Datura innoxiaâ€" a potential commercial source of sco Economic Botany 2, 436-454 DOI: 10.1007/bf02859498 Citation Report | # | Article | IF | CITATIONS | |----|--|------|-----------| | 1 | Alkaloids of Datura innoxia. Nature, 1953, 171, 656-656. | 27.8 | 5 | | 2 | Role of Ascorbic Acid Oxidase in the Hyoscyamine—Scopolamine Ratio in Datura innoxia. Journal of Pharmaceutical Sciences, 1966, 55, 1354-1357. | 3.3 | 4 | | 3 | Duboisia myoporoides: The Medical Career of a Native Australian Plant. Historical Records of Australian Science, 2006, 17, 31. | 0.6 | 26 | | 4 | A note on the alkaloidal content of Datura innoxia Miller. Journal of Pharmacy and Pharmacology, 2011, 17, 115-117. | 2.4 | 10 | | 5 | The Structure of the Flower of $\langle i \rangle$ Datura Innoxia $\langle i \rangle$ Miller. Journal of Pharmacy and Pharmacology, 2011, 4, 471-478. | 2.4 | 2 | | 6 | Potential for using Datura alba leaf extracts against two major stored grain pests, the khapra beetle
Trogoderma granarium and the rice weevil Sitophillus oryzae. Journal of Pest Science, 2012, 85,
359-366. | 3.7 | 58 | | 7 | Comparative demographic analysis of sub-lethal effects of Calotropis proceraextract and some insecticides on Bemisia tabaci (Genn.). Archives of Phytopathology and Plant Protection, 2014, 47, 2464-2478. | 1.3 | 4 | | 8 | Absorbed Residue Evidence for Prehistoric <i>Datura</i> Use in the American Southeast and Western Mexico. Advances in Archaeological Practice, 2018, 6, 312-327. | 1.2 | 6 | | 9 | Molecular cloning and functional analysis of hyoscyamine $6\hat{1}^2$ -hydroxylase (H6H) in the poisonous and medicinal plant Datura innoxia mill. Plant Physiology and Biochemistry, 2020, 153, 11-19. | 5.8 | 14 | | 10 | Alkaloids of the Genus Datura: Review of a Rich Resource for Natural Product Discovery. Molecules, 2021, 26, 2629. | 3.8 | 26 |