Temperature Effect on Yield and Yield Components of I Stage

International Journal of Agronomy 2014, 1-4 DOI: 10.1155/2014/846707

Citation Report

#	Article	IF	CITATIONS
1	Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry, 2017, 115, 57-72.	2.8	146
2	Identification and Characterization of Genes Responsible for Drought Tolerance in Rice Mediated by Pseudomonas fluorescens. Rice Science, 2017, 24, 291-298.	1.7	35
3	Regulation of anthocyanin accumulation in rice (Oryza sativa L. subsp. indica) using MgSO4 spraying and low temperature. Archives of Agronomy and Soil Science, 2018, 64, 1663-1677.	1.3	11
5	Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. European Journal of Agronomy, 2019, 106, 30-38.	1.9	42
6	Temperature Extremes: Impact on Rice Growth and Development. , 2019, , 153-171.		19
7	Cross-Talk Signaling in Rice During Combined Drought and Bacterial Blight Stress. Frontiers in Plant Science, 2019, 10, 193.	1.7	30
8	Defining the Northeast Monsoon of India. Monthly Weather Review, 2019, 147, 791-807.	0.5	16
9	Seed Pretreatment and Foliar Application of Proline Regulate Morphological, Physio-Biochemical Processes and Activity of Antioxidant Enzymes in Plants of Two Cultivars of Quinoa (Chenopodium) Tj ETQq1 1	0.7 8.6 314	rg B 7∂/Overla
10	Cold Influences Male Reproductive Development in Plants: A Hazard to Fertility, but a Window for Evolution. Plant and Cell Physiology, 2019, 60, 7-18.	1.5	22
11	Corrigendum to "Temperature Effect on Yield and Yield Components of Different Rice Cultivars in Flowering Stage― International Journal of Agronomy, 2020, 2020, 1-1.	0.5	1
12	Rapid temperature responses of photosystemÂll efficiency forecast genotypic variation in rice vegetative heat tolerance. Plant Journal, 2020, 104, 839-855.	2.8	33
13	ATP Hydrolysis Determines Cold Tolerance by Regulating Available Energy for Glutathione Synthesis in Rice Seedling Plants. Rice, 2020, 13, 23.	1.7	21
14	Microbes for Cold Stress Resistance in Plants: Mechanism, Opportunities, and Challenges. Rhizosphere Biology, 2020, , 269-292.	0.4	7
15	Modeling organically fertilized flooded rice systems and its long-term effects on grain yield and methane emissions. Science of the Total Environment, 2021, 755, 142578.	3.9	19
16	Next-generation genetic engineering tools for abiotic stress tolerance in plants. , 2021, , 153-197.		8
17	Physiological and Molecular Responses to High, Chilling, and Freezing Temperature in Plant Growth and Production: Consequences and Mitigation Possibilities. , 2021, , 235-290.		9
18	Contrasting Influences of Seasonal and Intra-Seasonal Hydroclimatic Variabilities on the Irrigated Rice Paddies of Northern Peninsular Malaysia for Weather Index Insurance Design. Sustainability, 2021, 13, 5207.	1.6	3
19	Effects of Elevated Atmospheric CO2 Concentration and Water Regime on Rice Yield, Water Use Efficiency, and Arsenic and Cadmium Accumulation in Grain. Agriculture (Switzerland), 2021, 11, 705.	1.4	4

#	Article	IF	CITATIONS
20	Effects of chilling at the booting and flowering stages on rice phenology and yield: A case study in Northeast China. Journal of Agronomy and Crop Science, 2022, 208, 197-208.	1.7	7
21	Soil fertility status and land suitability evaluation for rice crops on former shrimp ponds. CELEBES Agricultural, 2021, 2, 10-36.	0.1	0
22	Could Japonica Rice Be an Alternative Variety for Increased Global Food Security and Climate Change Mitigation?. Foods, 2021, 10, 1869.	1.9	36
23	Genetic Dissection of Grain Yield Component Traits Under High Nighttime Temperature Stress in a Rice Diversity Panel. Frontiers in Plant Science, 2021, 12, 712167.	1.7	4
24	A review of decision support system using mobile applications in the provision of day to day information about farm status for improved crop yield. Periodicals of Engineering and Natural Sciences, 2018, 6, 89.	0.3	10
25	Morfolojik ve moleküler yöntemlerle çeltikte (Oryza sativa L.) generatif dönem soğuk stresinin etkilerinin belirlenmesi. Anadolu Journal of Agricultural Sciences, 0, , .	0.3	0
26	Panicle branching behaviour of rice Inpari IR Nutri Zinc. E3S Web of Conferences, 2021, 316, 03002.	0.2	0
27	The Effect of Exposure to a Combination of Stressors on Rice Productivity and Grain Yields. , 2020, , 675-727.		0
30	Growth and Yield of Different Varieties of True Shallot Seed on Highland in West Sumatra, Indonesia. International Journal of Agronomy, 2021, 2021, 1-6.	0.5	4
32	Watershed-scale modelling of the irrigated rice farming system at Muda, Malaysia, using the Soil Water Assessment Tool. Hydrological Sciences Journal, 2022, 67, 462-476.	1.2	1
33	Field adaptation and molecular characterization of Code-qTSN4 and Code-qDTH8 rice lines at two different locations. AIP Conference Proceedings, 2022, , .	0.3	0
36	Long-term spatio-temporal variability and trends in rainfall and temperature extremes and their potential risk to rice production in Bangladesh. , 2022, 1, e0000009.		19
37	Automatic and Accurate Calculation of Rice Seed Setting Rate Based on Image Segmentation and Deep Learning. Frontiers in Plant Science, 2021, 12, 770916.	1.7	7
40	Rising atmospheric <scp> CO ₂ </scp> concentration affect weedy rice growth, seed shattering and seedbank longevity. Weed Research, 0, , .	0.8	3
41	Biochemische und physiologische Merkmale von Mutantengenotypen bei Reis (Oryza sativaÂL.), die zu den Salztoleranzindizes beitragen. Gesunde Pflanzen, 2023, 75, 303-315.	1.7	6
42	Land suitability assessment for second cropping in terms of low temperature stresses using landsat TIRS sensor. Computers and Electronics in Agriculture, 2022, 200, 107205.	3.7	1
43	Plants' responses under drought stress conditions: Effects of strategic management approaches—a review. Journal of Plant Nutrition, 2023, 46, 2198-2230.	0.9	20
44	Nitrogen as a regulator for flowering time in plant. Plant and Soil, 2022, 480, 1-29.	1.8	16

CITATION REPORT

_

CITATION REPORT

#	Article	IF	CITATIONS
45	Cold stress reduces rice grain yield in temperate conditions. Revista Brasileira De Engenharia Agricola E Ambiental, 2022, 26, 947-952.	0.4	0
46	Inquiring the inter-relationships amongst grain-filling, grain-yield, and grain-quality of Japonica rice at high latitudes of China. Frontiers in Genetics, 0, 13, .	1.1	1
47	Impacts of climate change on paddy yields in different climatic zones of Sri Lanka: a panel data approach. Asia-Pacific Journal of Regional Science, 0, , .	1.1	4
48	On the Changing Cool Season Affecting Rice Growth and Yield in Taiwan. Agronomy, 2022, 12, 2625.	1.3	2
49	Impact of recent climate change on corn, rice, and wheat in southeastern USA. Scientific Reports, 2022, 12, .	1.6	21
50	Molecular mapping and characterization of QTLs for grain quality traits in a RIL population of US rice under high nighttime temperature stress. Scientific Reports, 2023, 13, .	1.6	2
51	Meta-Analysis of Microarray Data and Their Utility in Dissecting the Mapped QTLs for Heat Acclimation in Rice. Plants, 2023, 12, 1697.	1.6	1
56	Influence of Abiotic Stress on Molecular Responses of Flowering in Rice. , 2023, , 1-14.		Ο