MicroRNA profiling of novel African American and Caucreveals a reciprocal regulatory relationship of<i>miR-15

Oncotarget 5, 3512-3525

-, - - - - - - - -

DOI: 10.18632/oncotarget.1953

Citation Report

#	Article	IF	CITATIONS
1	Expression and clinical significance of microRNA-152 in supragalottic laryngeal carcinoma. Tumor Biology, 2014, 35, 11075-11079.	0.8	11
2	Novel RNA Markers in Prostate Cancer: Functional Considerations and Clinical Translation. BioMed Research International, 2014, 2014, 1-12.	0.9	12
3	An integrated genome-wide approach to discover deregulated microRNAs in non-small cell lung cancer: Clinical significance of miR-23b-3p deregulation. Scientific Reports, 2015, 5, 13236.	1.6	32
4	Micro <scp>RNA</scp> â€410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life, 2015, 67, 42-53.	1.5	55
5	Role of MicroRNAs in Prostate Cancer Pathogenesis. Clinical Genitourinary Cancer, 2015, 13, 261-270.	0.9	37
6	Epigenetic and miRNAs Dysregulation in Prostate Cancer: The role of Nutraceuticals. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16, 1385-1402.	0.9	20
7	Evaluation of Plasma miR-21 and miR-152 as Diagnostic Biomarkers for Common Types of Human Cancers. Journal of Cancer, 2016, 7, 490-499.	1.2	68
8	Prostate Cancer in African American Men: The Effect of Androgens and microRNAs on Epidermal Growth Factor Signaling. Hormones and Cancer, 2016, 7, 296-304.	4.9	5
9	A functional microRNA library screen reveals miR-410 as a novel anti-apoptotic regulator of cholangiocarcinoma. BMC Cancer, 2016, 16, 353.	1.1	29
10	miR-152 as a tumor suppressor microRNA: Target recognition and regulation in cancer. Oncology Letters, 2016, 11, 3911-3916.	0.8	61
11	Epigenetic basis of cancer health disparities: Looking beyond genetic differences. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 16-28.	3.3	45
12	Regulation of UDP-Glucuronosyltransferases UGT2B4 and UGT2B7 by MicroRNAs in Liver Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 386-397.	1.3	23
13	Clinical significance of miRNA host gene promoter methylation in prostate cancer. Human Molecular Genetics, 2017, 26, 2451-2461.	1.4	43
14	Recent scenario of microRNA as diagnostic and prognostic biomarkers of prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 92-101.	0.8	35
15	Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. Journal of Biochemical and Molecular Toxicology, 2017, 31, e21933.	1.4	80
16	MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Letters, 2017, 407, 9-20.	3.2	114
17	Comparative Transcriptome Profiling Reveals Coding and Noncoding RNA Differences in NSCLC from African Americans and European Americans. Clinical Cancer Research, 2017, 23, 7412-7425.	3.2	83
18	Resveratrol and pterostilbene as a microRNAâ€mediated chemopreventive and therapeutic strategy in prostate cancer. Annals of the New York Academy of Sciences, 2017, 1403, 15-26.	1.8	44

#	ARTICLE	IF	CITATIONS
19	Proteomic characterization of paired non-malignant and malignant African-American prostate epithelial cell lines distinguishes them by structural proteins. BMC Cancer, 2017, 17, 480.	1.1	6
20	Racial health disparities in ovarian cancer: not just black and white. Journal of Ovarian Research, 2017, 10, 58.	1.3	30
21	miRNAs as drivers of TMPRSS2-ERG negative prostate tumors in African American men. Frontiers in Bioscience - Landmark, 2017, 22, 212-229.	3.0	14
22	Racial disparities disruptive genes in prostate carcinogenesis. Frontiers in Bioscience - Scholar, 2017, 9, 244-253.	0.8	8
23	Racial disparities in prostate cancer a molecular perspective. Frontiers in Bioscience - Landmark, 2017, 22, 772-782.	3.0	87
24	MicroRNAâ€guided gene expression in prostate cancer: Literature and database overview. Journal of Gene Medicine, 2018, 20, e3016.	1.4	19
25	A multiplatform approach identifies miR-152-3p as a common epigenetically regulated onco-suppressor in prostate cancer targeting TMEM97. Clinical Epigenetics, 2018, 10, 40.	1.8	39
26	A Plasma Biomarker Panel of Four MicroRNAs for the Diagnosis of Prostate Cancer. Scientific Reports, 2018, 8, 6653.	1.6	62
27	Lung cancer health disparities. Carcinogenesis, 2018, 39, 741-751.	1.3	66
28	The potential of microRNAs as human prostate cancer biomarkers: A metaâ€analysis of related studies. Journal of Cellular Biochemistry, 2018, 119, 2763-2786.	1.2	78
29	Identification of tumor suppressive role of microRNA-132 and its target gene in tumorigenesis of prostate cancer. International Journal of Molecular Medicine, 2018, 41, 2429-2433.	1.8	19
30	MiR-152 functioning as a tumor suppressor that interacts with DNMT1 in nasopharyngeal carcinoma. OncoTargets and Therapy, 2018, Volume 11, 1733-1741.	1.0	16
31	Biomarker microRNAs for prostate cancer metastasis: screened with a network vulnerability analysis model. Journal of Translational Medicine, 2018, 16, 134.	1.8	41
32	MicroRNAs as Diagnostic, Prognostic, and Therapeutic Biomarkers in Prostate Cancer. Critical Reviews in Eukaryotic Gene Expression, 2019, 29, 127-139.	0.4	66
34	Assessment of miR-98-5p, miR-152-3p, miR-326 and miR-4289 Expression as Biomarker for Prostate Cancer Diagnosis. International Journal of Molecular Sciences, 2019, 20, 1154.	1.8	51
35	Epigenetics of Prostate Cancer and Novel Chemopreventive and Therapeutic Approaches. , 2019, , 287-308.		1
36	Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Reports, 2021, 4, e1340.	0.6	13
37	The role of HOTAIR/miR-152-3p/LIN28B in regulating the progression of endometrial squamous carcinoma. Archives of Medical Science, 2021, 17, 434-448.	0.4	8

#	Article	IF	CITATIONS
38	Semen sampling as a simple, noninvasive surrogate for prostate health screening. Systems Biology in Reproductive Medicine, 2021, 67, 354-365.	1.0	3
39	The Pursuit of Health Equity and Equality in Urologic Oncology: Where We Have Been and Where We Are Going. European Urology Focus, 2021, 7, 929-936.	1.6	1
40	miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncology Letters, 2021, 22, 805.	0.8	18
41	Role of Alternative Splicing in Prostate Cancer Aggressiveness and Drug Resistance in African Americans. Advances in Experimental Medicine and Biology, 2019, 1164, 119-139.	0.8	14
42	Kaiso, a transcriptional repressor, promotes cell migration and invasion of prostate cancer cells through regulation of miR-31 expression. Oncotarget, 2016, 7, 5677-5689.	0.8	44
45	Molecular mechanisms involving prostate cancer racial disparity. American Journal of Clinical and Experimental Urology, 2017, 5, 34-48.	0.4	18
47	Pathogen-Induced Epigenetic Modifications in Cancers: Implications for Prevention, Detection and Treatment of Cancers in Africa. Cancers, 2021, 13, 6051.	1.7	8
48	Differential expression of microRNA between triple negative breast cancer patients of African American and European American descent. Biotechnic and Histochemistry, 2022, 97, 1-10.	0.7	2
49	MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. British Journal of Cancer, 2022, 126, 502-513.	2.9	28
50	Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities. International Journal of Molecular Sciences, 2022, 23, 628.	1.8	7
51	Identification and Characterization of Key Differentially Expressed Genes Associated With Metronomic Dosing of Topotecan in Human Prostate Cancer. Frontiers in Pharmacology, 2021, 12, 736951.	1.6	8
52	m <i>ir152</i> hypomethylation as a mechanism for non-syndromic cleft lip and palate. Epigenetics, 2022, 17, 2278-2295.	1.3	2
53	Molecular Insight into Drug Resistance Mechanism Conferred by Aberrant PIK3CD Splice Variant in African American Prostate Cancer. Cancers, 2023, 15, 1337.	1.7	2
54	Investigating miR-9 as a mediator in laryngeal cancer health disparities. Frontiers in Oncology, 0, 13, .	1.3	1
58	Translational Efforts in Precision Medicine to Address Disparities. , 2023, , 49-66.		0