<i>Saccharomyces boulardii</i> Administration Change Hepatic Steatosis, Low - Grade Inflammation, a Diabetic <i>db</i> / <i>db</i> Mice

MBio 5, e01011-14 DOI: 10.1128/mbio.01011-14

Citation Report

#	Article	IF	CITATIONS
1	Entamoeba bangladeshi: An insight. Tropical Parasitology, 2014, 4, 96.	0.2	11
2	Liver Biomarkers and Their Applications to Nutritional Interventions in Animal Studies. Exposure and Health, 2015, , 1-24.	2.8	1
3	Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific Reports, 2015, 5, 16643.	1.6	663
4	The efficacy and safety of probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: study protocol for a randomized, double-blinded, placebo controlled trial of the Probiotics Prevention Diabetes Programme (PPDP). BMC Endocrine Disorders, 2015, 15, 74.	0.9	7
5	Influence of high-fat diet on gut microbiota. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 515-520.	1.3	387
6	Probiotics as Complementary Treatment for Metabolic Disorders. Diabetes and Metabolism Journal, 2015, 39, 291.	1.8	104
7	Dynamic In Vitro Models of the Human Gastrointestinal Tract as Relevant Tools to Assess the Survival of Probiotic Strains and Their Interactions with Gut Microbiota. Microorganisms, 2015, 3, 725-745.	1.6	76
8	Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis – a review. Clinical and Experimental Gastroenterology, 2015, 8, 237.	1.0	89
9	Current evidence on the use of probiotics in liver diseases. Journal of Functional Foods, 2015, 17, 137-151.	1.6	29
10	Effects of supplementing sow diets during two gestations with konjac flour and Saccharomyces boulardii on constipation in peripartal period, lactation feed intake and piglet performance. Animal Feed Science and Technology, 2015, 210, 254-262.	1.1	37
11	Integrated multi-scale strategies to investigate nutritional compounds and their effect on the gut microbiota. Current Opinion in Biotechnology, 2015, 32, 149-155.	3.3	35
12	Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature, 2015, 517, 165-169.	13.7	427
13	Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-Î ³ level in NOD Mice. Gut Microbes, 2015, 6, 101-109.	4.3	122
14	Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia, 2015, 58, 2206-2217.	2.9	220
15	The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiology Reviews, 2015, 39, 567-591.	3.9	362
16	Oral Administration of Saccharomyces boulardii Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis in Rats via Reducing Intestinal Permeability and Modulating Gut Microbial Composition. Inflammation, 2015, 38, 170-179.	1.7	33
17	Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice. Journal of Zhejiang University: Science B, 2015, 16, 487-495.	1.3	32
19	Novel opportunities for next-generation probiotics targeting metabolic syndrome. Current Opinion in Biotechnology 2015 32 21-27	3.3	127

#	Article	IF	CITATIONS
20	Kluyveromyces marxianus and Saccharomyces boulardii Induce Distinct Levels of Dendritic Cell Cytokine Secretion and Significantly Different T Cell Responses In Vitro. PLoS ONE, 2016, 11, e0167410.	1.1	19
21	Influence of Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clinical and Experimental Gastroenterology, 2016, Volume 9, 269-279.	1.0	60
22	Effect of abomasal carbohydrates and live yeast on measures of postruminal fermentation1. Journal of Animal Science, 2016, 94, 284-296.	0.2	8
23	Gut associated bacteria are critical to metabolism, inflammation and health. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 245-249.	1.3	13
24	Probiotics as beneficial agents in the management of diabetes mellitus: a systematic review. Diabetes/Metabolism Research and Reviews, 2016, 32, 143-168.	1.7	68
25	Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Molecular Nutrition and Food Research, 2016, 60, 160-174.	1.5	290
26	The Gut Microbiome and Its Role in Obesity. Nutrition Today, 2016, 51, 167-174.	0.6	261
27	The Gut Microbiota. Gastroenterology Clinics of North America, 2016, 45, 601-614.	1.0	34
28	Physiological regulation of the heat shock response by glutamine: implications for chronic low-grade inflammatory diseases in age-related conditions. Nutrire, 2016, 41, .	0.3	27
29	Lactobacillus plantarum X1 with α-glucosidase inhibitory activity ameliorates type 2 diabetes in mice. RSC Advances, 2016, 6, 63536-63547.	1.7	33
30	Analysis of the effects of microbiome-related confounding factors on the reproducibility of the volatolomic test. Journal of Breath Research, 2016, 10, 037101.	1.5	19
31	Probiotics in prevention and treatment of obesity: a critical view. Nutrition and Metabolism, 2016, 13, 14.	1.3	235
32	Metabolic Engineering of Probiotic Saccharomyces boulardii. Applied and Environmental Microbiology, 2016, 82, 2280-2287.	1.4	68
33	Nutritional modulation of gut microbiota — the impact on metabolic disease pathophysiology. Journal of Nutritional Biochemistry, 2016, 28, 191-200.	1.9	77
34	Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers. Journal of Nutritional Biochemistry, 2017, 44, 35-43.	1.9	128
35	Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury. Scientific Reports, 2017, 7, 1359.	1.6	62
36	Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1801-1812.	1.1	105
37	Nonalcoholic Fatty Liver Disease, the Gut Microbiome, and Diet. Advances in Nutrition, 2017, 8, 240-252.	2.9	125

#	Article	IF	CITATIONS
38	Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain, Behavior, and Immunity, 2017, 64, 33-49.	2.0	85
39	Prospective randomized controlled study on the effects of <i>Saccharomyces boulardii</i> CNCM I-745 and amoxicillin-clavulanate or the combination on the gut microbiota of healthy volunteers. Gut Microbes, 2017, 8, 17-32.	4.3	89
40	High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut. MSphere, 2017, 2, .	1.3	94
41	Lactobacillus casei CCFM419 attenuates type 2 diabetes via a gut microbiota dependent mechanism. Food and Function, 2017, 8, 3155-3164.	2.1	123
42	DBZ is a putative PPARÎ ³ agonist that prevents high fat diet-induced obesity, insulin resistance and gut dysbiosis. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2690-2701.	1.1	51
43	Dual function of <i>Lactobacillus kefiri</i> DH5 in preventing highâ€fatâ€dietâ€induced obesity: direct reduction of cholesterol and upregulation of PPARâ€Î± in adipose tissue. Molecular Nutrition and Food Research, 2017, 61, 1700252.	1.5	94
44	Biotechnological application of yeasts in food science: Starter cultures, probiotics and enzyme production. Journal of Applied Microbiology, 2017, 123, 1360-1372.	1.4	53
45	Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	0.7	36
46	Obesity and microbiota: an example of an intricate relationship. Genes and Nutrition, 2017, 12, 18.	1.2	86
47	Infant fungal communities: current knowledge and research opportunities. BMC Medicine, 2017, 15, 30.	2.3	67
48	Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clinical Microbiology Reviews, 2017, 30, 191-231.	5.7	67
49	Cellular and molecular effects of yeast probiotics on cancer. Critical Reviews in Microbiology, 2017, 43, 96-115.	2.7	51
50	Potential mechanisms linking probiotics to diabetes: a narrative review of the literature. Sao Paulo Medical Journal, 2017, 135, 169-178.	0.4	42
51	Antioxidant Properties of Probiotic Bacteria. Nutrients, 2017, 9, 521.	1.7	547
52	Microbiota of the Gastrointestinal Tract in Infancy. , 2017, , 27-35.		3
53	Microbial Mechanistic Insight into the Role of Inulin in Improving Maternal Health in a Pregnant Sow Model. Frontiers in Microbiology, 2017, 8, 2242.	1.5	46
54	The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones, 2018, 17, 141-151.	0.9	23
55	Microbiota potential for the treatment of sexual dysfunction. Medical Hypotheses, 2018, 115, 46-49.	0.8	12

#	Article	IF	CITATIONS
56	Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. Journal of Food and Drug Analysis, 2018, 26, 1-13.	0.9	101
57	Prebiotic Mannan-Oligosaccharides Augment the Hypoglycemic Effects of Metformin in Correlation with Modulating Gut Microbiota. Journal of Agricultural and Food Chemistry, 2018, 66, 5821-5831.	2.4	84
58	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. Microbiology Spectrum, 2017, 5, .	1.2	28
59	Gut microbiome in gestational diabetes: a crossâ€sectional study of mothers and offspring 5Âyears postpartum. Acta Obstetricia Et Gynecologica Scandinavica, 2018, 97, 38-46.	1.3	51
60	Ecological Therapeutic Opportunities for Oral Diseases. Microbiology Spectrum, 2017, 5, .	1.2	62
61	Multispecies Probiotic Supplementation Favorably Affects Vascular Function and Reduces Arterial Stiffness in Obese Postmenopausal Women—A 12-Week Placebo-Controlled and Randomized Clinical Study. Nutrients, 2018, 10, 1672.	1.7	64
62	Is It Time to Use Probiotics to Prevent or Treat Obesity?. Nutrients, 2018, 10, 1613.	1.7	72
63	Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Frontiers in Physiology, 2018, 9, 1813.	1.3	68
64	A Network of Physiological Interactions Modulating GI Homeostasis: Probiotics, Inflammasome, mTOR. , 2018, , .		0
	,2010,,.		
65	Ecological Therapeutic Opportunities for Oral Diseases. , 2018, , 235-265.		0
65 66			0
	Ecological Therapeutic Opportunities for Oral Diseases. , 2018, , 235-265. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. ,	0.9	
66	Ecological Therapeutic Opportunities for Oral Diseases. , 2018, , 235-265. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. , 2018, , 131-148. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International,	0.9	0
66 67	 Ecological Therapeutic Opportunities for Oral Diseases. , 2018, , 235-265. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. , 2018, , 131-148. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 2018, 1-8. Diammonium Glycyrrhizinate Protects against Nonalcoholic Fatty Liver Disease in Mice through Modulation of Gut Microbiota and Restoration of Intestinal Barrier. Molecular Pharmaceutics, 2018, 		0 500
66 67 68	Ecological Therapeutic Opportunities for Oral Diseases. , 2018, , 235-265. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. , 2018, , 131-148. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 2018, 1-8. Diammonium Glycyrrhizinate Protects against Nonalcoholic Fatty Liver Disease in Mice through Modulation of Gut Microbiota and Restoration of Intestinal Barrier. Molecular Pharmaceutics, 2018, 15, 3860-3870.		0 500 63
66 67 68 69	 Ecological Therapeutic Opportunities for Oral Diseases. , 2018, , 235-265. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. , 2018, , 131-148. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 2018, 1-8. Diammonium Glycyrrhizinate Protects against Nonalcoholic Fatty Liver Disease in Mice through Modulation of Gut Microbiota and Restoration of Intestinal Barrier. Molecular Pharmaceutics, 2018, 15, 3860-3870. Probiotics: Supplements, Food, Pharmaceutical Industry. , 2018, , 15-25. Probiotics for the treatment of depressive symptoms: An anti-inflammatory mechanism?. Brain, 	2.3	0 500 63 20
 66 67 68 69 70 	Ecological Therapeutic Opportunities for Oral Diseases., 2018, , 235-265. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?., 2018, , 131-148. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International, 2018, 2018, 1-8. Diammonium Glycyrrhizinate Protects against Nonalcoholic Fatty Liver Disease in Mice through Modulation of Gut Microbiota and Restoration of Intestinal Barrier. Molecular Pharmaceutics, 2018, 15, 3860-3870. Probiotics: Supplements, Food, Pharmaceutical Industry., 2018, , 15-25. Probiotics for the treatment of depressive symptoms: An anti-inflammatory mechanism?. Brain, Behavior, and Immunity, 2018, 73, 115-124. Influence of Maternal Inulin-Type Prebiotic Intervention on Glucose Metabolism and Gut Microbiota	2.3 2.0	0 500 63 20 90

#	Article	IF	CITATIONS
74	Targeting Gut Microbiota for the Prevention and Management of Diabetes Mellitus by Dietary Natural Products. Foods, 2019, 8, 440.	1.9	68
75	Probiotics: How Effective Are They in the Fight against Obesity?. Nutrients, 2019, 11, 258.	1.7	121
76	Breastmilk and NICU surfaces are potential sources of fungi for infant mycobiomes. Fungal Genetics and Biology, 2019, 128, 29-35.	0.9	27
77	Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine, 2019, 44, 665-674.	2.7	66
78	The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients, 2019, 11, 635.	1.7	254
79	<p>Beneficial effects of Saccharomyces boulardii CNCM I-745 on clinical disorders associated with intestinal barrier disruption</p> . Clinical and Experimental Gastroenterology, 2019, Volume 12, 67-82.	1.0	47
80	The Use of Probiotic Therapy to Modulate the Gut Microbiota and Dendritic Cell Responses in Inflammatory Bowel Diseases. Medical Sciences (Basel, Switzerland), 2019, 7, 33.	1.3	12
81	The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 331-345.	8.2	226
82	Honokiol Ameliorates High-Fat-Diet-Induced Obesity of Different Sexes of Mice by Modulating the Composition of the Gut Microbiota. Frontiers in Immunology, 2019, 10, 2800.	2.2	42
83	Comparison of Japanese and Indian intestinal microbiota shows diet-dependent interaction between bacteria and fungi. Npj Biofilms and Microbiomes, 2019, 5, 37.	2.9	60
84	Periodontitis causes abnormalities in the liver of rats. Journal of Periodontology, 2019, 90, 295-305.	1.7	20
85	Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. Journal of Nutritional Biochemistry, 2019, 66, 63-69.	1.9	47
86	Asperlin Stimulates Energy Expenditure and Modulates Gut Microbiota in HFD-Fed Mice. Marine Drugs, 2019, 17, 38.	2.2	11
87	Administration of Lactobacillus paracasei strains improves immunomodulation and changes the composition of gut microbiota leading to improvement of colitis in mice. Journal of Functional Foods, 2019, 52, 565-575.	1.6	33
88	Using probiotics for type 2 diabetes mellitus intervention: Advances, questions, and potential. Critical Reviews in Food Science and Nutrition, 2020, 60, 670-683.	5.4	67
89	Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genetics and Biology, 2020, 137, 103333.	0.9	84
90	Microbiota and Diabetes Mellitus: Role of Lipid Mediators. Nutrients, 2020, 12, 3039.	1.7	52
91	From Birth and Throughout Life: Fungal Microbiota in Nutrition and Metabolic Health. Annual Review of Nutrition, 2020, 40, 323-343.	4.3	29

#	Article	IF	CITATIONS
92	Mouse Abdominal Fat Depots Reduced by Butyric Acid-Producing Leuconostoc mesenteroides. Microorganisms, 2020, 8, 1180.	1.6	6
93	Manipulation of Dietary Amino Acids Prevents and Reverses Obesity in Mice Through Multiple Mechanisms That Modulate Energy Homeostasis. Diabetes, 2020, 69, 2324-2339.	0.3	25
94	Epigallocatechin Gallate Protects Mice against Methionine–Choline-Deficient-Diet-Induced Nonalcoholic Steatohepatitis by Improving Gut Microbiota To Attenuate Hepatic Injury and Regulate Metabolism. ACS Omega, 2020, 5, 20800-20809.	1.6	33
95	The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 2020, 8, 1715.	1.6	713
96	Multi-strain probiotic ameliorated toxic effects of phthalates and bisphenol A mixture in Wistar rats. Food and Chemical Toxicology, 2020, 143, 111540.	1.8	30
97	Fecal bacteria and metabolite responses to dietary lysozyme in a sow model from late gestation until lactation. Scientific Reports, 2020, 10, 3210.	1.6	13
98	Intake of a Mixture of Sake Cake and Rice Malt Increases Mucin Levels and Changes in Intestinal Microbiota in Mice. Nutrients, 2020, 12, 449.	1.7	11
99	Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats. Journal of Functional Foods, 2020, 69, 103939.	1.6	68
100	The gut mycobiome: a novel player in chronic liver diseases. Journal of Gastroenterology, 2021, 56, 1-11.	2.3	22
101	Probiotics as Live Bio-therapeutics: Prospects and Perspectives. Microorganisms for Sustainability, 2021, , 83-120.	0.4	3
102	Implication of the Gut Microbiota in Metabolic Inflammation Associated with Nutritional Disorders and Obesity. Molecular Nutrition and Food Research, 2021, 65, e1900481.	1.5	8
103	Probiotics: Emerging functional ingredients for healthy aging and age-related diseases. , 2021, , 175-212.		2
104	Bioactive lipids and gut microbiota interact to regulate health and disease. , 2021, , 235-253.		0
105	The beneficial effects of <i>Lactobacillus brevis</i> FZU0713-fermented <i>Laminaria japonica</i> on lipid metabolism and intestinal microbiota in hyperlipidemic rats fed with a high-fat diet. Food and Function, 2021, 12, 7145-7160.	2.1	26
106	Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Frontiers in Immunology, 2021, 12, 578386.	2.2	278
107	Fungi–Bacteria Correlation in Alcoholic Hepatitis Patients. Toxins, 2021, 13, 143.	1.5	12
108	Mitigation of Obesity-Related Systemic Low-Grade Inflammation and Gut Microbial Dysbiosis in Mice with Nanosilver Supplement. ACS Applied Bio Materials, 2021, 4, 2570-2582.	2.3	6
109	Responses of Vaginal Microbiota to Dietary Supplementation with Lysozyme and its Relationship with Rectal Microbiota and Sow Performance from Late Gestation to Early Lactation. Animals, 2021, 11, 593.	1.0	9

#	Article	IF	CITATIONS
110	Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms, 2021, 9, 618.	1.6	80
111	Polysaccharides and glycosides from Aralia echinocaulis protect rats from arthritis by modulating the gut microbiota composition. Journal of Ethnopharmacology, 2021, 269, 113749.	2.0	15
112	Saccharomyces boulardii modulates oxidative stress and renin angiotensin system attenuating diabetes-induced liver injury in mice. Scientific Reports, 2021, 11, 9189.	1.6	11
113	The beneficial effects of the composite probiotics from camel milk on glucose and lipid metabolism, liver and renal function and gut microbiota in db/db mice. BMC Complementary Medicine and Therapies, 2021, 21, 127.	1.2	14
114	Next Generation Probiotics for Neutralizing Obesogenic Effects: Taxa Culturing Searching Strategies. Nutrients, 2021, 13, 1617.	1.7	20
115	Probiotic Yeasts and Vibrio anguillarum Infection Modify the Microbiome of Zebrafish Larvae. Frontiers in Microbiology, 2021, 12, 647977.	1.5	13
116	Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends in Food Science and Technology, 2021, 112, 764-779.	7.8	8
117	Effects of 60-Day Saccharomyces boulardii and Superoxide Dismutase Supplementation on Body Composition, Hunger Sensation, Pro/Antioxidant Ratio, Inflammation and Hormonal Lipo-Metabolic Biomarkers in Obese Adults: A Double-Blind, Placebo-Controlled Trial. Nutrients, 2021, 13, 2512.	1.7	11
118	Saccharomyces boulardii Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Regulating NF-κB and Nrf2 Signaling Pathways. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	1.9	15
119	Metabolic Host–Microbiota Interactions in Autophagy and the Pathogenesis of Inflammatory Bowel Disease (IBD). Pharmaceuticals, 2021, 14, 708.	1.7	12
120	Effects of Differences in Resistant Starch Content of Rice on Intestinal Microbial Composition. Journal of Agricultural and Food Chemistry, 2021, 69, 8017-8027.	2.4	21
121	Seaweed Dietary Fiber Sodium Alginate Suppresses the Migration of Colonic Inflammatory Monocytes and Diet-Induced Metabolic Syndrome via the Gut Microbiota. Nutrients, 2021, 13, 2812.	1.7	13
122	Terminal RFLP and Quantitative PCR Analysis to Determine the Poultry Microbiota and Gene Expression Changes While Using Probiotic Strains. Smart Innovation, Systems and Technologies, 2022, , 91-102.	0.5	1
123	Prevention and treatment strategies for type 2 diabetes based on regulating intestinal flora. BioScience Trends, 2021, 15, 313-320.	1.1	5
124	Liver Biomarkers and Their Applications to Nutritional Interventions in Animal Studies. Biomarkers in Disease, 2017, , 129-152.	0.0	2
125	Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System. PLoS ONE, 2016, 11, e0153351.	1.1	67
126	Influence of the Intestinal Microbiota on Diabetes Management. Current Pharmaceutical Biotechnology, 2020, 21, 1603-1615.	0.9	8
127	Contribution of Host Signaling and Virome to the Mycobiome. Fungal Genomics & Biology, 2016, 6, .	0.4	1

#	Article	IF	CITATIONS
128	The Role of Intestinal Fungi and Its Metabolites in Chronic Liver Diseases. Gut and Liver, 2020, 14, 291-296.	1.4	7
129	Alterations in Faecal Metagenomics and Serum Metabolomics Indicate Management Strategies for Patients With Budd-Chiari Syndrome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 730091.	1.8	1
130	Prospective. Springer Briefs in Molecular Science, 2015, , 109-126.	0.1	0
132	Probiotics as an Alternative Food Therapy. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 97-127.	0.3	0
133	Metataxonomic and Metabolic Impact of Fecal Microbiota Transplantation From Patients With Pancreatic Cancer Into Germ-Free Mice: A Pilot Study. Frontiers in Cellular and Infection Microbiology, 2021, 11, 752889.	1.8	6
134	Potential of Probiotics in the Management of Lung Cancer. , 2021, , 211-230.		1
135	Probiotics and Disease: A Comprehensive Summary-Part 3, Cardiometabolic Disease and Fatigue Syndromes. Integrative Medicine, 2017, 16, 30-41.	0.1	1
136	Yeast Beta-Glucans Ingestion Does Not Influence Body Weight: A Systematic Review and Meta-Analysis of Pre-Clinical Studies. Nutrients, 2021, 13, 4250.	1.7	1
137	Influence of Three Probiotics Strains, Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745 on the Biochemical and Haematological Profiles and Body Weight of Healthy Rabbits. Biology, 2021, 10, 1194.	1.3	4
138	Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Frontiers in Pharmacology, 2021, 12, 740636.	1.6	57
139	Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Frontiers in Nutrition, 2021, 8, 634897.	1.6	50
140	Effects of Saccharomyces cerevisiae var. boulardii CNCM I-1079 on performance, colostrum and milk composition, and litter performance of mixed-parity sows in a tropical humid climate. Tropical Animal Health and Production, 2022, 54, 41.	0.5	3
142	<i>Saccharomyces Boulardii</i> Tht 500101 Exerts Renoprotection by Modulating Oxidative Stress, Renin Angiotensin System and Uropathogenic Microbiota in a Murine Model of Diabetes. SSRN Electronic Journal, 0, , .	0.4	0
143	Therapeutic potential of Saccharomyces boulardii in liver diseases: from passive bystander to protective performer?. Pharmacological Research, 2022, 175, 106022.	3.1	8
145	Probiotics as an Alternative Food Therapy. , 2022, , 543-565.		0
146	Effects of Bacillus subtilis BS-Z15 on Intestinal Microbiota Structure and Body Weight Gain in Mice. Probiotics and Antimicrobial Proteins, 2023, 15, 706-715.	1.9	7
147	Roles for the mycobiome in liver disease. Liver International, 2022, 42, 729-741.	1.9	16
148	The Gut Mycobiome and Animal Health. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 85-125.	0.2	4

#	Article	IF	CITATIONS
149	Probiotics and obesity associated disease: an extended view beyond traditional strains. Minerva Gastroenterology, 2022, 67, 348-356.	0.3	15
150	The impact of Saccharomyces boulardii adjuvant supplementation on alternation of gut microbiota after H. pylori eradication; a metagenomics analysis. Gene Reports, 2022, 26, 101499.	0.4	2
151	Dissection and enhancement of prebiotic properties of yeast cell wall oligosaccharides through metabolic engineering. Biomaterials, 2022, 282, 121379.	5.7	7
152	Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgraduate Medical Journal, 2023, 99, 384-402.	0.9	11
153	The Role of Gut Bacteria and Fungi in Alcohol-Associated Liver Disease. Frontiers in Medicine, 2022, 9, 840752.	1.2	18
155	Effects of Exogenous Hydrogen Sulfide on Diabetic Metabolic Disorders in db/db Mice Are Associated With Gut Bacterial and Fungal Microbiota. Frontiers in Cellular and Infection Microbiology, 2022, 12, 801331.	1.8	1
156	Extraction, isolation, structural characterization and prebiotic activity of cell wall polysaccharide from Kluyveromyces marxianus. Carbohydrate Polymers, 2022, 289, 119457.	5.1	23
157	Research on the Probiotic Yeast <i>Saccharomyces cerevisiae</i> var. Boulardii-03 Derived from Traditional Nuruk. Journal of the Korean Society of Food Science and Nutrition, 2021, 50, 1392-1398.	0.2	1
158	Correlation between gut microbiota diversity and psychogenic erectile dysfunction. Translational Andrology and Urology, 2021, 10, 4412-4421.	0.6	7
161	<i>Lactobacillus reuteri</i> J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice. Food and Function, 2022, 13, 6688-6701.	2.1	31
162	Animal Models Used for Studying the Benefits of Probiotics in Metabolic Disorders. , 2022, , 261-275.		1
163	Bee bread and gut microbiota. , 2022, , 315-345.		2
165	Saccharomyces cerevisiae I4 Showed Alleviating Effects on Dextran Sulfate Sodium-Induced Colitis of Balb/c Mice. Foods, 2022, 11, 1436.	1.9	5
166	Effects of broad-spectrum antibiotics on the colonisation of probiotic yeast Saccharomyces boulardii in the murine gastrointestinal tract. Scientific Reports, 2022, 12, .	1.6	16
167	Gut microbial community differentially characterizes patients with nonalcoholic fatty liver disease. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 1822-1832.	1.4	2
168	Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Critical Reviews in Food Science and Nutrition, 2023, 63, 9961-9976.	5.4	11
169	Saccharomyces Boulardii Ameliorates Non-alcoholic Steatohepatitis in Mice Induced by a Methionine-Choline-Deficient Diet Through Gut-Liver Axis. Frontiers in Microbiology, 0, 13, .	1.5	3
170	Fat Absorption, Metabolism, and Global Regulation. Food Chemistry, Function and Analysis, 2022, , 68-85.	0.1	0

#	Article	IF	CITATIONS
171	The Probiotic Effects of the <i>Saccharomyces cerevisiae</i> 28-7 Strain Isolated from Nuruk in a DSS-Induced Colitis Mouse Model. Journal of Microbiology and Biotechnology, 2022, 32, 877-884.	0.9	7
172	Importance of Dendrobium officinale in improving the adverse effects of high-fat diet on mice associated with intestinal contents microbiota. Frontiers in Nutrition, 0, 9, .	1.6	21
173	Age-Related NAFLD: The Use of Probiotics as a Supportive Therapeutic Intervention. Cells, 2022, 11, 2827.	1.8	14
174	Gut Microbiota Interventions for the Management of Obesity: A Literature Review. Cureus, 2022, , .	0.2	2
175	Superior Conjugative Plasmids Delivered by Bacteria to Diverse Fungi. Biodesign Research, 2022, 2022, .	0.8	6
176	Strain engineering and metabolic flux analysis of a probiotic yeast Saccharomyces boulardii for metabolizing l-fucose, a mammalian mucin component. Microbial Cell Factories, 2022, 21, .	1.9	4
177	Application Potential of Probiotics in Acute Myocardial Infarction. Cardiovascular Innovations and Applications, 2022, 7, .	0.1	1
178	Comparative Analysis of Mannans Extraction Processes from Spent Yeast Saccharomyces cerevisiae. Foods, 2022, 11, 3753.	1.9	7
180	Fungal infections and the fungal microbiome in hepatobiliary disorders. Journal of Hepatology, 2023, 78, 836-851.	1.8	8
181	Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. International Journal of Molecular Sciences, 2023, 24, 1166.	1.8	9
182	Microbiome and Obesity. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 101-131.	0.6	0
183	Current trends and future perspectives of probiotics on human health: an overview. , 2023, , 81-122.		0
184	Probiotic Administration for the Prevention and Treatment of Gastrointestinal, Metabolic and Neurological Disorders. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 219-250.	0.6	0
185	The Role of Next-Generation Probiotics in Obesity and Obesity-Associated Disorders: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences, 2023, 24, 6755.	1.8	14
186	Maturational patterns of the infant gut mycobiome are associated with early-life body mass index. Cell Reports Medicine, 2023, 4, 100928.	3.3	4
187	Adiposity is associated with expansion of the genus Dialister in rheumatoid arthritis patients. Biomedicine and Pharmacotherapy, 2023, 160, 114388.	2.5	4
188	Gut microbiota modulation via short-term administration of potential probiotic kefir yeast Kluyveromyces marxianus A4 and A5 in BALB/c mice. Food Science and Biotechnology, 2023, 32, 589-598.	1.2	1
189	Surface display of pancreatic lipase inhibitor peptides by engineered Saccharomyces boulardii: Potential as an anti-obesity probiotic. Journal of Functional Foods, 2023, 102, 105458.	1.6	4

#	Article	IF	CITATIONS
190	Non-pharmacological management options for MAFLD: a practical guide. Therapeutic Advances in Endocrinology and Metabolism, 2023, 14, 204201882311603.	1.4	4
191	The Role of Yeasts in Human Health: A Review. Life, 2023, 13, 924.	1.1	3
192	Effects of the probiotic Lactiplantibacillus plantarum IMC 510® on body composition, biochemical parameters, gut microbiota composition and function, and clinical symptoms of overweight/obese subjects. Frontiers in Nutrition, 0, 10, .	1.6	2
213	Microbial underdogs: exploring the significance of low-abundance commensals in host-microbe interactions. Experimental and Molecular Medicine, 2023, 55, 2498-2507.	3.2	О