Global distribution maps of the leishmaniases

ELife 3, DOI: 10.7554/elife.02851

Citation Report

#	Article	IF	CITATIONS
1	Mapping the zoonotic niche of Ebola virus disease in Africa. ELife, 2014, 3, e04395.	2.8	328
2	Measuring progress in global health. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 521-522.	0.7	0
3	Benefit of Insecticide-Treated Nets, Curtains and Screening on Vector Borne Diseases, Excluding Malaria: A Systematic Review and Meta-analysis. PLoS Neglected Tropical Diseases, 2014, 8, e3228.	1.3	60
4	Global database of leishmaniasis occurrence locations, 1960–2012. Scientific Data, 2014, 1, 140036.	2.4	43
5	A National Assessment of the Epidemiology of Severe Fever with Thrombocytopenia Syndrome, China. Scientific Reports, 2015, 5, 9679.	1.6	102
6	Tracking the distribution and impacts of diseases with biological records and distribution modelling. Biological Journal of the Linnean Society, 2015, 115, 664-677.	0.7	36
7	The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 2015, 4, e08347.	2.8	1,428
8	Integrating Data and Resources on Neglected Tropical Diseases for Better Planning: The NTD Mapping Tool (NTDmap.org). PLoS Neglected Tropical Diseases, 2015, 9, e0003400.	1.3	13
9	Sources of spatial animal and human health data: Casting the net wide to deal more effectively with increasingly complex disease problems. Spatial and Spatio-temporal Epidemiology, 2015, 13, 15-29.	0.9	25
10	Leishmaniasis in the Americas. Neglected Tropical Diseases, 2015, , 113-128.	0.4	1
11	The many projected futures of dengue. Nature Reviews Microbiology, 2015, 13, 230-239.	13.6	145
12	Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic. Chemistry and Biology, 2015, 22, 1313-1324.	6.2	48
13	The global distribution of Crimean-Congo hemorrhagic fever. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 503-513.	0.7	193
14	Visceral leishmaniasis research: operational focus needed. The Lancet Global Health, 2015, 3, e194.	2.9	1
15	Combination of In Silico Methods in the Search for Potential CD4+ and CD8+ T Cell Epitopes in the Proteome of Leishmania braziliensis. Frontiers in Immunology, 2016, 7, 327.	2.2	47
16	Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Eurosurveillance, 2016, 21, .	3.9	141
17	Mapping global environmental suitability for Zika virus. ELife, 2016, 5, .	2.8	299
18	Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis. International Journal of Environmental Research and Public Health, 2016, 13, 186	1.2	12

TION RE

#	ARTICLE	IF	CITATIONS
19	Genetic Diversity and Population Structure of Leishmania infantum from Southeastern France: Evaluation Using Multi-Locus Microsatellite Typing. PLoS Neglected Tropical Diseases, 2016, 10, e0004303.	1.3	10
20	Estimating Geographical Variation in the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria. PLoS Neglected Tropical Diseases, 2016, 10, e0004915.	1.3	76
21	<i>Plasmodium knowlesi</i> transmission: integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. Parasitology, 2016, 143, 389-400.	0.7	42
22	Risk Factors Associated with Human Visceral Leishmaniasis in an Urban Area of Bahia, Brazil. Vector-Borne and Zoonotic Diseases, 2016, 16, 368-376.	0.6	10
23	Trends in the Mechanistic and Dynamic Modeling of Infectious Diseases. Current Epidemiology Reports, 2016, 3, 212-222.	1.1	27
24	Global burden of cutaneous leishmaniasis. Lancet Infectious Diseases, The, 2016, 16, 1004-1005.	4.6	10
25	Tilting the balance between RNA interference and replication eradicates <i>Leishmania</i> RNA virus 1 and mitigates the inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11998-12005.	3.3	46
26	Defining the targets of antiparasitic compounds. Drug Discovery Today, 2016, 21, 725-739.	3.2	25
27	DNA sequence analysis suggests that cytb-nd1 PCR-RFLP may not be applicable to sandfly species identification throughout the Mediterranean region. Parasitology Research, 2016, 115, 1287-1295.	0.6	2
28	Estimations of cutaneous leishmaniasis burden: a constant challenge. Lancet Infectious Diseases, The, 2016, 16, 515-516.	4.6	2
29	Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA <i>Leishmania</i> RNA virus 1 (LRV1) pathogenicity factor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E811-E819.	3.3	36
30	Continual renewal and replication of persistent <i>Leishmania major</i> parasites in concomitantly immune hosts. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E801-E810.	3.3	98
31	Identification of Visceral Leishmaniasisâ€Susceptible Areas using Spatial Modelling in Southern Caucasus. Zoonoses and Public Health, 2017, 64, e5-e22.	0.9	4
32	Carbonic anhydrases from Trypanosoma and Leishmania as anti-protozoan drug targets. Bioorganic and Medicinal Chemistry, 2017, 25, 1543-1555.	1.4	52
33	Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 42-50.	1.4	82
34	Global burden of cutaneous leishmaniasis. Lancet Infectious Diseases, The, 2017, 17, 264.	4.6	14
35	Biosynthesized colloidal silver and gold nanoparticles as emerging leishmanicidal agents: an insight. Nanomedicine, 2017, 12, 2807-2819.	1.7	45
36	Spatial and temporal distribution of American cutaneous leishmaniasis in Acre state, Brazil. Infectious Diseases of Poverty, 2017, 6, 99.	1.5	27

#	Article	IF	CITATIONS
37	Seroprevalence of sandfly fever virus infection in military personnel on the western border of Iran. Journal of Infection and Public Health, 2017, 10, 59-63.	1.9	14
38	Visceral Leishmaniasis and Natural Infection Rates of Leishmania in Lutzomyia longipalpis in Latin America. , 0, , .		2
39	Niche Modeling of Dengue Fever Using Remotely Sensed Environmental Factors and Boosted Regression Trees. Remote Sensing, 2017, 9, 328.	1.8	30
40	Designed Hybrid Compounds for Tropical Parasitic Diseases. , 2017, , 83-135.		3
41	In Silico Identification of B-Cell Epitopes of Leishmania infantum Recombinant Histone Shared with Human Sera Stably Living in Area Where Leishmania Species Does Perpetuate. Journal of Next Generation Sequencing & Applications, 2017, 04, .	0.3	0
42	Curvas de fusión de regiones genómicas especÃficas: una herramienta prometedora para el diagnóstico y tipificación de las especies causantes de la leishmaniasis cutánea en Colombia. Biomedica, 2017, 37, 538.	0.3	2
43	Concentration of 2′C-methyladenosine triphosphate by Leishmania guyanensis enables specific inhibition of Leishmania RNA virus 1 via its RNA polymerase. Journal of Biological Chemistry, 2018, 293, 6460-6469.	1.6	6
44	Isolation of <i>Crithidia</i> spp. from lesions of immunocompetent patients with suspected cutaneous leishmaniasis in Iran. Tropical Medicine and International Health, 2019, 24, 116-126.	1.0	30
45	Mapping the epidemic changes and risks of hemorrhagic fever with renal syndrome in Shaanxi Province, China, 2005–2016. Scientific Reports, 2018, 8, 749.	1.6	35
46	A Brief Introduction to Leishmaniasis Epidemiology. , 2018, , 1-13.		8
47	<i>Leishmania mexicana</i> can utilize amino acids as major carbon sources in macrophages but not in animal models. Molecular Microbiology, 2018, 108, 143-158.	1.2	31
48	New chalcone compound as a promising antileishmanial drug for an old neglected disease: Biological evaluation using radiolabelled biodistribution. Journal of Global Antimicrobial Resistance, 2018, 13, 139-142.	0.9	9
49	Diagnostic approach to tropical skin infections. Medicine, 2018, 46, 10-15.	0.2	2
50	VianniaTopes: a database of predicted immunogenic peptides forLeishmania(Viannia) species. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	1
51	Determining environmental and anthropogenic factors which explain the global distribution of <i>Aedes aegypti</i> and <i>Ae. albopictus</i> . BMJ Global Health, 2018, 3, e000801.	2.0	64
52	Coinfection With Trypanosoma brucei Confers Protection Against Cutaneous Leishmaniasis. Frontiers in Immunology, 2018, 9, 2855.	2.2	4
53	Uncharted territory of the epidemiological burden of cutaneous leishmaniasis in sub-Saharan Africa—A systematic review. PLoS Neglected Tropical Diseases, 2018, 12, e0006914.	1.3	23
54	Synthesis, molecular modeling and biological screening of some pyrazole derivatives as antileishmanial agents. Future Medicinal Chemistry, 2018, 10, 2325-2344.	1.1	17

#	Article	IF	Citations
55	An <scp>IL</scp> â€10 dominant polarization of monocytes is a feature of Indian Visceral Leishmaniasis. Parasite Immunology, 2018, 40, e12535.	0.7	23
56	Visceral leishmaniasis in a Brazilian endemic area: an overview of occurrence, HIV coinfection and lethality. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2018, 60, e12.	0.5	20
57	Histopathological and immunohistochemical characterisation of hepatic granulomas in Leishmania donovani-infected BALB/c mice: a time-course study. Parasites and Vectors, 2018, 11, 73.	1.0	31
58	Why miltefosine—a life-saving drug for leishmaniasis—is unavailable to people who need it the most. BMJ Global Health, 2018, 3, e000709.	2.0	104
59	Bioinformatics in Leishmania Drug Design. , 2018, , 297-317.		0
60	Pentamidine inhibits the growth of <i>Sporothrix schenckii</i> complex and exhibits synergism with antifungal agents. Future Microbiology, 2018, 13, 1129-1140.	1.0	16
61	Imported leishmaniasis in Sweden 1993–2016. Epidemiology and Infection, 2018, 146, 1267-1274.	1.0	17
62	Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome. PLoS Neglected Tropical Diseases, 2019, 13, e0007629.	1.3	29
63	ldentifying miltefosine-resistant key genes in protein–protein interactions network and experimental verification in Iranian Leishmania major. Molecular Biology Reports, 2019, 46, 5371-5388.	1.0	4
64	An Overview of Leishmaniasis: Historic to Future Perspectives. , 2019, , .		1
65	Risk factors and predicted distribution of visceral leishmaniasis in the Xinjiang Uygur Autonomous Region, China, 2005–2015. Parasites and Vectors, 2019, 12, 528.	1.0	15
66	Dispersion of Leishmania (Leishmania) infantum in central-southern Brazil: Evidence from an integrative approach. PLoS Neglected Tropical Diseases, 2019, 13, e0007639.	1.3	17
67	What is Machine Learning? A Primer for the Epidemiologist. American Journal of Epidemiology, 2019, 188, 2222-2239.	1.6	180
68	Bilateral Sterile Pyogranulomatous Keratitis in a Dog. Case Reports in Veterinary Medicine, 2019, 2019, 1-4.	0.2	1
69	Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nature Microbiology, 2019, 4, 714-723.	5.9	80
70	Mapping the global distribution of Buruli ulcer: a systematic review with evidence consensus. The Lancet Clobal Health, 2019, 7, e912-e922.	2.9	52
71	Synthesis, inÂvitro biological evaluation and in silico studies of certain arylnicotinic acids conjugated with aryl (thio)semicarbazides as a novel class of anti-leishmanial agents. European Journal of Medicinal Chemistry, 2019, 179, 335-346.	2.6	18
72	The current and future global distribution and population at risk of dengue. Nature Microbiology, 2019, 4, 1508-1515.	5.9	645

#	Article	IF	CITATIONS
73	Infection of Human Neutrophils With Leishmania infantum or Leishmania major Strains Triggers Activation and Differential Cytokines Release. Frontiers in Cellular and Infection Microbiology, 2019, 9, 153.	1.8	22
74	Leishmaniasis in Eurasia and Africa: geographical distribution of vector species and pathogens. Royal Society Open Science, 2019, 6, 190334.	1.1	16
75	Comments on letter to the editor by Faniyan <i>et al</i> . in response to Imported leishmaniasis in Sweden 1993–2016. Epidemiology and Infection, 2019, 147, e47.	1.0	1
76	A climate-driven and field data-assimilated population dynamics model of sand flies. Scientific Reports, 2019, 9, 2469.	1.6	13
77	Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nature Communications, 2019, 10, 5273.	5.8	65
78	Evaluation of the oxidant-antioxidant balance, isoprostane and quantitative CRP in patients with cutaneous leishmaniasis. Microbial Pathogenesis, 2019, 137, 103738.	1.3	4
79	Cutaneous Leishmaniasis: The Complexity of Host's Effective Immune Response against a Polymorphic Parasitic Disease. Journal of Immunology Research, 2019, 2019, 1-16.	0.9	46
80	Mapping the global distribution of podoconiosis: Applying an evidence consensus approach. PLoS Neglected Tropical Diseases, 2019, 13, e0007925.	1.3	18
81	A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences. Scientific Data, 2019, 6, 318.	2.4	22
82	Applications of Nanomaterials in Leishmaniasis: A Focus on Recent Advances and Challenges. Nanomaterials, 2019, 9, 1749.	1.9	63
83	Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasites and Vectors, 2019, 12, 33.	1.0	24
84	In vitro antiplasmodial, antitrypanosomal and antileishmanial activities of selected medicinal plants from Ugandan flora: Refocusing into multi-component potentials. Journal of Ethnopharmacology, 2019, 229, 127-136.	2.0	23
85	Polycaprolactone Antimony Nanoparticles as Drug Delivery System for Leishmaniasis. American Journal of Therapeutics, 2019, 26, e12-e17.	0.5	19
86	Case Fatality Ratio Estimates for the 2013–2016 West African Ebola Epidemic: Application of Boosted Regression Trees for Imputation. Clinical Infectious Diseases, 2020, 70, 2476-2483.	2.9	21
87	Visceral Leishmaniasis, Northern Somalia, 2013–2019. Emerging Infectious Diseases, 2020, 26, 153-154.	2.0	3
88	Improving the serodiagnosis of canine Leishmania infantum infection in geographical areas of Brazil with different disease prevalence. Parasite Epidemiology and Control, 2020, 8, e00126.	0.6	4
89	Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitology Research, 2020, 119, 365-384.	0.6	63
90	Spatial epidemiology of yellow fever: Identification of determinants of the 2016-2018 epidemics and at-risk areas in Brazil. PLoS Neglected Tropical Diseases, 2020, 14, e0008691.	1.3	23

#	Article	IF	CITATIONS
91	Information differences across spatial resolutions and scales for disease surveillance and analysis: The case of Visceral Leishmaniasis in Brazil. PLoS ONE, 2020, 15, e0235920.	1.1	3
92	Of Mice and Fungi: Coccidioides spp. Distribution Models. Journal of Fungi (Basel, Switzerland), 2020, 6, 320.	1.5	13
93	In vitro anti-leishmanial activity of Prunus armeniaca fractions on Leishmania tropica and molecular docking studies. Journal of Photochemistry and Photobiology B: Biology, 2020, 213, 112077.	1.7	9
94	Predicting the environmental suitability and population at risk of podoconiosis in Africa. PLoS Neglected Tropical Diseases, 2020, 14, e0008616.	1.3	9
95	Cartography and Epidemiological Study of Leishmaniasis Disease in Sefrou Province (2007–2010), Central North of Morocco. Interdisciplinary Perspectives on Infectious Diseases, 2020, 2020, 1-8.	0.6	5
96	Canine Visceral Leishmaniasis in São Paulo, Brazil, the Most Populous City of South America: Isolation, Molecular Diagnosis, and Phylogenetic Inferences. Vector-Borne and Zoonotic Diseases, 2020, 20, 768-772.	0.6	2
97	Mapping the global potential transmission hotspots for severe fever with thrombocytopenia syndrome by machine learning methods. Emerging Microbes and Infections, 2020, 9, 817-826.	3.0	30
98	Molecular epidemiological survey of cutaneous leishmaniasis from Azad Jammu and Kashmir, Pakistan Acta Tropica, 2020, 206, 105434.	0.9	6
99	Sirolimus enhances the protection achieved by a DNA vaccine against Leishmania infantum. Parasites and Vectors, 2020, 13, 294.	1.0	4
100	Utilising a novel surveillance system to investigate species of Forcipomyia (Lasiohelea) (Diptera:) Tj ETQq1 1 0.78 Parasites and Wildlife, 2020, 12, 192-198.	0.6	[Overlock 1 7
101	In Vitro and in Vivo Activity of mTOR Kinase and PI3K Inhibitors Against Leishmania donovani and Trypanosoma brucei. Molecules, 2020, 25, 1980.	1.7	18
102	Spatiotemporal trends of cutaneous leishmaniasis in Costa Rica. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 569-571.	0.7	4
103	Ocular Leishmaniasis - A systematic review. Indian Journal of Ophthalmology, 2021, 69, 1052.	0.5	5
104	Improving the miltefosine efficacy against leishmaniasis by using different nanoassemblies made from surfactants or amphiphilic antimony (V) complex. , 2021, , 253-290.		1
105	Efficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomedicine and Pharmacotherapy, 2021, 134, 111109.	2.5	21
107	A Molecular Modeling Approach to Identify Potential Antileishmanial Compounds Against the Cell Division Cycle (cdc)-2-Related Kinase 12 (CRK12) Receptor of Leishmania donovani. Biomolecules, 2021, 11, 458.	1.8	19
108	Unraveling the Role of Immune Checkpoints in Leishmaniasis. Frontiers in Immunology, 2021, 12, 620144.	2.2	18
109	Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa, PLoS Computational Biology, 2021, 17, e1008811.	1.5	27

#	ARTICLE	IF	CITATIONS
110	The alteration of the suitability patterns of <i>Leishmania infantum</i> due to climate change in Iran. International Journal of Environmental Health Research, 2022, 32, 1567-1580.	1.3	2
111	Effects of Visceralising Leishmania on the Spleen, Liver, and Bone Marrow: A Pathophysiological Perspective. Microorganisms, 2021, 9, 759.	1.6	18
112	Investigations on the effects of anti-Leishmania major serum on the progression of Leishmania infantum infection in vivo and in vitro – implications of heterologous exposure to Leishmania spp. Parasitology Research, 2021, 120, 1771-1780.	0.6	1
113	Peptides to Tackle Leishmaniasis: Current Status and Future Directions. International Journal of Molecular Sciences, 2021, 22, 4400.	1.8	18
114	Impact of anti-sandfly saliva antibodies on biological aspects of Phlebotomus papatasi (Diptera:) Tj ETQq0 0 0 rg 2695-2700.	BT /Overlo 1.8	ock 10 Tf 50 5 1
116	Modelling the spatial distribution of mycetoma in Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 1144-1152.	0.7	18
117	Chromosome-Level Genome Sequence of Leishmania (Leishmania) tropica Strain CDC216-162, Isolated from an Afghanistan Clinical Case. Microbiology Resource Announcements, 2021, 10, .	0.3	1
118	Vulnerabilities to and the Socioeconomic and Psychosocial Impacts of the Leishmaniases: A Review. Research and Reports in Tropical Medicine, 2021, Volume 12, 135-151.	2.8	11
119	Spatial–temporal pattern of cutaneous leishmaniasis in Brazil. Infectious Diseases of Poverty, 2021, 10, 86.	1.5	6
121	An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules, 2021, 26, 4629.	1.7	50
122	Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning. PLoS Neglected Tropical Diseases, 2021, 15, e0008824.	1.3	10
123	Miltefosine enhances infectivity of a miltefosine-resistant Leishmania infantum strain by attenuating its innate immune recognition. PLoS Neglected Tropical Diseases, 2021, 15, e0009622.	1.3	12
125	A broadly active fucosyltransferase LmjFUT1 whose mitochondrial localization and activity are essential in parasitic <i>Leishmania</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
126	Ecology, evolution, and epidemiology of zoonotic and vector-borne infectious diseases in French Guiana: Transdisciplinarity does matter to tackle new emerging threats. Infection, Genetics and Evolution, 2021, 93, 104916.	1.0	22
127	Imported leishmaniasis in travelers: a 7-year retrospective from a Parisian hospital in France. BMC Infectious Diseases, 2021, 21, 953.	1.3	7
128	Human leishmaniasis vaccines: Use cases, target population and potential global demand. PLoS Neglected Tropical Diseases, 2021, 15, e0009742.	1.3	22
129	Genome Assemblies across the Diverse Evolutionary Spectrum of <i>Leishmania</i> Protozoan Parasites. Microbiology Resource Announcements, 2021, 10, e0054521.	0.3	8
130	DNA barcoding of Lutzomyia longipalpis species complex (Diptera: Psychodidae), suggests the existence of 8 candidate species. Acta Tropica, 2021, 221, 105983.	0.9	10

#	Article	IF	CITATIONS
131	Endosymbiotic RNA virus inhibits Leishmania-induced caspase-11 activation. IScience, 2021, 24, 102004.	1.9	6
132	In Vivo Bioluminescent Monitoring of Parasites in BALB/c Mouse Models of Cutaneous Leishmaniasis Drug Discovery. Methods in Molecular Biology, 2020, 2081, 81-106.	0.4	3
135	Prioritising Infectious Disease Mapping. PLoS Neglected Tropical Diseases, 2015, 9, e0003756.	1.3	30
136	Mapping and Modelling the Geographical Distribution and Environmental Limits of Podoconiosis in Ethiopia. PLoS Neglected Tropical Diseases, 2015, 9, e0003946.	1.3	62
137	Insecticidal Paints: A Realistic Approach to Vector Control?. PLoS Neglected Tropical Diseases, 2016, 10, e0004518.	1.3	12
138	Allicin Induces Calcium and Mitochondrial Dysregulation Causing Necrotic Death in Leishmania. PLoS Neglected Tropical Diseases, 2016, 10, e0004525.	1.3	39
139	Visceral leishmaniasis in Somalia: A review of epidemiology and access to care. PLoS Neglected Tropical Diseases, 2017, 11, e0005231.	1.3	14
140	Monitoring the elimination of human African trypanosomiasis: Update to 2014. PLoS Neglected Tropical Diseases, 2017, 11, e0005585.	1.3	96
141	Climate Change Influences on the Global Potential Distribution of Bluetongue Virus. PLoS ONE, 2016, 11, e0150489.	1.1	45
142	Pesticidal Paints: An Integral Approach to Colour your Imagination. Biodiversity International Journal, 2018, 2, .	0.6	2
143	Visceral leishmaniasis: a global overview. Journal of Global Health Science, 2020, 2, .	1.7	42
144	"Kala-Azar is a Dishonest Disease†Community Perspectives on Access Barriers to Visceral Leishmaniasis (Kala-Azar) Diagnosis and Care in Southern Gadarif, Sudan. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1091-1101.	0.6	12
145	Epidemiology and Ecology of Leishmaniasis. , 0, , .		16
146	Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. ELife, 2016, 5, .	2.8	147
147	Opportunities for improved surveillance and control of dengue from age-specific case data. ELife, 2019, 8, .	2.8	30
148	Spatial modeling could not differentiate early SARS-CoV-2 cases from the distribution of humans on the basis of climate in the United States. PeerJ, 2020, 8, e10140.	0.9	6
149	Sera of Human Beings Hosting Durably Viscerotropic Leishmania Species Display Histones- Binding Immunoglobulins: A Feature To Consider When Probing Signatures of Auto-Reactivity?. Journal of Clinical & Cellular Immunology, 2016, 07, .	1.5	0
150	Enfermedades transmitidas por vectores y cambio climático. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, 2017, , 118-128.	0.1	1

#	Article	IF	CITATIONS
152	A Review of Quercus infectoria (Olivier) Galls as a Resource for Anti-parasitic Agents: In Vitro and In Vivo Studies. The Malaysian Journal of Medical Sciences, 2019, 26, 19-34.	0.3	6
154	Risk mapping of scrub typhus infections in Qingdao city, China. PLoS Neglected Tropical Diseases, 2020, 14, e0008757.	1.3	4
155	Relevance of epidemiological surveillance in travelers: an imported case of Leishmania tropica in Mexico. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2020, 62, e41.	0.5	3
159	Treating Leishmaniasis in Amazonia, Part 2: Multi-Target Evaluation of Widely Used Plants to Understand Medicinal Practices. SSRN Electronic Journal, 0, , .	0.4	Ο
160	Modelling the Distribution, Risk and Burden of Podoconiosis in Kenya. SSRN Electronic Journal, 0, , .	0.4	0
161	iPODfish – A new method to infer the historical occurrence of diadromous fish species along river networks. Science of the Total Environment, 2022, 812, 152437.	3.9	3
162	Interleukin-4 Responsive Dendritic Cells Are Dispensable to Host Resistance Against Leishmania mexicana Infection. Frontiers in Immunology, 2021, 12, 759021.	2.2	1
163	Causative Agents of American Tegumentary Leishmaniasis Are Able to Infect 3T3-L1 Adipocytes In Vitro. Frontiers in Cellular and Infection Microbiology, 2022, 12, 824494.	1.8	4
164	Treating leishmaniasis in Amazonia, part 2: Multi-target evaluation of widely used plants to understand medicinal practices. Journal of Ethnopharmacology, 2022, 289, 115054.	2.0	3
172	Spatio-temporal analysis of the visceral leishmaniasis in the state of Alagoas, Brazil. Brazilian Journal of Biology, 2022, 84, e253098.	0.4	Ο
173	Estimating the global demand curve for a leishmaniasis vaccine: A generalisable approach based on global burden of disease estimates. PLoS Neglected Tropical Diseases, 2022, 16, e0010471.	1.3	14
174	Prevalence of Leishmania RNA virus in Leishmania parasites in patients with tegumentary leishmaniasis: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 2022, 16, e0010427.	1.3	4
175	Pediatric uveitis: Role of the pediatrician. Frontiers in Pediatrics, 0, 10, .	0.9	3
176	China's sustainable development evolution and its driving mechanism. Ecological Indicators, 2022, 143, 109390.	2.6	4
177	How to predict the diagnosis of cutaneous leishmaniasis in a Non-Endemic Region. Indian Journal of Dermatology, 2022, 67, 232.	0.1	1
178	New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: synthesis, biological evaluation and molecular modelling simulations. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 2320-2333.	2.5	12
179	Geostatistical modelling of the distribution, risk and burden of podoconiosis in Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene, 0, , .	0.7	0
180	Inositol phosphorylceramide synthase null Leishmania are viable and virulent in animal infections where salvage of host sphingomyelin predominates. Journal of Biological Chemistry, 2022, 298, 102522.	1.6	5

#	Article	IF	CITATIONS
181	An Overview on Leishmaniasis in Romania: Diagnosis and Therapeutics. Tropical Medicine and Infectious Disease, 2022, 7, 334.	0.9	2
182	Discovery of novel Leishmania major trypanothione synthetase inhibitors by high-throughput screening. Biochemical and Biophysical Research Communications, 2022, 637, 308-313.	1.0	2
183	Expanded Proteomic Survey of the Human Parasite Leishmania major Focusing on Changes in Null Mutants of the Golgi GDP-Mannose/Fucose/Arabinopyranose Transporter <i>LPG2</i> and of the Mitochondrial Fucosyltransferase <i>FUT1</i> . Microbiology Spectrum, 0, , .	1.2	0
184	Spiro heterocycles bearing piperidine moiety as potential scaffold for antileishmanial activity: synthesis, biological evaluation, and <i>in silico</i> studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, 330-342.	2.5	7
185	An RNA Interference (RNAi) Toolkit and Its Utility for Functional Genetic Analysis of Leishmania (Viannia). Genes, 2023, 14, 93.	1.0	1
186	Natural products derived steroids as potential anti-leishmanial agents; disease prevalence, underlying mechanisms and future perspectives. Steroids, 2023, 193, 109196.	0.8	3
187	Spatial and temporal distribution of emerging airborne viral infectious diseases outbreaks on a global scale. Zeitschrift Fur Gesundheitswissenschaften, 0, , .	0.8	0
188	Leishmaniasis Epidemiology and Psychosocial Aspect. , 0, , .		1
190	Analysis of Global Leishmaniasis Burden Trends Based on GBD Data. Advances in Clinical Medicine, 2023, 13, 6091-6098.	0.0	0
202	The Burden of Visceral Leishmaniasis: Need of Review, Innovations, and Solutions. , 2023, , 1-17.		0