Fungal Hydrophobin Proteins Produce Self-Assembling Structure and Chemical Stability

Nanomaterials 4, 827-843 DOI: 10.3390/nano4030827

Citation Report

#	Article	IF	CITATIONS
1	Onâ€the‧pot Immobilization of Quantum Dots, Graphene Oxide, and Proteins via Hydrophobins. Advanced Functional Materials, 2015, 25, 6084-6092.	14.9	28
2	Surface-water Interface Induces Conformational Changes Critical for Protein Adsorption: Implications for Monolayer Formation of EAS Hydrophobin. Frontiers in Molecular Biosciences, 2015, 2, 64.	3.5	29
3	Marine fungi as source of new hydrophobins. International Journal of Biological Macromolecules, 2016, 92, 1229-1233.	7.5	31
4	The good, the bad and the tasty: The many roles of mushrooms. Studies in Mycology, 2016, 85, 125-157.	7.2	81
5	Protein-Assisted Assembly of π-Conjugated Polymers. Chemistry of Materials, 2016, 28, 573-582.	6.7	20
6	Exploring the frontiers of colloidal behaviour where polymers and particles meet. Food Hydrocolloids, 2016, 52, 497-509.	10.7	75
7	Green synthesis of luminescent and defect-free bio-nanosheets of MoS ₂ : interfacing two-dimensional crystals with hydrophobins. RSC Advances, 2017, 7, 22400-22408.	3.6	31
8	Selfâ€assembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnology and Bioengineering, 2017, 114, 2173-2186.	3.3	16
9	Investigation of the relationship between the rodlet formation and Cys3–Cys4 loop of the HGFI hydrophobin. Colloids and Surfaces B: Biointerfaces, 2017, 150, 344-351.	5.0	8
10	Hydrophobin coating prevents <i>Staphylococcus epidermidis</i> biofilm formation on different surfaces. Biofouling, 2017, 33, 601-611.	2.2	31
11	Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins. Biomolecules, 2017, 7, 45.	4.0	31
12	A Structural and Functional Role for Disulfide Bonds in a Class II Hydrophobin. Biochemistry, 2018, 57, 645-653.	2.5	19
13	Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene. Nature Communications, 2018, 9, 1836.	12.8	34
14	Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi. Journal of Molecular Biology, 2018, 430, 3784-3801.	4.2	19
15	Comparative analysis of surface coating properties of five hydrophobins from Aspergillus nidulans and Trichoderma reseei. Scientific Reports, 2018, 8, 12033.	3.3	31
16	Versatile biomimetic medical device surface: hydrophobin coated, nitric oxide-releasing polymer for antimicrobial and hemocompatible applications. Biomaterials Science, 2019, 7, 3438-3449.	5.4	23
17	Surface Functionalization by Hydrophobin-EPSPS Fusion Protein Allows for the Fast and Simple Detection of Glyphosate. Biosensors, 2019, 9, 104.	4.7	7
18	Hydrophobins: multifunctional biosurfactants for interface engineering. Journal of Biological Engineering, 2019, 13, 10.	4.7	61

#	Article	IF	CITATIONS
19	Hydrophobin Rodlets on the Fungal Cell Wall. Current Topics in Microbiology and Immunology, 2019, 425, 29-51.	1.1	16
20	Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation. Colloids and Surfaces B: Biointerfaces, 2019, 173, 128-138.	5.0	3
21	Excretory overexpression of hydrophobins as multifunctional biosurfactants in E. coli. International Journal of Biological Macromolecules, 2020, 165, 1296-1302.	7.5	3
22	Trichoderma in the rhizosphere. , 2020, , 3-38.		4
23	Predicting the self-assembly film structure of class II hydrophobin NC2 and estimating its structural characteristics. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111269.	5.0	4
24	Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. Biochemistry (Moscow), 2020, 85, 1011-1034.	1.5	17
25	Cell-free expression of natively folded hydrophobins. Protein Expression and Purification, 2020, 170, 105591.	1.3	6
26	Hydrophobin HGFI improving the nanoparticle formation, stability and solubility of Curcumin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125922.	4.7	5
27	Comparative Study of Structural Changes of Polylactide and Poly(ethylene terephthalate) in the Presence of Trichoderma viride. International Journal of Molecular Sciences, 2021, 22, 3491.	4.1	8
28	Class I hydrophobins pretreatment stimulates PETase for monomers recycling of waste PETs. International Journal of Biological Macromolecules, 2021, 176, 157-164.	7.5	29
29	Blocking Protein Adsorption in Microfluidic Chips by a Hydrophobin Coating. ACS Applied Polymer Materials, 2021, 3, 3278-3286.	4.4	2
30	Self-Assembly of a Ginkgo Oligomerization Domain Creates a Sub-10-nm Honeycomb Architecture on Carbon and Silicon Surfaces with Customizable Pores: Implications for Nanoelectronics, Biosensing, and Biocatalysis. ACS Applied Nano Materials, 2021, 4, 9518-9526.	5.0	0
31	The growth of marine fungi on seaweed polysaccharides produces cerato-platanin and hydrophobin self-assembling proteins. Microbiological Research, 2021, 251, 126835.	5.3	5
32	Spotlight on Class I Hydrophobins: Their Intriguing Biochemical Properties and Industrial Prospects. Grand Challenges in Biology and Biotechnology, 2020, , 333-347.	2.4	2
33	Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials. Advances in Experimental Medicine and Biology, 2019, 1174, 161-185.	1.6	12
34	All-Natural Smart Mycelium Surface with Tunable Wettability. ACS Applied Bio Materials, 2021, 4, 1015-1022.	4.6	21
36	A comparison of several media types and basic techniques used to assess outdoor airborne fungi in Melbourne, Australia. PLoS ONE, 2020, 15, e0238901.	2.5	11
37	CHARACTERISTICS AND FUNCTIONS OF HYDROPHOBINSAND THEIR USE IN MANIFOLD INDUSTRIES. Postepy Mikrobiologii, 2019, 57, 374-384.	0.1	4

CITATION REPORT

#	Article	IF	CITATIONS
38	Protein-modified porous silicon optical devices for biosensing. , 2021, , 113-148.		1
39	Adsorption Kinetics and Self-Assembled Structures of Aspergillus oryzae Hydrophobin RolA on Hydrophobic and Charged Solid Surfaces. Applied and Environmental Microbiology, 2022, 88, AEM0208721.	3.1	3
40	Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms, 2022, 10, 1498.	3.6	6
41	Innovative surface bio-functionalization by fungal hydrophobins and their engineered variants. Frontiers in Molecular Biosciences, 0, 9, .	3.5	2
43	Characterization of the structure and self-assembly of two distinct class IB hydrophobins. Applied Microbiology and Biotechnology, 2022, 106, 7831-7843.	3.6	3
44	Involvement of ionic interactions in self-assembly and resultant rodlet formation of class I hydrophobin RolA from <i>Aspergillus oryzae</i> . Bioscience, Biotechnology and Biochemistry, O, , .	1.3	0
45	Functional Amyloids: Where Supramolecular Amyloid Assembly Controls Biological Activity or Generates New Functionality. Journal of Molecular Biology, 2023, 435, 167919.	4.2	5
46	Evidence of Small Fungal Cysteine-Rich Proteins Acting as Biosurfactants and Self-Assembling into Large Fibers. International Journal of Molecular Sciences, 2023, 24, 13843.	4.1	1
47	Identification and Characterization of a Predominant Hydrophobin in the Edible Mushroom Grifola frondosa. Journal of Fungi (Basel, Switzerland), 2024, 10, 25.	3.5	0

CITATION REPORT