microbiology, 2017, 8, 966.	1.5	47
96	The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediators of Inflammation, 2017, 2017, 1-9.	1.4	116
97	Therapeutic Modulation of Gut Microbiota in Functional Bowel Disorders. Journal of Neurogastroenterology and Motility, 2017, 23, 9-19.	0.8	19
98	Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. PLoS ONE, 2017, 12, e0178647.	1.1	54
99	Dietary patterns and risk of ulcerative colitis: a case–control study. Journal of Human Nutrition and Dietetics, 2018, 31, 408-412.	1.3	18
100	Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections. Journal of Molecular Biology, 2018, 430, 581-590.	2.0	22
101	Nutrition in Pediatric Inflammatory Bowel Disease. Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, 687-708.	0.9	121
102	The effects of mucosal media on some pathogenic traits of Crohn's disease-associated <i>Escherichia coli</i> LF82. Future Microbiology, 2018, 13, 141-149.	1.0	5
103	The germ-organ theory of non-communicable diseases. Nature Reviews Microbiology, 2018, 16, 103-110.	13.6	117
104	Clinical and Fecal Microbial Changes With Diet Therapy in Active Inflammatory Bowel Disease. Journal of Clinical Gastroenterology, 2018, 52, 155-163.	1.1	102
105	Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Molecular Psychiatry, 2018, 23, 351-361.	4.1	84
106	The role of the intestinal microbiota in the pathogenesis and treatment of inflammatory bowel diseases. Seminars in Colon and Rectal Surgery, 2018, 29, 21-27.	0.2	0
107	Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biological Psychiatry, 2018, 83, 214-223.	0.7	129
108	Adherent-invasive <i>Escherichia coli</i> in inflammatory bowel disease. Gut, 2018, 67, 574-587.	6.1	366
109	Inflammatory Bowel Disease Etiology: Current Knowledge. Pteridines, 2018, 29, 206-214.	0.5	10

#	Article	IF	CITATIONS
110	Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. International Journal of Molecular Sciences, 2018, 19, 3720.	1.8	138
111	Colonocyte metabolism shapes the gut microbiota. Science, 2018, 362, .	6.0	411
112	Effects of probiotics, prebiotics or synbiotics on jawbone in obese-insulin resistant rats. European Journal of Nutrition, 2019, 58, 2801-2810.	1.8	12
113	The gut microbiota: cause and cure of gut diseases. Medical Journal of Australia, 2018, 209, 312-317.	0.8	10
114	Outer Membrane Protein of Gut Commensal Microorganism Induces Autoantibody Production and Extra-Intestinal Gland Inflammation in Mice. International Journal of Molecular Sciences, 2018, 19, 3241.	1.8	14
115	Patients with Acne Vulgaris Have a Distinct Gut Microbiota in Comparison with Healthy Controls. Acta Dermato-Venereologica, 2018, 98, 783-790.	0.6	72
116	Prebiotics, Probiotics, and Acetate Supplementation Prevent Hypertension in a Model of Obstructive Sleep Apnea. Hypertension, 2018, 72, 1141-1150.	1.3	120
117	Role of soybean-derived bioactive compounds in inflammatory bowel disease. Nutrition Reviews, 2018, 76, 618-638.	2.6	21
118	Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut, 2018, 67, 1726-1738.	6.1	246
119	The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 525-535.	8.2	178
121	The Inflammasome: Regulation of Nitric Oxide and Antimicrobial Host Defence. Advances in Microbial Physiology, 2018, 72, 65-115.	1.0	22
122	Dietary n-3 PUFA May Attenuate Experimental Colitis. Mediators of Inflammation, 2018, 2018, 1-10.	1.4	56
123	The Growth and Protein Expression of Inflammatory Bowel Disease-Associated Campylobacter concisus Is Affected by the Derivatives of the Food Additive Fumaric Acid. Frontiers in Microbiology, 2018, 9, 896.	1.5	5
124	The Microbiotaâ€Inflammasome Hypothesis of Major Depression. BioEssays, 2018, 40, e1800027.	1.2	91
125	The gut–liver axis and the intersection with the microbiome. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 397-411.	8.2	905
126	AIEC infection triggers modification of gut microbiota composition in genetically predisposed mice, contributing to intestinal inflammation. Scientific Reports, 2018, 8, 12301.	1.6	50
127	Altered Gut Microbiome in Parkinson's Disease and the Influence of Lipopolysaccharide in a Human α-Synuclein Over-Expressing Mouse Model. Frontiers in Neuroscience, 2019, 13, 839.	1.4	122
128	Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Advances in Nutrition, 2019, 10, S17-S30.	2.9	255

#	Article	IF	CITATIONS
129	Diet-Microbe-Host Interactions That Affect Gut Mucosal Integrity and Infection Resistance. Frontiers in Immunology, 2019, 10, 1802.	2.2	52
130	Effects of Fish n-3 PUFAs on Intestinal Microbiota and Immune System. Marine Drugs, 2019, 17, 374.	2.2	105
131	Analysis of Genetic Association of Intestinal Permeability in Healthy First-degree Relatives of Patients with Crohn's Disease. Inflammatory Bowel Diseases, 2019, 25, 1796-1804.	0.9	21
132	Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 2019, 11, 2393.	1.7	374
133	Incorporating functional trade-offs into studies of the gut microbiota. Current Opinion in Microbiology, 2019, 50, 20-27.	2.3	14
134	Dining With Inflammatory Bowel Disease: A Review of the Literature on Diet in the Pathogenesis and Management of IBD. Inflammatory Bowel Diseases, 2019, 26, 181-191.	0.9	31
135	The Role of Probiotics in Nonalcoholic Fatty Liver Disease: A New Insight into Therapeutic Strategies. Nutrients, 2019, 11, 2642.	1.7	81
136	Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity, 2019, 51, 214-224.	6.6	24
137	A Reasonable Diet Promotes Balance of Intestinal Microbiota: Prevention of Precolorectal Cancer. BioMed Research International, 2019, 2019, 1-10.	0.9	37
138	Dysbiosis: from fiction to function. American Journal of Physiology - Renal Physiology, 2019, 317, G602-G608.	1.6	70
139	Impact of Food Additives on Gut Homeostasis. Nutrients, 2019, 11, 2334.	1.7	75
140	<i>Escherichia coli</i> Pathobionts Associated with Inflammatory Bowel Disease. Clinical Microbiology Reviews, 2019, 32, .	5.7	194
141	Dietary Habits and Intestinal Immunity: From Food Intake to CD4+ TH Cells. Frontiers in Immunology, 2018, 9, 3177.	2.2	33
142	Caloric restriction prevents the development of airway hyperresponsiveness in mice on a high fat diet. Scientific Reports, 2019, 9, 279.	1.6	7
143	A cross comparison between Ayurvedic etiology of Major Depressive Disorder and bidirectional effect of gut dysregulation. Journal of Ayurveda and Integrative Medicine, 2019, 10, 59-66.	0.9	22
144	Dietary Composition and Effects in Inflammatory Bowel Disease. Nutrients, 2019, 11, 1398.	1.7	30
145	Intestinal microbiome and fitness in kidney disease. Nature Reviews Nephrology, 2019, 15, 531-545.	4.1	140
146	Carcinoembryonic antigen (CEACAM) family members and Inflammatory Bowel Disease. Cytokine and Growth Factor Reviews, 2019, 47, 21-31.	3.2	36

#	Article	IF	CITATIONS
147	Towards a Food Pharmacy: Immunologic Modulation through Diet. Nutrients, 2019, 11, 1239.	1.7	28
148	Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiology Reviews, 2019, 43, 457-489.	3.9	114
149	Guidance on Healthy Eating Habits from the Medical Student's Perspective. Revista Brasileira De Educacao Medica, 2019, 43, 126-135.	0.0	0
150	Impact of Genes and the Environment on the Pathogenesis and Disease Course of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2019, 64, 1759-1769.	1.1	41
151	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	1.7	220
152	Epidemiology, Pathophysiology, and Treatment of Diverticulitis. Gastroenterology, 2019, 156, 1282-1298.e1.	0.6	231
153	Fruit Consumption is Associated with Alterations in Microbial Composition and Lower Rates of Pouchitis. Journal of Crohn's and Colitis, 2019, 13, 1265-1272.	0.6	34
154	Immunity, microbiota and kidney disease. Nature Reviews Nephrology, 2019, 15, 263-274.	4.1	80
155	Cytosolic Nucleic Acid Sensors in Inflammatory and Autoimmune Disorders. International Review of Cell and Molecular Biology, 2019, 344, 215-253.	1.6	23
156	Gut Microbiota, a Potential New Target for Chinese Herbal Medicines in Treating Diabetes Mellitus. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	0.5	31
157	Inflammatory bowel disease – one entity with many molecular faces. Przeglad Gastroenterologiczny, 2019, 14, 228-232.	0.3	4
158	Yersiniabactin-Producing Adherent/Invasive Escherichia coli Promotes Inflammation-Associated Fibrosis in Gnotobiotic <i>Il10 ^{â°'/â°'} </i> Mice. Infection and Immunity, 2019, 87, .	1.0	38
159	History of Inflammatory Bowel Diseases. Journal of Clinical Medicine, 2019, 8, 1970.	1.0	87
160	Role of Obesity, Mesenteric Adipose Tissue, and Adipokines in Inflammatory Bowel Diseases. Biomolecules, 2019, 9, 780.	1.8	70
161	Increased Epithelial Oxygenation Links Colitis to an Expansion of Tumorigenic Bacteria. MBio, 2019, 10, .	1.8	44
162	Experimental Models of Intestinal Inflammation: Lessons from Mouse and Zebrafish. , 2019, , 47-76.		2
163	Starch Consumption May Modify Antiglycan Antibodies and Fecal Fungal Composition in Patients With Ileo-Anal Pouch. Inflammatory Bowel Diseases, 2019, 25, 742-749.	0.9	9
164	The Role of the Bacterial Microbiota in Alcoholic and Non-alcoholic Fatty Liver Disease. , 2019, , 89-104.		0

#	Article	IF	Citations
165	The Role of Dietary Nutrients in Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 3183.	2.2	120
166	Preventive Effect of Spontaneous Physical Activity on the Gut-Adipose Tissue in a Mouse Model That Mimics Crohn's Disease Susceptibility. Cells, 2019, 8, 33.	1.8	10
167	The Food Additive Maltodextrin Promotes Endoplasmic Reticulum Stress–Driven Mucus Depletion and Exacerbates Intestinal Inflammation. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 457-473.	2.3	84
168	Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clinical Nutrition, 2020, 39, 994-1018.	2.3	61
169	Isolation and Characterization of Blueberry Polyphenolic Components and Their Effects on Gut Barrier Dysfunction. Journal of Agricultural and Food Chemistry, 2020, 68, 2940-2947.	2.4	23
170	Mutated CEACAMs Disrupt Transforming Growth Factor Beta Signaling and Alter the Intestinal Microbiome to Promote Colorectal Carcinogenesis. Gastroenterology, 2020, 158, 238-252.	0.6	46
171	Viewpoint: Inflammatory Bowel Diseases Among Immigrants From Low- to High-Incidence Countries: Opportunities and Considerations. Journal of Crohn's and Colitis, 2020, 14, 267-273.	0.6	24
172	Inducing remission in paediatric Crohn's disease using nutritional therapies – A systematic review. Journal of Human Nutrition and Dietetics, 2020, 33, 170-186.	1.3	5
173	Adherence to the Mediterranean diet is associated with decreased fecal calprotectin in patients with ulcerative colitis after pouch surgery. European Journal of Nutrition, 2020, 59, 3183-3190.	1.8	49
174	Partial enteral nutrition induces clinical and endoscopic remission in active pediatric Crohn's disease: results of a prospective cohort study. European Journal of Pediatrics, 2020, 179, 431-438.	1.3	24
175	Serum endotoxin, gut permeability and skeletal muscle metabolic adaptations following a short term high fat diet in humans. Metabolism: Clinical and Experimental, 2020, 103, 154041.	1.5	20
176	Dietary Fatty Acids and Microbiota-Brain Communication in Neuropsychiatric Diseases. Biomolecules, 2020, 10, 12.	1.8	28
177	Links Between Inflammatory Bowel Disease and Chronic Obstructive Pulmonary Disease. Frontiers in Immunology, 2020, 11, 2144.	2.2	74
178	Barrier-promoting efficiency of two bioactive flavonols quercetin and myricetin on rat intestinal epithelial (IEC-6) cells <i>via</i> suppressing Rho activation. RSC Advances, 2020, 10, 27249-27258.	1.7	9
179	A missense variant in <i>SLC39A8</i> confers risk for Crohn's disease by disrupting manganese homeostasis and intestinal barrier integrity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28930-28938.	3.3	33
180	The Herbal Medicine Scutellaria-Coptis Alleviates Intestinal Mucosal Barrier Damage in Diabetic Rats by Inhibiting Inflammation and Modulating the Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-17.	0.5	21
181	Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis. AMB Express, 2020, 10, 130.	1.4	64
182	Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sciences, 2020, 258, 118129.	2.0	67

#	Article	IF	Citations
183	Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Critical Reviews in Food Science and Nutrition, 2021, 61, 3211-3232.	5.4	43
184	The influence of oxygen on the metabolites of phenolic blueberry extract and the mouse microflora during in vitro fermentation. Food Research International, 2020, 136, 109610.	2.9	10
185	Mediterranean Diet, Physical Activity and Gut Microbiome Composition: A Cross-Sectional Study among Healthy Young Italian Adults. Nutrients, 2020, 12, 2164.	1.7	34
186	Differential miRNA-Gene Expression in M Cells in Response to Crohn's Disease-Associated AIEC. Microorganisms, 2020, 8, 1205.	1.6	2
187	Gut microbiota in Celiac Disease: microbes, metabolites, pathways and therapeutics. Expert Review of Clinical Immunology, 2020, 16, 1075-1092.	1.3	21
188	Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 2020, 10, 603086.	1.8	55
189	Type I IFNs and CD8 T cells increase intestinal barrier permeability after chronic viral infection. Journal of Experimental Medicine, 2020, 217, .	4.2	28
190	The Crosstalk between Prostate Cancer and Microbiota Inflammation: Nutraceutical Products Are Useful to Balance This Interplay?. Nutrients, 2020, 12, 2648.	1.7	42
191	Targeting the gut microbiota by Asian and Western dietary constituents: a new avenue for diabetes. Toxicology Research, 2020, 9, 569-577.	0.9	15
192	Emulsifiers Impact Colonic Length in Mice and Emulsifier Restriction is Feasible in People with Crohn's Disease. Nutrients, 2020, 12, 2827.	1.7	34
193	The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Frontiers in Psychiatry, 2020, 11, 799.	1.3	19
194	Regulating metabolic inflammation by nutritional modulation. Journal of Allergy and Clinical Immunology, 2020, 146, 706-720.	1.5	42
195	Novel Organic Mineral Complex Prevents High-Fat Diet-Induced Changes in the Gut and Liver of Male Sprague-Dawley Rats. Journal of Nutrition and Metabolism, 2020, 2020, 1-16.	0.7	2
196	The Specific Carbohydrate Diet and Diet Modification as Induction Therapy for Pediatric Crohn's Disease: A Randomized Diet Controlled Trial. Nutrients, 2020, 12, 3749.	1.7	62
197	Use of Exopolysaccharide-Synthesizing Lactic Acid Bacteria and Fat Replacers for Manufacturing Reduced-Fat Burrata Cheese: Microbiological Aspects and Sensory Evaluation. Microorganisms, 2020, 8, 1618.	1.6	9
198	ErnĤrung bei entzļndlichen Darmerkrankungen. Karger Kompass Autoimmun, 2020, 2, 96-103.	0.0	0
199	The Acute Effect of Meal Timing on the Gut Microbiome and the Cardiometabolic Health of the Host: A Crossover Randomized Control Trial. Annals of Nutrition and Metabolism, 2020, 76, 322-333.	1.0	7
200	Dietary Inflammatory Potential and Risk of Crohn's Disease and Ulcerative Colitis. Gastroenterology, 2020, 159, 873-883.e1.	0.6	96

#	Article	IF	Citations
201	Wild primate microbiomes prevent weight gain in germ-free mice. Animal Microbiome, 2020, 2, 16.	1.5	7
202	Transcriptomic profiles reveal differences in zinc metabolism, inflammation, and tight junction proteins in duodenum from cholesterol gallstone subjects. Scientific Reports, 2020, 10, 7448.	1.6	6
203	Fatâ€Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeostasis in Mice Fed a Lowâ€Protein Diet. Molecular Nutrition and Food Research, 2020, 64, e1900835.	1.5	11
204	Cranberry, oxidative stress, inflammatory markers, and insulin sensitivity: a focus on intestinal microbiota., 2020,, 245-253.		O
205	Role of Diet in the Development and Management of Crohn's Disease. Current Gastroenterology Reports, 2020, 22, 19.	1.1	7
206	The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME Journal, 2020, 14, 1584-1599.	4.4	78
207	The role of nutrition in asthma prevention and treatment. Nutrition Reviews, 2020, 78, 928-938.	2.6	95
208	Bile acids elevated by high-fat feeding induce endoplasmic reticulum stress in intestinal stem cells and contribute to mucosal barrier damage. Biochemical and Biophysical Research Communications, 2020, 529, 289-295.	1.0	18
209	Influence of Diet and Nutrition on Prostate Cancer. International Journal of Molecular Sciences, 2020, 21, 1447.	1.8	99
210	Gut microbiota: a promising target against cardiometabolic diseases. Expert Review of Endocrinology and Metabolism, 2020, 15, 13-27.	1.2	35
211	Propionic Acid Promotes the Virulent Phenotype of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Reports, 2020, 30, 2297-2305.e5.	2.9	42
212	From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infection, Genetics and Evolution, 2020, 81, 104268.	1.0	53
213	Nutrition in Inflammatory Bowel Disease. Digestion, 2020, 101, 120-135.	1.2	59
214	JAK-STAT-dependent regulation of scavenger receptors in LPS-activated murine macrophages. European Journal of Pharmacology, 2020, 871, 172940.	1.7	27
215	Nutrition and Genetics in NAFLD: The Perfect Binomium. International Journal of Molecular Sciences, 2020, 21, 2986.	1.8	60
216	Modelling the Impact of Chronic Cigarette Smoke Exposure in Obese Mice: Metabolic, Pulmonary, Intestinal, and Cardiac Issues. Nutrients, 2020, 12, 827.	1.7	6
217	Intestinal barrier function and metabolic/liver diseases. Liver Research, 2020, 4, 81-87.	0.5	22
218	Earlyâ€Life Gut Microbiomeâ€"The Importance of Maternal and Infant Factors in Its Establishment. Nutrition in Clinical Practice, 2020, 35, 386-405.	1.1	58

#	Article	IF	CITATIONS
219	Gut Epithelial Metabolism as a Key Driver of Intestinal Dysbiosis Associated with Noncommunicable Diseases. Infection and Immunity, 2020, 88, .	1.0	24
220	Bifidobacterium animalis subsp. lactis A6 Alleviates Obesity Associated with Promoting Mitochondrial Biogenesis and Function of Adipose Tissue in Mice. Molecules, 2020, 25, 1490.	1.7	25
221	Nutrition, IBD and Gut Microbiota: A Review. Nutrients, 2020, 12, 944.	1.7	172
222	Train to Lose: Innate Immune Memory in Metaflammation. Molecular Nutrition and Food Research, 2021, 65, e1900480.	1.5	6
223	Dietary glycemic index, glycemic load and risk of ulcerative colitis: results from a case-control study. Nutrition and Food Science, 2021, 51, 50-60.	0.4	1
224	The Role of Epidemiological Evidence from Prospective Population Studies in Shaping Dietary Approaches to Therapy in Crohn's Disease. Molecular Nutrition and Food Research, 2021, 65, e2000294.	1.5	6
225	High dietary starch impairs intestinal health and microbiota of largemouth bass, Micropterus salmoides. Aquaculture, 2021, 534, 736261.	1.7	73
226	Dietary and Nutritional Approaches to the Management of Chronic Enteropathy in Dogs and Cats. Veterinary Clinics of North America - Small Animal Practice, 2021, 51, 123-136.	0.5	20
227	Mediators of Metabolism: An Unconventional Role for NOD1 and NOD2. International Journal of Molecular Sciences, 2021, 22, 1156.	1.8	13
228	Gut Microbiome and Diet., 2021, , 12-12.		0
229	Nutritional Therapy Strategies in Pediatric Crohn's Disease. Nutrients, 2021, 13, 212.	1.7	24
230	Casein-fed mice showed faster recovery from DSS-induced colitis than chicken-protein-fed mice. Food and Function, 2021, 12, 5806-5820.	2.1	8
231	Role of diet and nutrition in inflammatory bowel disease. World Journal of Experimental Medicine, 2021, 11, 1-16.	0.9	16
232	Modulation of the Gut Microbiota-farnesoid X Receptor Axis Improves Deoxycholic Acid-induced Intestinal Inflammation in Mice. Journal of Crohn's and Colitis, 2021, 15, 1197-1210.	0.6	35
233			
	C-C motif chemokine receptor 9 regulates obesity-induced insulin resistance via inflammation of the small intestine in mice. Diabetologia, 2021, 64, 603-617.	2.9	7
234	C-C motif chemokine receptor 9 regulates obesity-induced insulin resistance via inflammation of the small intestine in mice. Diabetologia, 2021, 64, 603-617. Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants, 2021, 10, 64.	2.9	41
234	small intestine in mice. Diabetologia, 2021, 64, 603-617. Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological		

#	Article	IF	CITATIONS
239	Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. Journal of Experimental Biology, 2021, 224, .	0.8	33
240	Regulation of Intestinal Inflammation by Dietary Fats. Frontiers in Immunology, 2020, 11, 604989.	2.2	36
241	The Gut-Liver Axis in Cholestatic Liver Diseases. Nutrients, 2021, 13, 1018.	1.7	29
242	Paediatric IBD: the host, diet & microbes in pathogenesis & treatment: a narrative review. Digestive Medicine Research, 0, 4, 6-6.	0.2	0
243	Contemporary Dietary Therapies in Inflammatory Bowel Disease. Current Treatment Options in Pediatrics, 2021, 7, 33-45.	0.2	0
244	Nutritional Global Status and Its Impact in Crohn's Disease. Journal of the Canadian Association of Gastroenterology, 2021, 4, 290-295.	0.1	5
245	Pathogenetic substantiation of diet therapy for Crohn's disease in children. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2021, , 94-105.	0.1	3
246	Comorbid Inflammatory Diseases of Digestive System and Eye. Oftalmologiya, 2021, 18, 20-29.	0.2	0
247	Dietary Supplementation with Glycine Enhances Intestinal Mucosal Integrity and Ameliorates Inflammation in C57BL/6J Mice with High-Fat Diet–Induced Obesity. Journal of Nutrition, 2021, 151, 1769-1778.	1.3	14
248	Dietary Management in Pediatric Patients with Crohn's Disease. Nutrients, 2021, 13, 1611.	1.7	15
249	Current recommendations on the role of diet in the aetiology and management of IBD. Frontline Gastroenterology, 2022, 13, 160-167.	0.9	10
250	Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sciences, 2021, 273, 119311.	2.0	73
251	A nadA Mutation Confers Nicotinic Acid Auxotrophy in Pro-carcinogenic Intestinal Escherichia coli NC101. Frontiers in Microbiology, 2021, 12, 670005.	1.5	3
252	The role of the microbiome in gastrointestinal inflammation. Bioscience Reports, 2021, 41, .	1.1	27
253	L-arginine as a novel target for clinical intervention in inflammatory bowel disease. Exploration of lmmunology, 0 , , .	1.7	3
254	Early Life Events and Development of Gut Microbiota in Infancy. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2021, 78, 3-8.	0.2	1
255	Gut Microbiota Regulates the Interaction between Diet and Genetics to Influence Glucose Tolerance. Medicines (Basel, Switzerland), 2021, 8, 34.	0.7	4
256	Nutrición y enfermedad inflamatoria intestinal: posibles mecanismos en la incidencia y manejo. Revista Médica ClÃnica Las Condes, 2021, 32, 491-501.	0.2	0

#	Article	IF	Citations
257	Host–Microbiota Interactions in Liver Inflammation and Cancer. Cancers, 2021, 13, 4342.	1.7	9
258	Crosstalk Between Intestinal Microbiota Derived Metabolites and Tissues in Allogeneic Hematopoietic Cell Transplantation. Frontiers in Immunology, 2021, 12, 703298.	2.2	8
259	High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine <i>N</i> -oxide. Science, 2021, 373, 813-818.	6.0	132
260	Western diet as a trigger of Alzheimer's disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Research Reviews, 2021, 70, 101397.	5.0	130
261	The Mediterranean Diets' effect on Gut Microbial Composition in comparison with the Western Diet: A literature review. Current Nutrition and Food Science, 2021, 17, .	0.3	0
262	Milk Exosomes Transfer Oligosaccharides into Macrophages to Modulate Immunity and Attenuate Adherent-Invasive E. coli (AIEC) Infection. Nutrients, 2021, 13, 3198.	1.7	18
263	Dietary Intake of Total Carbohydrates, Sugar and Sugar-Sweetened Beverages, and Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Frontiers in Nutrition, 2021, 8, 707795.	1.6	16
264	Diet-Induced Alterations in Gut Microbiota Composition and Function. , 2022, , .		1
265	Mouse Models of Intestinal Fibrosis. Methods in Molecular Biology, 2021, 2299, 385-403.	0.4	13
266	The Role of Intestinal Microbiota and Microbial Metabolites in the Development of Host Metabolic Syndrome. Food Chemistry, Function and Analysis, 2020, , 191-209.	0.1	2
269	Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding. JCI Insight, 2020, 5, .	2.3	28
270	A Bayesian model of microbiome data for simultaneous identification of covariate associations and prediction of phenotypic outcomes. Annals of Applied Statistics, 2020, 14, .	0.5	11
271	The Dietary Polysaccharide Maltodextrin Promotes Salmonella Survival and Mucosal Colonization in Mice. PLoS ONE, 2014, 9, e101789.	1.1	56
272	Inflammatory Bowel Diseases and diet: an integrative review. Revista Da Associação Médica Brasileira, 2020, 66, 1449-1454.	0.3	4
273	A meta-analysis of dietary carbohydrate intake and inflammatory bowel disease risk: evidence from 15 epidemiology studies. Revista Espanola De Enfermedades Digestivas, 2018, 111, 5-9.	0.1	3
274	Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Current Pharmaceutical Design, 2020, 26, 2936-2950.	0.9	7
275	Adherent-Invasive E. coli: Update on the Lifestyle of a Troublemaker in Crohn's Disease. International Journal of Molecular Sciences, 2020, 21, 3734.	1.8	57
276	EFFECT OF PROBIOTICS ON ALTERED GUT MICROFLORA IN PATIENTS WITH SEVERE SYSTEMIC INFLAMMATORY RESPONSE SYNDROME. WiadomoÅci Lekarskie, 2019, 72, .	0.1	1

#	Article	IF	CITATIONS
277	Changes of Mouse Gut Microbiota Diversity and Composition by Modulating Dietary Protein and Carbohydrate Contents: A Pilot Study. Preventive Nutrition and Food Science, 2016, 21, 57-61.	0.7	39
278	Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology, 2014, 20, 8751-63.	1.4	23
279	The potential role of phenolic compounds on modulating gut microbiota in obesity. Journal of Food and Drug Analysis, 2020, 28, 195-205.	0.9	10
280	The twin white herrings: Salt and sugar. Indian Journal of Endocrinology and Metabolism, 2018, 22, 542.	0.2	7
281	Importance of nutritional therapy in the management of intestinal diseases: beyond energy and nutrient supply. Intestinal Research, 2019, 17, 443-454.	1.0	8
282	25-hydroxycholesterol: Gatekeeper of intestinal IgA. Immunity, 2021, 54, 2182-2185.	6.6	3
283	Genetics, Immunity and Nutrition Boost the Switching from NASH to HCC. Biomedicines, 2021, 9, 1524.	1.4	10
284	A Novel UC Exclusion Diet and Antibiotics for Treatment of Mild to Moderate Pediatric Ulcerative Colitis: A Prospective Open-Label Pilot Study. Nutrients, 2021, 13, 3736.	1.7	17
285	Probiotic effects of the Bacillus velezensis GY65 strain in the mandarin fish, Siniperca chuatsi. Aquaculture Reports, 2021, 21, 100902.	0.7	10
286	The Role of Diet and Nutrition in Ulcerative Colitis. , 2014, , 405-411.		0
290	Liens entre alimentation, microbiote, MICI : bases physiopathologiques et implications thÃ@rapeutiques. Colon and Rectum, 2020, 14, 80-87.	0.0	0
292	Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166281.	1.8	12
293	The Gut Microbiome Modifies the Association Between a Mediterranean Diet and Diabetes in USA Hispanic/Latino Population. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e924-e934.	1.8	9
294	Nutrition of children with inflammatory bowel disease. Rossiyskiy Vestnik Perinatologii I Pediatrii, 2020, 65, 145-151.	0.1	1
296	Diet and Inflammatory Bowel Disease. Gastroenterology and Hepatology, 2015, 11, 511-20.	0.2	40
297	Ancient Diet: Gut Microbiota, Immunity, and Health. Yale Journal of Biology and Medicine, 2018, 91, 177-184.	0.2	11
298	Association of Adherent-invasive <i>Escherichia coli</i> i> with severe Gut Mucosal dysbiosis in Hong Kong Chinese population with Crohn's disease. Gut Microbes, 2021, 13, 1994833.	4.3	6
299	Psychological stress impairs IL22-driven protective gut mucosal immunity against colonising pathobionts. Nature Communications, 2021, 12, 6664.	5.8	26

#	Article	IF	CITATIONS
300	Long-Term Overconsumption of Fat and Sugar Causes a Partially Reversible Pre-inflammatory Bowel Disease State. Frontiers in Nutrition, 2021, 8, 758518.	1.6	12
301	TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Translational Neurodegeneration, 2021, 10, 47.	3.6	40
302	The gut microbiota can orchestrate the signaling pathways in colorectal cancer. Apmis, 2022, 130, 121-139.	0.9	12
303	Mediterranean diet adherence, gut microbiota, and Alzheimer's or Parkinson's disease risk: A systematic review. Journal of the Neurological Sciences, 2022, 434, 120166.	0.3	42
304	The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients, 2022, 14, 624.	1.7	19
305	Secoisolariciresinol diglucoside ameliorates high fat diet-induced colon inflammation and regulates gut microbiota in mice. Food and Function, 2022, 13, 3009-3022.	2.1	4
306	Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms, 2022, 10, 167.	1.6	35
307	Is Helicobacter pylori Infection Associated with Celiac Disease? A Meta-analysis. , 2022, 33, 205-212.		6
308	Implication of food insecurity on the gut microbiota and its potential relevance to a multiâ€ethnic population in Malaysia. JGH Open, 2022, 6, 112-119.	0.7	4
309	Gut barrier disruption and chronic disease. Trends in Endocrinology and Metabolism, 2022, 33, 247-265.	3.1	153
310	Factors influencing development of the infant microbiota: from prenatal period to early infancy. Clinical and Experimental Pediatrics, 2022, 65, 438-447.	0.9	9
311	Inflammatory bowel disease in children - part 2: treatment and complications. Pediatrie Pro Praxi, 2022, 23, 13-17.	0.1	0
312	The AT1 Receptor Blocker Telmisartan Reduces Intestinal Mucus Thickness in Obese Mice. Frontiers in Pharmacology, 2022, 13, 815353.	1.6	1
313	Nutrition in Spondyloarthritis and Related Immune-Mediated Disorders. Nutrients, 2022, 14, 1278.	1.7	5
314	Interleukin-17 Weakens the NAFLD/NASH Process by Facilitating Intestinal Barrier Restoration Depending on the Gut Microbiota. MBio, 2022, 13, e0368821.	1.8	18
315	Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. Gut, 2022, 71, 2253-2265.	6.1	54
316	Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Advances in Nutrition, 2022, 13, 1628-1651.	2.9	16
317	Chronic Perigestational Exposure to Chlorpyrifos Induces Perturbations in Gut Bacteria and Glucose and Lipid Markers in Female Rats and Their Offspring. Toxics, 2022, 10, 138.	1.6	8

#	Article	IF	Citations
318	Serving Up a Mediterranean Remission in Severe Ulcerative Colitis. Digestive Diseases and Sciences, 2022, 67, 1205-1208.	1.1	0
319	Role of adherent and invasive <i>Escherichia coli</i> in Crohn's disease: lessons from the postoperative recurrence model. Gut, 2023, 72, 39-48.	6.1	22
320	Mucins Dynamics in Physiological and Pathological Conditions. International Journal of Molecular Sciences, 2021, 22, 13642.	1.8	22
321	Characterization and Analysis of the Temporal and Spatial Dynamic of Several Enteritis Modeling Methodologies. Frontiers in Immunology, 2021, 12, 727664.	2.2	3
322	The Pivotal Role of Microbiota in Modulating the Neuronal–Glial–Epithelial Unit. Infection and Drug Resistance, 2021, Volume 14, 5613-5628.	1.1	11
323	Nutritional Therapies and Their Influence on the Intestinal Microbiome in Pediatric Inflammatory Bowel Disease. Nutrients, 2022, 14, 4.	1.7	13
325	Sugars and Gastrointestinal Health. Clinical Gastroenterology and Hepatology, 2022, 20, 1912-1924.e7.	2.4	15
326	Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends in Food Science and Technology, 2021, 118, 905-919.	7.8	13
327	Normal Gastrointestinal Tract Physiology. , 2022, , 3-28.		2
329	Exploring the Effects of Six Weeks of Resistance Training on the Fecal Microbiome of Older Adult Males: Secondary Analysis of a Peanut Protein Supplemented Randomized Controlled Trial. Sports, 2022, 10, 65.	0.7	10
330	Diet in the Pathogenesis and Management of Crohn's Disease. Gastroenterology Clinics of North America, 2022, , .	1.0	2
331	Evaluation of the Effects of a Short Supplementation With Tannins on the Gut Microbiota of Healthy Subjects. Frontiers in Microbiology, 2022, 13, 848611.	1.5	10
332	Secondary Bile Acids and Tumorigenesis in Colorectal Cancer. Frontiers in Oncology, 2022, 12, 813745.	1.3	19
333	Diet as therapeutic intervention in Crohn's disease. Przeglad Gastroenterologiczny, 0, , .	0.3	2
334	Mediterranean-Like Dietary Pattern Associations With Gut Microbiome Composition and Subclinical Gastrointestinal Inflammation. Gastroenterology, 2022, 163, 685-698.	0.6	37
335	Beneficial Effects of Linseed Supplementation on Gut Mucosa-Associated Microbiota in a Physically Active Mouse Model of Crohn's Disease. International Journal of Molecular Sciences, 2022, 23, 5891.	1.8	7
336	The pks island: a bacterial Swiss army knife? Colibactin: beyond DNA damage and cancer. Trends in Microbiology, 2022, 30, 1146-1159.	3.5	9
337	$\hat{l}^2(2\hat{a}\dagger'1)$ chicory and $\hat{l}^2(2\hat{a}\dagger'1)\cdot\hat{l}^2(2\hat{a}\dagger'6)$ agave fructans protect the human intestinal barrier function <i>in a stressor-dependent fashion. Food and Function, 2022, 13, 6737-6748.</i>	i> _{2.1}	8

#	Article	IF	CITATIONS
338	Walnut Meal Extracts Rich In Polyphenols Mitigate Insulin Resistance and Modulate Gut Microbiota in High Fat Diet-Fed Rats. Journal of Medicinal Food, 2022, 25, 618-629.	0.8	2
339	Pathophysiology of Diverticular Disease: From Diverticula Formation to Symptom Generation. International Journal of Molecular Sciences, 2022, 23, 6698.	1.8	15
340	Nutraceuticals for the Treatment of IBD: Current Progress and Future Directions. Frontiers in Nutrition, $0, 9, .$	1.6	10
341	The Gut Microbiome and Ferroptosis in MAFLD. Journal of Clinical and Translational Hepatology, 2022, 000, 000-000.	0.7	5
342	Impact of Nutrition, Microbiota Transplant and Weight Loss Surgery on Dopaminergic Alterations in Parkinson's Disease and Obesity. International Journal of Molecular Sciences, 2022, 23, 7503.	1.8	9
343	Phage Therapy Against Adherent-invasive <i>E. coli</i> : Towards a Promising Treatment of Crohn's Disease Patients?. Journal of Crohn's and Colitis, 2022, 16, 1509-1510.	0.6	5
344	The microbiome and gut homeostasis. Science, 2022, 377, .	6.0	127
345	The metabolic nature of inflammatory bowel diseases. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 753-767.	8.2	76
346	Benefit–Risk Assessment of Dietary Patterns by Bioavailable Metals, Gut Microbes, and Their Interaction for Human Health. Journal of Agricultural and Food Chemistry, 2022, 70, 9769-9778.	2.4	0
347	Human gut bifidobacteria inhibit the growth of the opportunistic fungal pathogen <i>Candida albicans</i> . FEMS Microbiology Ecology, 2022, 98, .	1.3	10
348	High-fat diet aggravates colitis <i>via </i> mesenteric adipose tissue derived exosome metastasis-associated lung adenocarcinoma transcript 1. World Journal of Gastroenterology, 2022, 28, 3838-3853.	1.4	4
349	The association between dietary patterns and the risk of developing ulcerative colitis. Clinical Nutrition ESPEN, 2022, 51, 307-312.	0.5	3
350	Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Frontiers in Immunology, 0, 13, .	2.2	24
351	A modified standard American diet induces physiological parameters associated with metabolic syndrome in C57BL/6J mice. Frontiers in Nutrition, 0, 9, .	1.6	0
352	The contribution of the gut-liver axis to the immune signaling pathway of NAFLD. Frontiers in Immunology, 0, 13 , .	2.2	7
353	Diet-Induced Gut Barrier Dysfunction Is Exacerbated in Mice Lacking Cannabinoid 1 Receptors in the Intestinal Epithelium. International Journal of Molecular Sciences, 2022, 23, 10549.	1.8	5
354	Diet fuelling inflammatory bowel diseases: preclinical and clinical concepts. Gut, 2022, 71, 2574-2586.	6.1	35
355	An adherent-invasive $\langle i \rangle$ Escherichia coli $\langle i \rangle$ -colonized mouse model to evaluate microbiota-targeting strategies in Crohn's disease. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	6

#	Article	IF	CITATIONS
356	Dietary Patterns and Gut Microbiota Changes in Inflammatory Bowel Disease: Current Insights and Future Challenges. Nutrients, 2022, 14, 4003.	1.7	23
357	Epigenetic master regulators HDAC1 and HDAC5 control pathobiont Enterobacteria colonization in ileal mucosa of Crohn's disease patients. Gut Microbes, 2022, 14, .	4.3	5
358	Intestinal Barrier Permeability in Obese Individuals with or without Metabolic Syndrome: A Systematic Review. Nutrients, 2022, 14, 3649.	1.7	8
359	The gut microbiome in health and disease: Inflammatory bowel diseases. Advances in Ecological Research, 2022, , .	1.4	0
360	New insights into the interplay between intestinal flora and bile acids in inflammatory bowel disease. World Journal of Clinical Cases, 0, 10, 10823-10839.	0.3	3
361	Nutrition in Canine and Feline Gastrointestinal Disease. Advances in Small Animal Care, 2022, 3, 109-119.	0.3	0
362	Deficiency of exchange protein directly activated by cAMP (EPAC)-1 in mice augments glucose intolerance, inflammation, and gut dysbiosis associated with Western diet. Microbiome, 2022, 10, .	4.9	1
363	The beneficial effects of Tartary buckwheat (Fagopyrum tataricum Gaertn.) on diet-induced obesity in mice are related to the modulation of gut microbiota composition. Food Science and Human Wellness, 2023, 12, 1323-1330.	2.2	4
364	Lactiplantibacillus plantarum DSM20174 Attenuates the Progression of Non-Alcoholic Fatty Liver Disease by Modulating Gut Microbiota, Improving Metabolic Risk Factors, and Attenuating Adipose Inflammation. Nutrients, 2022, 14, 5212.	1.7	6
365	Assessment of Dietary Adequacy and Quality in a Sample of Patients with Crohn's Disease. Nutrients, 2022, 14, 5254.	1.7	4
367	Urbanisation and its associated factors affecting human gut microbiota: where are we heading to?. Annals of Human Biology, 2023, 50, 137-147.	0.4	0
368	\hat{l}^2 (2 $\hat{a}\dagger$, 1)- \hat{l}^2 (2 $\hat{a}\dagger$, 6) branched graminan-type fructans and \hat{l}^2 (2 $\hat{a}\dagger$, 1) linear fructans impact mucus-related and endoplasmic reticulum stress-related genes in goblet cells and attenuate inflammatory responses in a fructan dependent fashion. Food and Function, 2023, 14, 1338-1348.	2.1	4
369	Current Nutritional Therapies in Inflammatory Bowel Disease: Improving Clinical Remission Rates and Sustainability of Long-Term Dietary Therapies. Nutrients, 2023, 15, 668.	1.7	10
370	The role of the microbiota in myelopoiesis during homeostasis and inflammation. International Immunology, 2023, 35, 267-274.	1.8	1
371	CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes and Cancer, 2023, 14, 12-29.	0.6	2
372	What Should I Eat? Dietary Recommendations for Patients with Inflammatory Bowel Disease. Nutrients, 2023, 15, 896.	1.7	4
373	Radiation and Water Use Efficiencies of Mycorrhizal Inoculated Hemp Under Water-Deficit Stress. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	0
375	Nightshade Vegetables: A Dietary Trigger for Worsening Inflammatory Bowel Disease and Irritable Bowel Syndrome?. Digestive Diseases and Sciences, 2023, 68, 2853-2860.	1.1	1

#	Article	IF	CITATIONS
380	Prebiotics and probiotics and Parkinson's disease., 2023,, 641-673.		0
394	Review article: The complex interplay between diet and <i>Escherichia coli</i> in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2023, 58, 984-1004.	1.9	2
406	Nutritional Modulation of Gut Microbiota Alleviates Metabolic and Neurological Disorders. , 2023, , 97-125.		0
407	Liver and Nutrition., 2024,, 59-66.		0
412	How the Microbiome Affects the Risk for Colon Cancer. , 2023, , 97-115.		0
415	Editorial: Role of carcinoembryonic antigen-related cell adhesion molecules in pathogen responses, tumorigenicity, and immune modulation. Frontiers in Immunology, 0, 15, .	2.2	0