Rare Earth Elements: Overview of Mining, Mineralogy, Environmental Impact

Resources

3, 614-635

DOI: 10.3390/resources3040614

Citation Report

#	Article	IF	CITATIONS
1	Radiological Impacts and Regulation of Rare Earth Elements in Non-Nuclear Energy Production. Energies, 2015, 8, 2066-2081.	1.6	39
2	Separation of uranium and thorium from rare earths for rare earth production – A review. Minerals Engineering, 2015, 77, 185-196.	1.8	210
3	Environmental Impacts of Rare Earth Mining and Separation Based on Eudialyte: A New European Way. Resources, 2016, 5, 32.	1.6	50
4	Remote Sensing Exploration of Nb-Ta-LREE-Enriched Carbonatite (Epembe/Namibia). Remote Sensing, 2016, 8, 620.	1.8	33
6	Life Cycle Analysis for Solvent Extraction of Rare Earth Elements from Aqueous Solutions. , 2016, , 113-120.		8
7	Life Cycle Assessment of Rare Earth Production from Monazite. , 2016, , 83-88.		6
9	Microfluidic solvent extraction of rare earth elements from a mixed oxide concentrate leach solution using Cyanex® 572. Chemical Engineering Science, 2016, 148, 212-218.	1.9	77
11	Export Restraints of Natural Resources and the SCM Agreement. Economics, Law, and Institutions in Asia Pacific, 2016, , 321-341.	0.4	O
14	Effects of Rare Earth Chlorides on Properties of Al ₂ O ₃ -MgO Castables. Materials Science Forum, 0, 848, 283-288.	0.3	3
15	Natural Thorium Resources and Recovery: Options and Impacts. Nuclear Technology, 2016, 194, 136-151.	0.7	20
16	Design of PM-Free AC Machine-Based Actuators for Elevated-Temperature Environments. IEEE Transactions on Industry Applications, 2016, 52, 2241-2252.	3.3	2
17	Mixed micelle-mediated extraction approach for matrix elimination and separation of some rare earth elements. Microchemical Journal, 2016, 127, 125-132.	2.3	23
18	Rare earth element extraction from pretreated bastn \tilde{A} is the insupercritical carbon dioxide. Journal of Supercritical Fluids, 2017, 124, 20-29.	1.6	32
19	Application of ferrous pyrometallurgy to the beneficiation of rare earth bearing iron ores $\hat{a} \in A$ review. Minerals Engineering, 2017, 110, 20-30.	1.8	39
20	Isostructural crystal hydrates of rare-earth metal oxalates at high pressure: from strain anisotropy to dehydration. Zeitschrift Fur Kristallographie - Crystalline Materials, 2017, 232, 751-757.	0.4	11
21	Biokinetics of yttrium and comparison with its geochemical twin holmium. Journal of Radiological Protection, 2017, 37, 434-449.	0.6	5
22	Praseodymium sorption on Laminaria digitata algal beads and foams. Journal of Colloid and Interface Science, 2017, 504, 780-789.	5.0	20
23	Process optimization and kinetics for leaching of cerium, lanthanum and neodymium elements from iron ore waste's apatite by nitric acid. Transactions of Nonferrous Metals Society of China, 2017, 27, 420-428.	1.7	24

#	Article	IF	Citations
24	The role of rare earth prices in renewable energy consumption: The actual driver for a renewable energy world. Energy Economics, 2017, 62, 33-42.	5.6	52
25	X-ray crystallographic, luminescence and NMR studies of phenacyldiphenylphosphine oxide with the Ln(<scp>iii</scp>) ions Sm, Eu, Gd, Tb and Dy. Dalton Transactions, 2017, 46, 15458-15469.	1.6	16
26	Investigation into coal-based magnetizing roasting of an iron-rich rare earth ore and the associated mineralogical transformations. Minerals Engineering, 2017, 114, 37-49.	1.8	30
27	Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production. Environmental Science & Environmental Scienc	4.6	11
28	Potential of visible and near-infrared reflectance spectroscopy for the determination of rare earth elements in soil. Geoderma, 2017, 306, 120-126.	2.3	17
29	The evolution of mineral processing in extraction of rare earth elements using solid-liquid extraction: A review. Minerals Engineering, 2017, 112, 103-113.	1.8	77
30	Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction. Journal of Environmental Management, 2017, 203, 255-263.	3.8	69
31	Small Y Addition Effects on Hot Deformation Behavior of Copperâ€Matrix Alloys. Advanced Engineering Materials, 2017, 19, 1700197.	1.6	13
32	Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources. Resources, Conservation and Recycling, 2017, 125, 208-217.	5.3	79
33	Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review. Environmental Science and Pollution Research, 2017, 24, 22764-22789.	2.7	110
34	From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environment International, 2017, 98, 35-45.	4.8	305
35	Twentyâ€eightâ€day repeated inhalation toxicity study of nanoâ€sized lanthanum oxide in male spragueâ€dawley rats. Environmental Toxicology, 2017, 32, 1226-1240.	2.1	15
36	Changes in the Concentration of Some Rare Earth Elements in Coal Waste. Archives of Mining Sciences, 2017, 62, 495-507.	0.6	5
37	Adsorption of Scandium and Neodymium on Biochar Derived after Low-Temperature Pyrolysis of Sawdust. Minerals (Basel, Switzerland), 2017, 7, 200.	0.8	19
38	Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila. Materials, 2017, 10, 754.	1.3	54
39	Significantly Enhancing the Ignition/Compression/Damping Response of Monolithic Magnesium by Addition of Sm2O3 Nanoparticles. Metals, 2017, 7, 357.	1.0	52
40	On the Extraction of Rare Earth Elements from Geothermal Brines. Resources, 2017, 6, 39.	1.6	32
41	Sources of Extraterrestrial Rare Earth Elements: To the Moon and Beyond. Resources, 2017, 6, 40.	1.6	32

#	Article	IF	Citations
42	Geochemistry of Monazite within Carbonatite Related REE Deposits. Resources, 2017, 6, 51.	1.6	40
43	Governance and Risk–Value Constructions in Closing Loops of Rare Earth Elements in Global Value Chains. Resources, 2017, 6, 59.	1.6	13
44	Separation of Yttrium from Aqueous Solution Using Ionic Imprinted Polymers. Russian Journal of Non-Ferrous Metals, 2017, 58, 614-624.	0.2	13
45	Mapping the Product Life Cycle: Rare Earth Elements in Electronics. Case Studies in the Environment, 2017, 1, 1-9.	0.4	10
46	Trends in Raw Materials Usage in the Production of Infrastructure and Engineering Devices. , 2017, , 463-476.		1
47	Twenty-Eight-Day Repeated Inhalation Toxicity Study of Nano-Sized Neodymium Oxide in Male Sprague-Dawley Rats. Toxicological Research, 2017, 33, 239-253.	1.1	33
48	Coal and coal byproducts: A large and developable unconventional resource for critical materials – Rare earth elements. Journal of Rare Earths, 2018, 36, 337-338.	2.5	30
49	The role of water in extraction and separation of rare earth elements in supercritical carbon dioxide. Journal of Supercritical Fluids, 2018, 136, 180-188.	1.6	13
50	DTPA-Functionalized Silica Nano- and Microparticles for Adsorption and Chromatographic Separation of Rare Earth Elements. ACS Sustainable Chemistry and Engineering, 2018, 6, 6889-6900.	3.2	49
51	Bioleaching of metals from WEEE shredding dust. Journal of Environmental Management, 2018, 210, 180-190.	3.8	89
52	A framework and decision support tool for improving value chain resilience to critical materials in manufacturing. Production and Manufacturing Research, 2018, 6, 126-148.	0.9	7
53	Recovery of Platinum Group Metals Out of Automotive Catalytic Converters Scrap: A Review on Australian Trends and Challenges. Minerals, Metals and Materials Series, 2018, , 149-161.	0.3	4
54	Comparison of dysprosium production from different resources by life cycle assessment. Resources, Conservation and Recycling, 2018, 130, 248-259.	5.3	23
55	Addressing Criticality in Rare Earth Elements via Permanent Magnets Recycling. Jom, 2018, 70, 115-123.	0.9	27
56	Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 2018, 636, 299-313.	3.9	440
57	Chromate replacement: what does the future hold?. Npj Materials Degradation, 2018, 2, .	2.6	158
58	Techno-economic analysis of supercritical extraction of rare earth elements from coal ash. Journal of Cleaner Production, 2018, 189, 539-551.	4.6	70
59	Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets. Scripta Materialia, 2018, 151, 6-13.	2.6	101

#	Article	IF	Citations
60	The evolution of mineral processing in extraction of rare earth elements using liquid-liquid extraction: A review. Minerals Engineering, 2018, 121, 146-157.	1.8	110
61	Comparative Life Cycle Assessment of NdFeB Permanent Magnet Production from Different Rare Earth Deposits. ACS Sustainable Chemistry and Engineering, 2018, 6, 5858-5867.	3.2	53
62	Modeling operation and inventory for rare earth permanent magnet recovery under supply and demand uncertainties. Journal of Manufacturing Systems, 2018, 46, 59-66.	7.6	4
63	Sustainability of rare earth elements chain: from production to food – a review. International Journal of Environmental Health Research, 2018, 28, 23-42.	1.3	40
64	Has the question of e-waste opened a Pandora's box? An overview of unpredictable issues and challenges. Environment International, 2018, 110, 173-192.	4.8	166
65	REE Redistribution Textures in Altered Fluorapatite: Symplectites, Veins, and Phosphate-Silicate-Carbonate Assemblages from the Nolans Bore P-REE-Th Deposit, Northern Territory, Australia. Canadian Mineralogist, 2018, 56, 331-354.	0.3	35
66	Pre-processing of coal combustion fly ash by classification for enrichment of rare earth elements. Energy Reports, 2018, 4, 660-663.	2.5	38
67	Assessing the environmental footprint of the production of rare earth metals and alloys via molten salt electrolysis. Resources, Conservation and Recycling, 2018, 139, 178-187.	5. 3	22
68	Electrical Conductivity and Optical Properties of Pulsed Laser Deposited LaNi5 Nanoscale Films. Materials, 2018, 11, 1475.	1.3	2
69	Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon. Minerals (Basel, Switzerland), 2018, 8, 455.	0.8	7
70	Material bottlenecks in the future development of green technologies. Renewable and Sustainable Energy Reviews, 2018, 93, 178-200.	8.2	202
71	Key parameters controlling the development of constant-pattern isotachic trains of two rare earth elements in ligand-assisted displacement chromatography. Journal of Chromatography A, 2018, 1563, 47-61.	1.8	6
72	Reprint of Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets. Scripta Materialia, 2018, 154, 277-283.	2.6	18
73	Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements. Journal Physics D: Applied Physics, 2018, 51, 203001.	1.3	105
74	Enhanced amination and adsorption performance of functional copolymer synthesized via RAFT-mediated radiation grafting in emulsion. Journal of Polymer Research, 2018, 25, 1.	1.2	4
75	Life-Cycle environmental impact assessment of mineral industries. IOP Conference Series: Materials Science and Engineering, 2018, 351, 012016.	0.3	21
76	Study on the Properties of Waste Apatite Phosphogypsum as a Raw Material of Prospective Applications. Waste and Biomass Valorization, 2019, 10, 3143-3155.	1.8	35
77	Mixed-Valence Ce-BPyDC Metal–Organic Framework with Dual Enzyme-like Activities for Colorimetric Biosensing. Inorganic Chemistry, 2019, 58, 11382-11388.	1.9	89

#	Article	IF	CITATIONS
78	Electrochemically synthesized \hat{I}^3 -Fe2O3 nanoparticles as peptide carriers and sensitive and reproducible SERS biosensors. Comparison of adsorption on \hat{I}^3 -Fe2O3 versus Fe. Applied Surface Science, 2019, 495, 143578.	3.1	16
79	Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade. Minerals (Basel, Switzerland), 2019, 9, 422.	0.8	11
80	Efficiency of Aliquat 336 for hydrometallurgical separation of Sm (III) and Co (II) from nitrate medium. Minerals Engineering, 2019, 139, 105872.	1.8	22
81	Rare earth elements in fine fraction (<20†μm) of the Vistula River sediments. Chemosphere, 2019, 237, 124442.	4.2	6
82	A global life cycle assessment of manganese mining processes based on EcoInvent database. Science of the Total Environment, 2019, 688, 1102-1111.	3.9	30
83	Anaerobic reduction of europium by a Clostridium strain as a strategy for rare earth biorecovery. Scientific Reports, 2019, 9, 14339.	1.6	16
84	The Occurrence and Concentration of Rare Earth Elements in Acid Mine Drainage and Treatment Byproducts. Part 2: Regional Survey of Northern and Central Appalachian Coal Basins. Mining, Metallurgy and Exploration, 2019, 36, 917-929.	0.4	14
85	Material-energy-water-carbon nexus in China's electricity generation system up to 2050. Energy, 2019, 189, 116355.	4.5	43
86	Microbe Encapsulation for Selective Rare-Earth Recovery from Electronic Waste Leachates. Environmental Science & Environmental	4.6	45
87	Mineral processing simulation based-environmental life cycle assessment for rare earth project development: A case study on the Songwe Hill project. Journal of Environmental Management, 2019, 249, 109353.	3.8	20
88	Worker Safety in the Rare Earth Elements Recycling Process From the Review of Toxicity and Issues. Safety and Health at Work, 2019, 10, 409-419.	0.3	46
89	Surface properties of rare-earth metals and the effects of their substitutional doping on work function of the $W(110)$ surface. EPJ Applied Physics, 2019, 87, 11301.	0.3	0
90	Direct Deoxidation of Ti by Mg in MgCl ₂ –HoCl ₃ Flux. Materials Transactions, 2019, 60, 2059-2068.	0.4	29
91	Life Cycle Inventory (LCI) Approach Used for Rare Earth Elements (REEs) from Monazite Material, Considering Uncertainty., 2019,,.		0
92	Electrochemical Deoxidation of Titanium Scrap in MgCl ₂ -HoCl ₃ System. Journal of the Electrochemical Society, 2019, 166, E429-E437.	1.3	28
93	Effect of glycine on bioleaching of rare earth elements from Western Australian monazite by heterotrophic and autotrophic microorganisms. Hydrometallurgy, 2019, 189, 105137.	1.8	22
94	Large-Scale Production of Compound Bubbles Using Parallelized Microfluidics for Efficient Extraction of Metal Ions. Lab on A Chip, 2019, 19, 665-673.	3.1	12
95	Integrated treatment of tailing material for the selective recovery of uranium, rare earth elements and heavy metals. Minerals Engineering, 2019, 133, 138-148.	1.8	31

#	ARTICLE	IF	CITATIONS
96	Characterisation of a ferruginous rare earth bearing lateritic ore and implications for rare earth mineral processing. Minerals Engineering, 2019, 134, 23-36.	1.8	16
97	Composition, paragenesis, and alteration of the chevkinite group of minerals. American Mineralogist, 2019, 104, 348-369.	0.9	13
98	Recovery of Rare Earth Elements by Carbon-Based Nanomaterials—A Review. Nanomaterials, 2019, 9, 814.	1.9	87
99	The sulfuric acid bake and leach route for processing of rare earth ores and concentrates: A review. Hydrometallurgy, 2019, 188, 123-139.	1.8	69
100	The evaluation of critical rare earth element (REE) enriched treatment solids from coal mine drainage passive treatment systems. International Journal of Coal Geology, 2019, 208, 54-64.	1.9	38
101	Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 2019, 127, 785-800.	4.8	159
102	Terbium Ion Adsorption from Aqueous Solution by Using Magnetic Î ³ Fe2O3-NH4OH@SiO2 Nanoparticles Functionalized with Amino Groups. Materials, 2019, 12, 1294.	1.3	6
103	Temporally explicit life cycle assessment as an environmental performance decision making tool in rare earth project development. Minerals Engineering, 2019, 135, 64-73.	1.8	22
104	Recovery of rare earth elements minerals from iron oxide–silicate rich tailings – Part 1: Magnetic separation. Minerals Engineering, 2019, 136, 50-61.	1.8	39
105	The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave. Journal of Power Sources, 2019, 423, 380-403.	4.0	31
106	Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 2019, 10, 1285-1303.	4.3	938
107	A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution, 2019, 247, 1110-1124.	3.7	276
108	Human exposures to rare earth elements: Present knowledge and research prospects. Environmental Research, 2019, 171, 493-500.	3.7	107
109	Recovery of forest carbon density and carbon storage in a soil-degraded landscape in southeastern China. European Journal of Forest Research, 2019, 138, 397-413.	1.1	3
110	A review on the recovery and separation of rare earths and transition metals from secondary resources. Journal of Cleaner Production, 2019, 220, 884-898.	4.6	171
111	Synthesis of Dihexyldithiophosphate Ligand and a Preliminary Study on Its Use for the Extraction of Gadolinium from Rare Earth Elements Mixture. Key Engineering Materials, 2019, 829, 270-275.	0.4	1
112	Extraction of light, medium and heavy rare-earth elements using synergist extractants developed from ionic liquid and conventional extractants. Comptes Rendus Chimie, 2019, 22, 728-744.	0.2	12
113	Characterization of the interaction of rare earth elements with P507 in a microfluidic extraction system using spectroscopic analysis. Chemical Engineering Journal, 2019, 356, 453-460.	6.6	50

#	Article	IF	CITATIONS
114	Oxidative precipitation of cerium in acidic chloride solutions: part I – Fundamentals and thermodynamics. Hydrometallurgy, 2019, 184, 140-150.	1.8	11
115	A study of the feasibility of upgrading rare earth elements minerals from iron-oxide-silicate rich tailings using Knelson concentrator and Wilfley shaking table. Powder Technology, 2019, 344, 897-913.	2.1	29
116	Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium. Chemosphere, 2019, 220, 286-299.	4.2	66
117	Applying and advancing the economic resource scarcity potential (ESP) method for rare earth elements. Resources Policy, 2019, 62, 472-481.	4.2	26
118	Treatment of phosphoric acid sludge for rare earths recovery II: effect of sonication and flocculant solution temperature on settling rate. Separation Science and Technology, 2019, 54, 1842-1852.	1.3	10
119	Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries– A resource overview. Resources Policy, 2019, 60, 9-22.	4.2	53
120	Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review. Journal of Molecular Liquids, 2019, 274, 148-164.	2.3	125
121	Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. Applied Microbiology and Biotechnology, 2019, 103, 1043-1057.	1.7	73
122	Reflectance spectroscopy and geochemical analysis of rare earth element-bearing tailings: A case study of two abandoned tin mine sites in Bangka Island, Indonesia. International Journal of Applied Earth Observation and Geoinformation, 2019, 74, 239-247.	1.4	7
123	Separation and purification of scandium: From industry to medicine. Separation and Purification Reviews, 2019, 48, 65-77.	2.8	30
124	Green Mining of Rare Earth Elements (REE) to Diminish Greenhouse Gas (GHG) Footprint. , 2020, , 513-525.		2
125	Adsorption of rare earth metals from wastewater by nanomaterials: A review. Journal of Hazardous Materials, 2020, 386, 121632.	6.5	180
126	Rare earth elements of fly ash from Wyoming's Powder River Basin coal. Journal of Rare Earths, 2020, 38, 219-226.	2.5	33
127	Not merely noxious? Time-dependent hormesis and differential toxic effects systematically induced by rare earth elements in Escherichia coli. Environmental Science and Pollution Research, 2020, 27, 5640-5649.	2.7	17
128	Scandium extraction from silicates by hydrometallurgical process at normal pressure and temperature. Journal of Materials Research and Technology, 2020, 9, 709-717.	2.6	14
129	Emission enhancement of bifunctional La2MoO6:Sm3+ nanoparticles by doping Y3+ ions for flexible display and high CRI WLEDs. Journal of Alloys and Compounds, 2020, 820, 153162.	2.8	38
130	Phytic acid/silica organic-inorganic hybrid sol system: a novel and durable flame retardant approach for wool fabric. Journal of Materials Research and Technology, 2020, 9, 700-708.	2.6	19
131	Cathodoluminescence properties of La2MoO6:Ln3+ (Ln: Eu, Dy, and Sm) phosphors. Applied Radiation and Isotopes, 2020, 166, 109434.	0.7	16

#	Article	IF	CITATIONS
132	Critical metal recovery potential of Appalachian acid mine drainage treatment solids. International Journal of Coal Geology, 2020, 231, 103610.	1.9	26
133	Quantification of anthropogenic and geogenic Ce in sewage sludge based on Ce oxidation state and rare earth element patterns. Water Research X, 2020, 9, 100059.	2.8	9
134	Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chemical Society Reviews, 2020, 49, 8315-8334.	18.7	34
135	Separation of thorium, uranium, and rare earths from a strip solution generated from coarse coal refuse. Hydrometallurgy, 2020, 197, 105446.	1.8	14
136	Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning. Energy Policy, 2020, 144, 111677.	4.2	39
137	English Wetlands. , 2020, , .		3
138	Association of prenatal exposure to rare earth elements with newborn mitochondrial DNA content: Results from a birth cohort study. Environment International, 2020, 143, 105863.	4.8	10
139	Dissolved rare earth elements estimation of ion-absorption rare earth ores using reflectance spectroscopy in south Jiangxi province, China. Journal of Rare Earths, 2021, 39, 1300-1310.	2.5	6
140	Identification of Multiple Rare Earths and Other Associated Elements in Zircon by Laser-Induced Breakdown Spectroscopy. Journal of the Bangladesh Academy of Sciences, 2020, 44, 59-68.	0.1	4
141	An environmentally friendly route for beneficiation of rare earth-bearing minerals by Pickering emulsification: adjusting the interfacial and formulation parameters. Green Chemistry, 2020, 22, 5771-5784.	4.6	2
142	Library of UV-Visible Absorption Spectra of Rare Earth Orthophosphates, LnPO4 (Ln = La-Lu, except Pm). Crystals, 2020, 10, 593.	1.0	7
143	The efficient separation of thorium from rare earth using oxamic acid in hydrochloric acid medium. Separation and Purification Technology, 2020, 251, 117358.	3.9	7
144	Rare Earth Elements Occurrence and Economical Recovery Strategy from Shale Gas Wastewater in the Sichuan Basin, China. ACS Sustainable Chemistry and Engineering, 2020, 8, 11914-11920.	3.2	40
145	Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Science of the Total Environment, 2020, 749, 141438.	3.9	59
146	The dephosphorization behaviour of Malaysian Monazite concentrates. AIP Conference Proceedings, 2020, , .	0.3	2
147	Layered double hydroxides (LDHs) as functional materials for the corrosion protection of aluminum alloys: A review. Applied Materials Today, 2020, 21, 100857.	2.3	65
148	Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs. Review of International Political Economy, 2022, 29, 696-718.	3.2	58
149	Finite Element Modeling for the Antivibration Pavement Used to Improve the Slope Stability of the Open-Pit Mine. Shock and Vibration, 2020, 2020, 1-11.	0.3	12

#	Article	IF	CITATIONS
150	Experimental investigation of the phase relations in the SiO2-Dy2O3-CaO ternary system. Ceramics International, 2020, 46, 23534-23543.	2.3	3
151	An Overview of MnAl Permanent Magnets with a Study on Their Potential in Electrical Machines. Energies, 2020, 13, 5549.	1.6	18
152	Hewers of wood and drawers of water 2.0: how American and Chinese economic nationalism influence Canadian trade policy in the twenty-first century. Canadian Foreign Policy Journal, 2020, 26, 167-181.	0.3	5
153	Solvent-free ageing reactions of rare earth element oxides: from geomimetic synthesis of new metal–organic materials towards a simple, environmentally friendly separation of scandium. Green Chemistry, 2020, 22, 4364-4375.	4.6	8
154	Environmental impacts of scandium oxide production from rare earths tailings of Bayan Obo Mine. Journal of Cleaner Production, 2020, 270, 122464.	4.6	25
155	Detection of rare-earth elements using fiddler crabs Leptuca leptodactyla (Crustacea: Ocypodidae) as bioindicators in mangroves on the coast of São Paulo, Brazil. Science of the Total Environment, 2020, 738, 139787.	3.9	7
156	Bioaugmentation coupled with phytoextraction for the treatment of Cd and Sr, and reuse opportunities for phosphogypsum rare earth elements. Journal of Hazardous Materials, 2020, 399, 122821.	6.5	9
157	The use of pH–potential diagrams in practical applications. , 2020, , 127-178.		0
158	Life cycle losses of critical raw materials from solar and wind energy technologies and their role in the future material availability. Resources, Conservation and Recycling, 2020, 161, 104916.	5. 3	12
159	Removal and potential recovery of rare earth elements from mine water. Journal of Industrial and Engineering Chemistry, 2020, 89, 47-57.	2.9	70
160	Separation and recovery of rare earths by in situ selective electrochemical oxidation and extraction from spent fluid catalytic cracking (FCC) catalysts. Hydrometallurgy, 2020, 194, 105300.	1.8	16
161	Distribution Kinetics of Rare Earth Elements in Copper Smelting. Sustainability, 2020, 12, 208.	1.6	8
162	Schiff base and Lewis acid-base interaction-regulated aggregation/dispersion of gold nanoparticles for colorimetric recognition of rare-earth Sc3+ ions. Sensors and Actuators B: Chemical, 2020, 311, 127925.	4.0	14
163	Two Beta-Phosphorylamide Compounds as Ligands for Sm3+, Eu3+, and Tb3+: X-ray Crystallography and Luminescence Properties. Molecules, 2020, 25, 2971.	1.7	1
164	Applications of Bacillus subtilis Spores in Biotechnology and Advanced Materials. Applied and Environmental Microbiology, 2020, 86, .	1.4	41
165	Recovery of light rare earth elements by leaching and extraction from phosphate mining waste (Fluorapatite and Carbonate-Fluorapatite). Journal of African Earth Sciences, 2020, 171, 103937.	0.9	8
166	An ultrasoundâ€assisted sample preparation method of carbonatite rock for determination of rare earth elements by inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8732.	0.7	7
167	Comparative Life Cycle Assessment of Neodymium Oxide Electrolysis in Molten Salt. Advanced Engineering Materials, 2020, 22, 1901206.	1.6	9

#	Article	IF	CITATIONS
168	Platinum Mine Workers' Exposure to Dust Particles Emitted at Mine Waste Rock Crusher Plants in Limpopo, South Africa. International Journal of Environmental Research and Public Health, 2020, 17, 655.	1.2	7
169	Life cycle environmental impact assessment of biomass materials in Japan. Journal of Cleaner Production, 2020, 257, 120388.	4.6	5
170	The electrifying effects of carbon-CeO2 interfaces in (electro)catalysis. Materials Today Advances, 2020, 6, 100050.	2.5	12
171	Tunable White-Light Emission of Co2+ and Mn2+ Co-Doped ZnS Nanoparticles by Energy Transfer between Dopant lons. Journal of Physical Chemistry C, 2020, 124, 3857-3866.	1.5	20
172	The tin ore separation process and optimizing the rare earth mineral (monazite) as a by-product of tin mining in East Belitung Regency. IOP Conference Series: Earth and Environmental Science, 2020, 413, 012004.	0.2	2
173	Chemical and Mineralogical Characterization of Malaysian Monazite Concentrate. Mining, Metallurgy and Exploration, 2020, 37, 415-431.	0.4	8
174	Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications. Energy, 2020, 202, 117697.	4.5	24
175	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	4.6	177
176	The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 2020, 122, 103521.	1.1	266
177	Comparing the optical properties and thermal stability of green (TbPO4), yellow (DyPO4), and red (PrPO4) emitting single crystal samples. Physical Chemistry Chemical Physics, 2020, 22, 10247-10255.	1.3	3
178	Biological leaching of rare earth elements. World Journal of Microbiology and Biotechnology, 2020, 36, 61.	1.7	16
179	Deoxidation of Ti using Ho in HoCl3 flux and determination of thermodynamic data of HoOCl. Journal of Alloys and Compounds, 2021, 863, 156047.	2.8	13
180	A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters. Critical Reviews in Environmental Science and Technology, 2021, 51, 378-427.	6.6	84
181	Alimentary exposure and elimination routes of rare earth elements (REE) in marine mammals from the Baltic Sea and Antarctic coast. Science of the Total Environment, 2021, 754, 141947.	3.9	12
182	Association between prenatal rare earth elements exposure and premature rupture of membranes: Results from a birth cohort study. Environmental Research, 2021, 193, 110534.	3.7	18
183	Revisiting two piezoelectric salts within an eco-design paradigm for sensors and actuators applications. Sensors and Actuators A: Physical, 2021, 318, 112483.	2.0	4
184	Cerium uptake, translocation and toxicity in the salt marsh halophyte Halimione portulacoides (L.), Aellen. Chemosphere, 2021, 266, 128973.	4.2	8
185	Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. Journal of Geochemical Exploration, 2021, 221, 106699.	1.5	80

#	Article	IF	CITATIONS
186	The Role of Cycle Life on the Environmental Impact of Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂ based Solid tate Batteries. Advanced Sustainable Systems, 2021, 5, 2000241.	2.7	17
187	Experimental Determination of Phase Equilibria in the REM2O3-SiO2 (REM = Y/Yb/La) Systems at Elevated Temperature. Jom, 2021, 73, 63-71.	0.9	1
188	Reaction Pathways toward the Formation of Bastnäte: Replacement of Calcite by Rare Earth Carbonates. Crystal Growth and Design, 2021, 21, 512-527.	1.4	15
189	Tuning the photoactivity of TiO ₂ nanoarchitectures doped with cerium or neodymium and application to colour removal from wastewaters. Environmental Technology (United Kingdom), 2021, 42, 1038-1052.	1.2	9
190	Extraction and derivative spectrophotometric assay of Sm(III), Pr(III) and Nd(III) from REEs monazite concentrate. International Journal of Environmental Analytical Chemistry, 2021, 101, 849-868.	1.8	3
191	Investigation on Extraction and Recovery of Rare Earth Elements from Coal Combustion Products. , 2021, , 311-337.		O
192	Development of a 3D printer–scanner hybrid from e-waste. International Journal of Environmental Science and Technology, 2022, 19, 1447-1456.	1.8	1
193	Does Renewable Energy Exist? Fossil Fuel+ Technologies and the Search for Renewable Energy. , 2021, , 83-102.		18
194	Recovering rare earth elements from contaminated soils: Critical overview of current remediation technologies. Chemosphere, 2021, 265, 129163.	4.2	37
195	Colonization and bioweathering of monazite by <i>Aspergillus niger</i> solubilization and precipitation of rare earth elements. Environmental Microbiology, 2021, 23, 3970-3986.	1.8	18
196	Exploring the Presence of Five Rare Earth Elements in Vineyard Soils on Different Lithologies: Campo de Calatrava, Spain. Agronomy, 2021, 11, 458.	1.3	4
197	Sustainable Battery Materials for Nextâ€Generation Electrical Energy Storage. Advanced Energy and Sustainability Research, 2021, 2, 2000102.	2.8	52
198	Extraction mechanism and separation behaviors of low-concentration Nd3+ and Al3+ in P507–H2SO4 system. Journal of Rare Earths, 2022, 40, 952-957.	2.5	8
199	Hydrometallurgical recycling strategies for recovery of rare earth elements from consumer electronic scraps: a review. Journal of Chemical Technology and Biotechnology, 2021, 96, 1785-1797.	1.6	41
200	Review of the Liquid Metal Extraction Process for the Recovery of Nd and Dy from Permanent Magnets. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 1213-1227.	1.0	6
201	Line-Start Permanent-Magnet Synchronous Motor versus Induction Motor: Technical, Environmental and Economical Considerations. , 2021, , .		4
202	Progress, Challenges, and Perspectives of Bioleaching for Recovering Heavy Metals from Mine Tailings. Adsorption Science and Technology, 2021, 2021, 1-13.	1.5	20
203	Quantification of individual Rare Earth Elements from industrial sources in sewage sludge. Water Research X, 2021, 11, 100092.	2.8	23

#	Article	IF	CITATIONS
204	Extraction of Rare Earths from Red Mud Iron Nugget Slags with Oxalic Acid Precipitation. Mineral Processing and Extractive Metallurgy Review, 2022, 43, 656-663.	2.6	18
205	Recovery of valuable materials from phosphorus slag using nitric acid leaching followed by precipitation method. Resources, Conservation and Recycling, 2021, 169, 105547.	5.3	11
206	The Role of Microorganisms in Mobilization and Phytoextraction of Rare Earth Elements: A Review. Frontiers in Environmental Science, 2021, 9, .	1.5	22
207	Introduction to the special Issue, insights on carbonatites and their mineral exploration approach: A challenge towards resourcing critical metals. Ore Geology Reviews, 2021, 133, 104073.	1.1	11
208	Sources of lanthanides in soils and estimation of their hazards. Geochemistry: Exploration, Environment, Analysis, 2021, 21, geochem2021-024.	0.5	2
209	Birincil ve İkincil Mineral Kaynaklarından Nadir Toprak Elementlerinin Fiziksel ve Fizikokimyasal YĶntemlerle Üretim Proseslerinin İncelenmesi. International Journal of Pure and Applied Sciences, 2021, 7, 276-287.	0.3	1
210	Comprehensive characterization of secondary sources originating from Turkey in terms of rare earth elements and scandium. Science of the Total Environment, 2021, 777, 146033.	3.9	9
211	A Review on the effects of PVD RF sputtering parameters on rare earth oxide thin films and their applications. IOP Conference Series: Materials Science and Engineering, 2021, 1166, 012022.	0.3	2
212	Rare Earth Magnet Recycling and Materialization for a Circular Economyâ€"A Korean Perspective. Applied Sciences (Switzerland), 2021, 11, 6739.	1.3	5
213	Effect of the dose on the toxicokinetics of a quaternary mixture of rare earth elements administered to rats. Toxicology Letters, 2021, 345, 46-53.	0.4	7
214	A cleaner recovery of rare earth bearing minerals by Pickering emulsification: Improvement of processing conditions toward an economic operation. Journal of Environmental Chemical Engineering, 2021, 9, 105449.	3.3	2
215	Solving multifunctionality in the carbon footprint assessment of primary metals production: Comparison of different approaches. Minerals Engineering, 2021, 170, 107053.	1.8	3
216	The Behaviour of Rare Earth Elements from South African Coal Fly Ash during Enrichment Processes: Wet, Magnetic Separation and Zeolitisation. Minerals (Basel, Switzerland), 2021, 11, 950.	0.8	11
217	Superadsorbent Fe3O4-coated carbon black nanocomposite for separation of light rare earth elements from aqueous solution: GMDH-based Neural Network and sensitivity analysis. Journal of Hazardous Materials, 2021, 416, 125655.	6.5	22
218	Evaluation of the Chelex-DGT technique for the measurement of rare earth elements in the porewater of estuarine and marine sediments. Talanta, 2021, 230, 122315.	2.9	5
219	Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE). Environmental Science and Pollution Research, 2022, 29, 7772-7781.	2.7	10
220	Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources, 2021, 10, 93.	1.6	71
221	Will climate changes enhance the impacts of e-waste in aquatic systems?. Chemosphere, 2022, 288, 132264.	4.2	12

#	ARTICLE	IF	CITATIONS
222	Investigating extraterrestrial bodies as a source of critical minerals for renewable energy technology. Acta Astronautica, 2021, 186, 74-86.	1.7	10
223	Place-based education and extractive industries: Lessons from post-graduate courses in Canada and Fennoscandia. The Extractive Industries and Society, 2022, 12, 100989.	0.7	1
224	The selective adsorption of rare earth elements by modified coal fly ash based SBA-15. Chinese Journal of Chemical Engineering, 2022, 47, 155-164.	1.7	20
225	The potential environmental risks associated with the development of rare earth element production in Canada. Environmental Reviews, 2021, 29, 354-377.	2.1	36
226	Fabrication of CeO2/CuO bimetallic oxides thin film heterostructure for tunable UV filter applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 24011-24025.	1.1	3
227	Optimization of Nd(III) removal from water by Ulva sp. and Gracilaria sp. through Response Surface Methodology. Journal of Environmental Chemical Engineering, 2021, 9, 105946.	3.3	12
228	Elemental fingerprints in natural nanomaterials determined using SP-ICP-TOF-MS and clustering analysis. Science of the Total Environment, 2021, 792, 148426.	3.9	25
229	Rare earth elements study of Cretaceous coals from Benue Trough basin, Nigeria: Modes of occurrence for greater sustainability of mining. Fuel, 2021, 304, 121468.	3.4	8
230	Magnetic hybrid nanoparticles modified with morin for the removal of Sc(III) from aqueous solutions. Microchemical Journal, 2021, 170, 106683.	2.3	0
231	Trace elements in the muscle, ova and seminal fluid of key clupeid representatives from the Gdansk Bay (South Baltic Sea) and Iberian Peninsula (North-East Atlantic). Journal of Trace Elements in Medicine and Biology, 2021, 68, 126803.	1.5	5
232	Life cycle Assessment of Ilmenite and Rutile Production in Australia., 2021,, 61-83.		1
233	Innovative Reactors for Recovery of Rare Earth Elements (REEs). Minerals, Metals and Materials Series, 2021, , 129-138.	0.3	0
234	Projection Microstereolithographic Microbial Bioprinting for Engineered Biofilms. Nano Letters, 2021, 21, 1352-1359.	4.5	33
235	Design as Regulation. IFIP Advances in Information and Communication Technology, 2016, , 32-54.	0.5	4
236	Smart Scheduling of a Batch Manufacturer's Operations by Utilization of a Genetic Algorithm to Minimize Electrical Demand. Smart and Sustainable Manufacturing Systems, 2019, 3, 20190018.	0.3	3
237	Liquid-liquid extraction of cerium using synergist extractant. Journal of Mechanical Engineering and Sciences, 2018, 12, 3302-3312.	0.3	4
238	RARE EARTH ELEMENT (REE) RESOURCES OF TURKEY: AN OVERVIEW OF THEIR FORMATION TYPES. Bulletin of the Mineral Research and Exploration, 2019, , 60-80.	0.5	3
239	Trends and Implications of International Standardization for Rare Earths. Journal of Korean Powder Metallurgy Institute, 2018, 25, 165-169.	0.2	2

#	Article	IF	CITATIONS
240	Monitoring and Analysis of Dynamic Response for Open-Pit Mine with Inside Inclined Shafts under Train Loading. Metals, 2021, 11, 1681.	1.0	1
241	BAZA SUROWCOWA METALI NIEŻELAZNYCH NA TLE EWOLUCJI RYNKU W OSTATNIM STULECIU. Rudy I Metale Niezelazne, 2015, 1, 16-29.	0.0	0
242	Evaluation of Rare Earths viewed from the Occupational Health. Han-guk Saneop Bogeon Hakoeji, 2016, 26, 237-252.	0.1	0
243	Microprobe Mapping of Rare Earth Element Distribution in Round Top Yttrofluorite Deposit. Advances in Materials Physics and Chemistry, 2018, 08, 15-31.	0.3	3
244	In-situ Observation of the Precipitation Behavior of a Dy2O3 Containing Slag System. Minerals, Metals and Materials Series, 2018, , 323-328.	0.3	0
245	TÜRKİYE'NİN NADİR TOPRAK ELEMENT (NTE) KAYNAKLARI: OLUÅžUM TİPLERİNE GENEL BİR BAKIÅ Research and Exploration, 0, , 1-28.	Åž Journal 0.1	of Minera
246	The Management and Potential Risk Reductionin the Processing of Rare Earths Elements. System Safety Human - Technical Facility - Environment, 2019, 1, 77-84.	0.2	1
247	Electrochemical Deoxidation of Titanium in Molten MgCl2-HoCl3. MATEC Web of Conferences, 2020, 321, 07006.	0.1	0
248	Wetlands and Humans Across Time: An Overview. , 2020, , 1-29.		0
249	Flotation Researches of Bastnaesite, Monazite, Xenotime: A Review. Journal of the Korean Society of Mineral and Energy Resources Engineers, 2020, 57, 652-670.	0.1	0
250	Nadir toprak elementlerinin birincil ve ikincil kaynaklardan üretimi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.0	2
251	Effect of Co concentration and temperature on the energy transfer process between Mn2+ and Co2+ ions in Zn0.99-xMn0.01CoxTe nanocrystals. Journal of Luminescence, 2022, 241, 118533.	1.5	2
252	Sources and Health Risks of Rare Earth Elements in Waters. Environmental Chemistry for A Sustainable World, 2021, , 1-36.	0.3	5
253	Nano Silica application for inducing rice resistance and the possibility for Ytterbium Rare Earth Elements green mining. IOP Conference Series: Earth and Environmental Science, 2021, 905, 012132.	0.2	0
254	High Dispersion of CeO2 on CeO2/MgO Prepared under Dry Conditions and Its Improved Redox Properties. Energies, 2021, 14, 7922.	1.6	4
255	Ce-exchange capacity of zeolite L in different cationic forms: a structural investigation. Journal of Applied Crystallography, 2021, 54, 1766-1774.	1.9	5
256	Separation of cerium from mixed rare earth in the rare earth hydroxide concentrates by calcination and leaching using hydrochloric acid. AIP Conference Proceedings, 2021, , .	0.3	0
257	Phytoextraction and recovery of rare earth elements using willow (Salix spp.). Science of the Total Environment, 2022, 809, 152209.	3.9	15

#	Article	IF	CITATIONS
258	A Zero-Waste Process for the Extraction of Highly Pure Nanoporous Silica Particles from Phosphorus Slag. Jom, 2022, 74, 1002-1011.	0.9	2
259	Impact of Ion–Ion Correlations on the Adsorption of M(III) (M = Am, Eu, Y) onto Muscovite (001) in the Presence of Sulfate. Journal of Physical Chemistry C, 2022, 126, 1400-1410.	1.5	3
260	Solubilization of struvite and biorecovery of cerium by Aspergillus niger. Applied Microbiology and Biotechnology, 2022, 106, 821-833.	1.7	4
261	Dry reforming reactions of CH4 over CeO2/MgO catalysts at high concentrations of H2S, and behavior of CO2 at the CeO2-MgO interface. Journal of Catalysis, 2022, 407, 29-43.	3.1	13
262	Advances in the Fate of Rare Earth Elements, REE, in Transitional Environments: Coasts and Estuaries. Water (Switzerland), 2022, 14, 401.	1.2	20
263	Thermodynamic Rarity Assessment of Mobile Phone PCBs: A Physical Criticality Indicator in Times of Shortage. Entropy, 2022, 24, 100.	1.1	2
264	Optimization and modeling of solid-phase extraction of rare earth elements with chert using design methodology. Microchemical Journal, 2022, 176, 107182.	2.3	3
265	Rare earth elements and radionuclides. , 2022, , 309-329.		2
266	Integrative Study Assessing Space and Time Variations with Emphasis on Rare Earth Element (REE) Distribution and Their Potential on Ashes from Commercial (Colombian) Coal. Minerals (Basel,) Tj ETQq0 0 0 rgB	T / 0xe rloc	k 1 / 0 Tf 50 411
267	Strategies and options for the sustainable recovery of rare earth elements from electrical and electronic waste. Chemical Engineering Journal, 2022, 442, 135992.	6.6	50
267 268	Strategies and options for the sustainable recovery of rare earth elements from electrical and electronic waste. Chemical Engineering Journal, 2022, 442, 135992. Radiation exposure in a region with natural high background radiation originated from rare earth element deposits at Bat Xat district, Vietnam. Radiation and Environmental Biophysics, 2022, 61, 309-324.	0.6	50 7
	electronic waste. Chemical Engineering Journal, 2022, 442, 135992. Radiation exposure in a region with natural high background radiation originated from rare earth		
268	Radiation exposure in a region with natural high background radiation originated from rare earth element deposits at Bat Xat district, Vietnam. Radiation and Environmental Biophysics, 2022, 61, 309-324. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La3+, Nd3+, Sm3+, Gd3+).	0.6	7
268 270	Radiation exposure in a region with natural high background radiation originated from rare earth element deposits at Bat Xat district, Vietnam. Radiation and Environmental Biophysics, 2022, 61, 309-324. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La3+, Nd3+, Sm3+, Gd3+). Molecules, 2022, 27, 1959. Magnetic Properties of Tetragonal SmFe _{12â^'<i>x</i>} Mo _{<i>x</i>} Alloys in Bulk	0.6	7
268 270 271	electronic waste. Chemical Engineering Journal, 2ó22, 442, 135992. Radiation exposure in a region with natural high background radiation originated from rare earth element deposits at Bat Xat district, Vietnam. Radiation and Environmental Biophysics, 2022, 61, 309-324. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La3+, Nd3+, Sm3+, Gd3+). Molecules, 2022, 27, 1959. Magnetic Properties of Tetragonal SmFe _{12â⁻¹⟨i>x√ sub>Mo⟨sub⟩⟨i>x√ sub> Alloys in Bulk and Meltâ€pun Ribbons. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, . Lanthanum and Gadolinium availability in aquatic mediums: New insights to ecotoxicology and}	0.6 1.7 0.8	7 3 1
268 270 271 272	Radiation exposure in a region with natural high background radiation originated from rare earth element deposits at Bat Xat district, Vietnam. Radiation and Environmental Biophysics, 2022, 61, 309-324. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La3+, Nd3+, Sm3+, Gd3+). Molecules, 2022, 27, 1959. Magnetic Properties of Tetragonal SmFe⟨sub⟩12â°'⟨i⟩x⟨/i⟩⟨/sub⟩Mo⟨sub⟩⟨i⟩x⟨/i⟩⟨/sub⟩ Alloys in Bulk and Melt‧pun Ribbons. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, . Lanthanum and Gadolinium availability in aquatic mediums: New insights to ecotoxicology and environmental studies. Journal of Trace Elements in Medicine and Biology, 2022, 71, 126957. Synthesis techniques and applications of rare earth metal oxides semiconductors: A review. Chemical	0.6 1.7 0.8	7 3 1 5
268 270 271 272 273	Radiation exposure in a region with natural high background radiation originated from rare earth element deposits at Bat Xat district, Vietnam. Radiation and Environmental Biophysics, 2022, 61, 309-324. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La3+, Nd3+, Sm3+, Gd3+). Molecules, 2022, 27, 1959. Magnetic Properties of Tetragonal SmFe _{12â^'<i>×</i>} Mo _{<i>×</i>} Alloys in Bulk and Meltâ€6pun Ribbons. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, . Lanthanum and Gadolinium availability in aquatic mediums: New insights to ecotoxicology and environmental studies. Journal of Trace Elements in Medicine and Biology, 2022, 71, 126957. Synthesis techniques and applications of rare earth metal oxides semiconductors: A review. Chemical Physics Letters, 2022, 796, 139555.	0.6 1.7 0.8 1.5	7 3 1 5

#	Article	IF	CITATIONS
277	Rare earth elements: Human exposure, risk factors, and health risks., 2022, , 273-290.		2
278	lon exchange capacity of synthetic zeolite L: a promising way for cerium recovery. Environmental Science and Pollution Research, 2022, 29, 65176-65184.	2.7	3
279	Screening dilute sources of rare earth elements for their circular recovery. Journal of Geochemical Exploration, 2022, 238, 107000.	1.5	6
280	Anthropogenic rare earth elements in aquatic environments: Occurrence, behaviour, and fate. , 2022, , 87-102.		O
281	Implications of speciation on rare earth element toxicity: A focus on organic matter influence in Daphnia magna standard test. Environmental Pollution, 2022, 307, 119554.	3.7	13
282	A NON-TRADITIONAL RESOURCE FOR CRITICAL MINERALS; RARE EARTHS (REY+Sc) CONTENTS OF SOME TURKISH LOW RANK COALS. Kahramanmaraş Sýtçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25, 155-172.	20.222,	1
283	Lanmodulin peptides – unravelling the binding of the EF-Hand loop sequences stripped from the structural corset. Inorganic Chemistry Frontiers, 2022, 9, 4009-4021.	3.0	9
284	Additive Manufacturing of an Fe-Cr-Co permanent magnet alloy with a novel approach of in-situ alloying. European Journal of Materials, 0, , 1-13.	0.8	1
285	Understanding the effects of lanthanum toxicity in plants. , 2022, , 417-426.		1
286	A review on recent applications and future prospects of rare earth oxides in corrosion and thermal barrier coatings, catalysts, tribological, and environmental sectors. Ceramics International, 2022, 48, 32588-32612.	2.3	53
287	Fungal biorecovery of cerium as oxalate and carbonate biominerals. Fungal Biology, 2023, 127, 1187-1197.	1.1	2
288	Customizing the Appearance of Sparks with Binary Metal Alloys. ACS Omega, 2022, 7, 28408-28420.	1.6	O
289	Critical Minerals for Zero-Emission Transportation. Materials, 2022, 15, 5539.	1.3	2
290	Critical materials for electrical energy storage: Li-ion batteries. Journal of Energy Storage, 2022, 55, 105471.	3.9	12
291	Interaction-determined extraction capacity between rare earth ions and extractants: taking lanthanum and lutetium as models through theoretical calculations. Inorganic Chemistry Frontiers, 2022, 9, 5360-5370.	3.0	4
292	d-d and charge transfer photochemistry of 3d metal complexes. , 2022, , .		4
293	RARE EARTH METALS AS A CRITICAL RAW MATERIAL. QUICK OVERVIEW. Proceedings of the Shevchenko Scientific Society Series θ_i hemical Sciences, 2022, 2022, 79-89.	0.2	0
294	Aluminaâ€spinel castable for steel ladles: An overview. International Journal of Applied Ceramic Technology, 2023, 20, 410-423.	1.1	8

#	ARTICLE	IF	CITATIONS
295	Global distribution, genesis, exploitation, applications, production, and demand of industrial heavy minerals. Arabian Journal of Geosciences, 2022, 15, .	0.6	12
296	Connectedness between crude oil, coal, rare earth, new energy and technology markets: a GARCH-vine-copula-EVT analysis. Applied Economics, 2023, 55, 4469-4485.	1.2	4
297	Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (Pr3+, Eu3+, Ho3+, Tm3+). Molecules, 2022, 27, 6468.	1.7	2
298	Fluorescent lamps: A review on environmental concerns and current recycling perspectives highlighting Hg and rare earth elements. Journal of Environmental Chemical Engineering, 2022, 10, 108915.	3.3	10
299	Adsorption potential for the concentration and recovery of rare earth metals from NdFeB magnet scrap in the hydrometallurgical route: A review in a circular economy approach. Journal of Cleaner Production, 2022, 380, 135112.	4.6	10
300	Current nature-based biological practices for rare earth elements extraction and recovery: Bioleaching and biosorption. Renewable and Sustainable Energy Reviews, 2023, 173, 113099.	8.2	22
301	Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends. Energy, 2023, 266, 126403.	4.5	12
302	Dietary Exposure Assessment of Rare Earth Elements in the Chinese Population. International Journal of Environmental Research and Public Health, 2022, 19, 15583.	1.2	3
303	<i>CeRES</i> Processâ^'Separation of <i>Ce</i> rium from Lanthanum by <i>R</i> edox <i>E</i> xtraction and <i>S</i> tripping. ACS Sustainable Chemistry and Engineering, 2022, 10, 16290-16298.	3.2	0
304	Critical metal resources in Democratic People's Republic of Korea. International Geology Review, 2023, 65, 2717-2737.	1.1	О
305	Varying Doses of Rare-Earth-Metal-Based Neodymium Zirconate Zinc Sulfide Nanocomposite Disrupt Blood and Serum Parameters, as well as Markers of Oxidative Stress in the Selected Organs of Albino Mice. Genes, 2022, 13, 2262.	1.0	0
306	Biomechanical analysis head–neck injuries against mine falls using a simplified human model. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, .	0.8	0
307	High-resistivity anisotropic hot-deformed Nd-Fe-B magnets prepared from DyF3 electrophoretic deposited powders. Journal of Alloys and Compounds, 2023, , 168855.	2.8	1
308	Comparison of synthetic rhamnolipids as chemical precipitants for Pb, La, and Mg. Journal of Hazardous Materials, 2023, 447, 130801.	6.5	5
309	The Intelligent Prospector v1.0: geoscientific model development and prediction by sequential data acquisition planning with application to mineral exploration. Geoscientific Model Development, 2023, 16, 289-313.	1.3	4
310	Association between rare earth element exposure during pregnancy and newborn telomere length. Environmental Science and Pollution Research, 2023, 30, 38751-38760.	2.7	3
311	A characterization of rare earth elements in coal ash generated during the utilization of Australian coals. International Journal of Coal Preparation and Utilization, 2023, 43, 2106-2135.	1.2	4
312	Characterization of a carbonatite-derived mining tailing for the assessment of rare earth potential. Chemical Engineering Research and Design, 2023, 173, 154-162.	2.7	4

#	Article	IF	CITATIONS
313	Influence of ionic cerium and cerium oxide nanoparticles on Zea mays seedlings grown with and without cadmium. Environmental Pollution, 2023, 322, 121137.	3.7	7
314	Rare earth element bioaccumulation and cerium anomalies in biota from the Eastern Canadian subarctic (Nunavik). Science of the Total Environment, 2023, 879, 163024.	3.9	8
315	From ash to oxides: Recovery of rare-earth elements as a step towards valorization of coal fly ash waste. Separation and Purification Technology, 2023, 314, 123532.	3.9	4
316	Global rare earth elements projects: New developments and supply chains. Ore Geology Reviews, 2023, 157, 105428.	1.1	22
317	Lanmodulin-Functionalized Magnetic Nanoparticles as a Highly Selective Biosorbent for Recovery of Rare Earth Elements. Environmental Science & Earth Elements. Environmental Science & Earth Elements. Environmental Science & Earth Elements.	4.6	13
318	Challenges and opportunities for sustainable valorization of rare earth metals from anthropogenic waste. Reviews in Environmental Science and Biotechnology, 2023, 22, 133-173.	3.9	5
319	Rare earths stick to rare cyanobacteria: Future potential for bioremediation and recovery of rare earth elements. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	7
320	Securing Supply Chain Resiliency for Critical Rare Earth Metals. Archimedes, 2023, , 45-68.	0.3	1
321	The recent progress of ion exchange for the separation of rare earths from secondary resources – A review. Hydrometallurgy, 2023, 218, 106047.	1.8	30
322	Effect of Lanthanum Sorption on the Behavior of Rarely Crosslinked Acidic and Basic Polymer Hydrogels during Remote Interaction. Polymers, 2023, 15, 1420.	2.0	0
323	The behaviour of selected rare-earth elements during the conversion of phosphogypsum to calcium sulphide and residue. Journal of Material Cycles and Waste Management, 2023, 25, 1658-1671.	1.6	3
324	Accelerated discovery of cost-effective Ndâ \in "Feâ \in "B magnets through adaptive learning. Journal of Materials Chemistry A, 0, , .	5.2	0
325	Role of Rare Earth Elements in Plants. Plant Molecular Biology Reporter, 2023, 41, 345-368.	1.0	4
326	Radon concentration and radiation hazard of a rare earth waste dump in China. Kuwait Journal of Science, 2023, , .	0.6	1
327	On gamma-ray spectrometry of rare earth elements on the moon: Reference data from proton accelerator experiment. Acta Astronautica, 2023, 209, 21-30.	1.7	0
328	Molecular insights into rare earth element (REE)-mediated phytotoxicity and its impact on human health. Environmental Science and Pollution Research, 2023, 30, 84829-84849.	2.7	5
336	Algal sorbents and prospects for their application in the sustainable recovery of rare earth elements from E-waste. Environmental Science and Pollution Research, 2023, 30, 74521-74543.	2.7	6
342	Das Mindset der Programmierer*innen auf GitHub – ein ethnographischer Blick auf die Baumeister*innen des Digitalen. , 2023, , 69-95.		0

#	Article	IF	CITATIONS
344	Circular Economy as a Way Forward Against Material Criticality: The Case of Rare Earth Elements in the Context of Sustainable Development. Environmental Footprints and Eco-design of Products and Processes, 2023, , 47-67.	0.7	0
356	Optimisation of Ga-doped Ï"-MnAl for use as a permanent magnetic material. , 2023, , .		0
362	Assessment and Mitigation of Environmental Footprints for Energy-Critical Metals Used in Permanent Magnets., 2023,, 21-40.		1
364	International Schools and the World. Advances in Educational Marketing, Administration, and Leadership Book Series, 2023, , 114-133.	0.1	0
368	Revisiting Rochelle Salt for eco-designed disposable ultrasonic transducers. , 2023, , .		0
370	Molten Salt Electrowinning of Metals and Materials: Opportunities and Challenges. Indian Institute of Metals Series, 2024, , 117-146.	0.2	0
392	Eco-environmental Challenges Associated with Application of REE. Springer Proceedings in Earth and Environmental Sciences, 2024, , 27-48.	0.2	0
393	Rare Earth Elements: Reshaping the Global Supply Chain with Urban Mining. Springer Proceedings in Earth and Environmental Sciences, 2024, , 49-67.	0.2	0