Enhancement of encoding and retrieval functions throu manipulation of hippocampus

ELife 3, e03061 DOI: 10.7554/elife.03061

Citation Report

#	Article	IF	CITATIONS
1	Dissecting inhibitory brain circuits with genetically-targeted technologies. Frontiers in Neural Circuits, 2014, 8, 124.	1.4	11
2	Disconnected neuromagnetic networks in children born very preterm. NeuroImage: Clinical, 2015, 9, 376-384.	1.4	15
3	Optogenetic feedback control of neural activity. ELife, 2015, 4, e07192.	2.8	108
4	Phase matters: responding to and learning about peripheral stimuli depends on hippocampal Î, phase at stimulus onset. Learning and Memory, 2015, 22, 307-317.	0.5	11
5	Phase organization of network computations. Current Opinion in Neurobiology, 2015, 31, 250-253.	2.0	29
6	Do slow and fast gamma rhythms correspond to distinct functional states in the hippocampal network?. Brain Research, 2015, 1621, 309-315.	1.1	82
7	Prenatal immune activation alters hippocampal place cell firing characteristics in adult animals. Brain, Behavior, and Immunity, 2015, 48, 232-243.	2.0	21
8	For things needing your attention: the role of neocortical gamma in sensory perception. Current Opinion in Neurobiology, 2015, 31, 254-263.	2.0	39
9	Neuronal Circuits for Fear Expression and Recovery: Recent Advances and Potential Therapeutic Strategies. Biological Psychiatry, 2015, 78, 298-306.	0.7	102
10	Closed-Loop and Activity-Guided Optogenetic Control. Neuron, 2015, 86, 106-139.	3.8	328
11	All-Optical Interrogation of Neural Circuits. Journal of Neuroscience, 2015, 35, 13917-13926.	1.7	320
12	Optogenetics: 10 years of microbial opsins in neuroscience. Nature Neuroscience, 2015, 18, 1213-1225.	7.1	1,029
13	Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology. Current Opinion in Neurobiology, 2015, 32, 53-59.	2.0	46
14	Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. ELife, 2016, 5, .	2.8	171
15	Probing Neural Transplant NetworksIn Vivowith Optogenetics and Optogenetic fMRI. Stem Cells International, 2016, 2016, 1-7.	1.2	8
16	Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops. Frontiers in Cellular Neuroscience, 2016, 10, 92.	1.8	151
17	Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination. PLoS Biology, 2016, 14, e1002384.	2.6	68
18	The neurodynamic bases of imitating learning and episodic memory. Biophysics (Russian Federation), 2016, 61, 316-325.	0.2	3

#	Article	IF	CITATIONS
19	Efficacy of nonselective optogenetic control of the medial septum over hippocampal oscillations: the influence of speed and implications for cognitive enhancement. Physiological Reports, 2016, 4, e13048.	0.7	19
20	Potential roles of cholinergic modulation in the neural coding of location and movement speed. Journal of Physiology (Paris), 2016, 110, 52-64.	2.1	14
21	Multiple modes of hippocampal–prefrontal interactions in memory-guided behavior. Current Opinion in Neurobiology, 2016, 40, 161-169.	2.0	58
22	Why Are Children With Epileptic Encephalopathies Encephalopathic?. Journal of Child Neurology, 2016, 31, 1495-1504.	0.7	12
23	Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. Current Topics in Behavioral Neurosciences, 2016, 37, 43-100.	0.8	21
24	Rapid classification of hippocampal replay content for real-time applications. Journal of Neurophysiology, 2016, 116, 2221-2235.	0.9	26
25	Enhanced theta synchronization correlates with the successful retrieval of trace fear memory. Biochemical and Biophysical Research Communications, 2016, 480, 608-614.	1.0	7
26	Temporal Coordination of Hippocampal Neurons Reflects Cognitive Outcome Post-febrile Status Epilepticus. EBioMedicine, 2016, 7, 175-190.	2.7	30
27	4-Hz oscillations synchronize prefrontal–amygdala circuits during fear behavior. Nature Neuroscience, 2016, 19, 605-612.	7.1	300
28	Rhythms of the hippocampal network. Nature Reviews Neuroscience, 2016, 17, 239-249.	4.9	495
29	Predicting the integration of overlapping memories by decoding mnemonic processing states during learning. Neurolmage, 2016, 124, 323-335.	2.1	82
30	Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source so human neural recording. Journal of Neural Engineering, 2017, 14, 035002.	olution to	32
31	Layer-specific optogenetic activation of pyramidal neurons causes beta–gamma entrainment of neonatal networks. Nature Communications, 2017, 8, 14563.	5.8	96
32	Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. Journal of Neural Engineering, 2017, 14, 045003.	1.8	409
33	Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories. Neuron, 2017, 94, 731-743.	3.8	201
34	Falcon: a highly flexible open-source software for closed-loop neuroscience. Journal of Neural Engineering, 2017, 14, 045004.	1.8	33
35	Deciphering Neural Codes of Memory during Sleep. Trends in Neurosciences, 2017, 40, 260-275.	4.2	57
36	Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 2017, 18, 222-235.	4.9	562

#	Article	IF	CITATIONS
39	Low-frequency hippocampal–cortical activity drives brain-wide resting-state functional MRI connectivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6972-E6981.	3.3	80
40	Gamma Oscillations in Rat Hippocampal Subregions Dentate Gyrus, CA3, CA1, and Subiculum Underlie Associative Memory Encoding. Cell Reports, 2017, 21, 2419-2432.	2.9	67
41	Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Frontiers in Neural Circuits, 2017, 11, 102.	1.4	72
42	The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain and Neuroscience Advances, 2018, 2, 239821281877182.	1.8	41
43	Monoamine abnormalities in the SAPAP3 knockout model of obsessive-compulsive disorder-related behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170023.	1.8	27
44	Towards miniaturized closed-loop optogenetic stimulation devices. Journal of Neural Engineering, 2018, 15, 021002.	1.8	18
45	Severe and protracted sleep disruptions in mouse model of post-traumatic stress disorder. Sleep, 2018, 41, .	0.6	17
46	Fornical Closed-Loop Stimulation for Alzheimer's Disease. Trends in Neurosciences, 2018, 41, 418-428.	4.2	39
47	Optophysiology and Behavior in Rodents and Nonhuman Primates. Neuromethods, 2018, , 199-217.	0.2	0
48	Employing Optogenetics in Memory Research. Neuromethods, 2018, , 219-256.	0.2	0
48 49	Employing Optogenetics in Memory Research. Neuromethods, 2018, , 219-256. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience and Biobehavioral Reviews, 2018, 85, 65-80.	0.2	0
	Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive,		
49	Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience and Biobehavioral Reviews, 2018, 85, 65-80. Continuous Phase Estimation for Phase-Locked Neural Stimulation Using an Autoregressive Model for		107
49 50	Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience and Biobehavioral Reviews, 2018, 85, 65-80. Continuous Phase Estimation for Phase-Locked Neural Stimulation Using an Autoregressive Model for Signal Prediction., 2018, 2018, 4736-4739. Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation. PLoS	2.9	107 15
49 50 51	Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience and Biobehavioral Reviews, 2018, 85, 65-80. Continuous Phase Estimation for Phase-Locked Neural Stimulation Using an Autoregressive Model for Signal Prediction., 2018, 2018, 4736-4739. Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation. PLoS ONE, 2018, 13, e0207781. Parsing Hippocampal Theta Oscillations by Nested Spectral Components during Spatial Exploration	2.9	107 15 11
49 50 51 52	Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience and Biobehavioral Reviews, 2018, 85, 65-80. Continuous Phase Estimation for Phase-Locked Neural Stimulation Using an Autoregressive Model for Signal Prediction., 2018, 2018, 4736-4739. Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation. PLoS ONE, 2018, 13, e0207781. Parsing Hippocampal Theta Oscillations by Nested Spectral Components during Spatial Exploration and Memory-Guided Behavior. Neuron, 2018, 100, 940-952.e7. Cholinergic modulation of spatial learning, memory and navigation. European Journal of	2.9 1.1 3.8	107 15 11 147
49 50 51 52 53	Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neuroscience and Biobehavioral Reviews, 2018, 85, 65-80. Continuous Phase Estimation for Phase-Locked Neural Stimulation Using an Autoregressive Model for Signal Prediction., 2018, 2018, 4736-4739. Altering alpha-frequency brain oscillations with rapid analog feedback-driven neurostimulation. PLoS ONE, 2018, 13, e0207781. Parsing Hippocampal Theta Oscillations by Nested Spectral Components during Spatial Exploration and Memory-Guided Behavior. Neuron, 2018, 100, 940-952.e7. Cholinergic modulation of spatial learning, memory and navigation. European Journal of Neuroscience, 2018, 48, 2199-2230. Neural mechanisms of navigation involving interactions of cortical and subcortical structures.	2.9 1.1 3.8 1.2	 107 15 11 147 89

#	Article	IF	CITATIONS
57	Optogenetic stimulation: Understanding memory and treating deficits. Hippocampus, 2018, 28, 457-470.	0.9	22
58	Real-time contextual feedback for close-loop control of navigation. Journal of Neural Engineering, 2019, 16, 065001.	1.8	5
59	Decoding the tradeoff between encoding and retrieval to predict memory for overlapping events. NeuroImage, 2019, 201, 116001.	2.1	18
60	Memory Prosthesis: Is It Time for a Deep Neuromimetic Computing Approach?. Frontiers in Neuroscience, 2019, 13, 667.	1.4	6
61	The Role of Hierarchical Dynamical Functions in Coding for Episodic Memory and Cognition. Journal of Cognitive Neuroscience, 2019, 31, 1271-1289.	1.1	2
62	The Predictive Processing Model of EMDR. Frontiers in Psychology, 2019, 10, 2267.	1.1	6
63	Closed-loop control of gamma oscillations in the amygdala demonstrates their role in spatial memory consolidation. Nature Communications, 2019, 10, 3970.	5.8	51
64	Locomotor and Hippocampal Processing Converge in the Lateral Septum. Current Biology, 2019, 29, 3177-3192.e3.	1.8	47
65	Construction and disruption of spatial memory networks during development. Learning and Memory, 2019, 26, 206-218.	0.5	24
66	Cross-Frequency Coupling Based Neuromodulation for Treating Neurological Disorders. Frontiers in Neuroscience, 2019, 13, 125.	1.4	60
67	Hippocampus and Hippocampal Neurons. , 2019, , 57-68.		3
68	Network-Targeted, Multi-site Direct Cortical Stimulation Enhances Working Memory by Modulating Phase Lag of Low-Frequency Oscillations. Cell Reports, 2019, 29, 2590-2598.e4.	2.9	20
69	Phase-Dependent Suppression of Beta Oscillations in Parkinson's Disease Patients. Journal of Neuroscience, 2019, 39, 1119-1134.	1.7	89
70	The role of replay and theta sequences in mediating hippocampalâ€prefrontal interactions for memory and cognition. Hippocampus, 2020, 30, 60-72.	0.9	51
71	Experimental cortical stroke induces aberrant increase of sharp-wave-associated ripples in the hippocampus and disrupts cortico-hippocampal communication. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1778-1796.	2.4	17
72	Integrating musicâ€based interventions with Gammaâ€frequency stimulation: Implications for healthy ageing. European Journal of Neuroscience, 2022, 55, 3303-3323.	1.2	10
73	Optogenetic "lowâ€ŧheta―pacing of the septohippocampal circuit is sufficient for spatial goal finding and is influenced by behavioral state and cognitive demand. Hippocampus, 2020, 30, 1167-1193.	0.9	20
74	The Olfactory Bulb Facilitates Use of Category Bounds for Classification of Odorants in Different Intensity Groups. Frontiers in Cellular Neuroscience, 2020, 14, 613635.	1.8	1

#	Article	IF	CITATIONS
75	Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell, 2020, 183, 1586-1599.e10.	13.5	153
76	A Systematic Review of Closed-Loop Feedback Techniques in Sleep Studies—Related Issues and Future Directions. Sensors, 2020, 20, 2770.	2.1	16
77	The Basal Forebrain Modulates Neuronal Response in an Active Olfactory Discrimination Task. Frontiers in Cellular Neuroscience, 2020, 14, 141.	1.8	8
78	Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation. Neuron, 2020, 107, 552-565.e10.	3.8	73
79	Common Principles in Functional Organization of VIP/Calretinin Cell-Driven Disinhibitory Circuits Across Cortical Areas. Frontiers in Neural Circuits, 2020, 14, 32.	1.4	37
80	OPETH: Open Source Solution for Real-Time Peri-Event Time Histogram Based on Open Ephys. Frontiers in Neuroinformatics, 2020, 14, 21.	1.3	7
81	Closed-Loop Theta Stimulation in the Orbitofrontal Cortex Prevents Reward-Based Learning. Neuron, 2020, 106, 537-547.e4.	3.8	68
82	Phase-Specific Microstimulation Differentially Modulates Beta Oscillations and Affects Behavior. Cell Reports, 2020, 30, 2555-2566.e3.	2.9	36
83	The effect of fornix deep brain stimulation in brain diseases. Cellular and Molecular Life Sciences, 2020, 77, 3279-3291.	2.4	15
84	Constant Sub-second Cycling between Representations of Possible Futures in the Hippocampus. Cell, 2020, 180, 552-567.e25.	13.5	171
85	Modulation of Human Memory by Deep Brain Stimulation of the Entorhinal-Hippocampal Circuitry. Neuron, 2020, 106, 218-235.	3.8	72
86	An evolving perspective on the dynamic brain: Notes from the Brain Conference on <i>Dynamics of the brain: Temporal aspects of computation</i> . European Journal of Neuroscience, 2021, 53, 3511-3524.	1.2	2
87	Short-term sleep deprivation immediately after contextual conditioning inhibits BDNF signaling and disrupts memory consolidation in predator odor trauma mice model of PTSD. Brain Research, 2021, 1750, 147155.	1.1	11
88	Dissociating Behavior and Spatial Working Memory Demands Using an H Maze. Bio-protocol, 2021, 11, e3947.	0.2	1
89	Stimulation of the right entorhinal white matter enhances visual memory encoding in humans. Brain Stimulation, 2021, 14, 131-140.	0.7	24
90	Phase-Dependent Deep Brain Stimulation: A Review. Brain Sciences, 2021, 11, 414.	1.1	9
94	Prefrontal Cortical Neurons Are Selective for Non-Local Hippocampal Representations during Replay and Behavior. Journal of Neuroscience, 2021, 41, 5894-5908.	1.7	15
95	Linking minimal and detailed models of <scp>CA1</scp> microcircuits reveals how theta rhythms emerge and their frequencies controlled. Hippocampus, 2021, 31, 982-1002.	0.9	5

#	Article	IF	CITATIONS
97	Theta-Range Oscillations in Stress-Induced Mental Disorders as an Oscillotherapeutic Target. Frontiers in Behavioral Neuroscience, 2021, 15, 698753.	1.0	15
98	Prefrontal Theta-Phase Synchronized Brain Stimulation With Real-Time EEG-Triggered TMS. Frontiers in Human Neuroscience, 2021, 15, 691821.	1.0	16
100	Disc1 gene down-regulation impaired synaptic plasticity and recognition memory via disrupting neural activity in mice. Brain Research Bulletin, 2021, 171, 84-90.	1.4	3
101	The role of the anterior nuclei of the thalamus in human memory processing. Neuroscience and Biobehavioral Reviews, 2021, 126, 146-158.	2.9	38
102	Functional Interactions between Entorhinal Cortical Pathways Modulate Theta Activity in the Hippocampus. Biology, 2021, 10, 692.	1.3	10
103	Lateral septum as a nexus for mood, motivation, and movement. Neuroscience and Biobehavioral Reviews, 2021, 126, 544-559.	2.9	55
104	The grid code for ordered experience. Nature Reviews Neuroscience, 2021, 22, 637-649.	4.9	31
107	A state space modeling approach to real-time phase estimation. ELife, 2021, 10, .	2.8	24
108	Deciphering how interneuron specific 3 cells control oriens lacunosum-moleculare cells to contribute to circuit function. Journal of Neurophysiology, 2021, 126, 997-1014.	0.9	4
109	Spiking neural networks and hippocampal function: A web-accessible survey of simulations, modeling methods, and underlying theories. Cognitive Systems Research, 2021, 70, 80-92.	1.9	6
117	A temporal ratio model of the episodic memory organization in the ECI-networks. Contemporary Engineering Sciences, 0, 8, 865-876.	0.2	2
118	Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans. PLoS ONE, 2015, 10, e0144720.	1.1	113
119	Network analysis of exploratory behaviors of mice in a spatial learning and memory task. PLoS ONE, 2017, 12, e0180789.	1.1	9
120	Deciphering the Contribution of Oriens-Lacunosum/Moleculare (OLM) Cells to Intrinsic Î, Rhythms Using Biophysical Local Field Potential (LFP) Models. ENeuro, 2018, 5, ENEURO.0146-18.2018.	0.9	27
121	Functional fission of parvalbumin interneuron classes during fast network events. ELife, 2014, 3, .	2.8	100
122	Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. ELife, 2015, 4, .	2.8	199
123	Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling. ELife, 2015, 4, .	2.8	33
124	Analogue closed-loop optogenetic modulation of hippocampal pyramidal cells dissociates gamma frequency and amplitude. ELife, 2018, 7, .	2.8	15

		CITATION REPORT		
#	Article		IF	CITATIONS
125	The past, present and future of light-gated ion channels and optogenetics. ELife, 2018, 2	7,.	2.8	14
126	Hippocampal theta coordinates memory processing during visual exploration. ELife, 202	0, 9, .	2.8	51
127	Learning improves decoding of odor identity with phase-referenced oscillations in the ol ELife, 2020, 9, .	factory bulb.	2.8	61
128	Differences in reward biased spatial representations in the lateral septum and hippocam 2020, 9, .	pus. ELife,	2.8	29
129	Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. ELife, 2020, 9, .		2.8	47
130	Effects of visual inputs on neural dynamics for coding of location and running speed in r entorhinal cortex. ELife, 2020, 9, .	nedial	2.8	23
145	Toolkit for Oscillatory Real-time Tracking and Estimation (TORTE). Journal of Neuroscien 2022, 366, 109409.	ce Methods,	1.3	9
146	Phase- targeted stimulation modulates phase-amplitude coupling in the motor cortex of brain. Brain Stimulation, 2022, 15, 152-163.	the human	0.7	14
147	Theta rhythmicity governs human behavior and hippocampal signals during memory-dep Nature Communications, 2021, 12, 7048.	endent tasks.	5.8	24
148	Electrophysiology-Based Closed Loop Optogenetic Brain Stimulation Devices: Recent De and Future Prospects. IEEE Reviews in Biomedical Engineering, 2023, 16, 91-108.	evelopments	13.1	5
149	Coupling of pupil- and neuronal population dynamics reveals diverse influences of arous cortical processing. ELife, 2022, 11, .	al on	2.8	29
150	Stimulating at the right time to recover network states in a model of the cortico-basal ganglia-thalamic circuit. PLoS Computational Biology, 2022, 18, e1009887.		1.5	12
152	Prefrontal theta phase-dependent rTMS-induced plasticity of cortical and behavioral resp human cortex. Brain Stimulation, 2022, 15, 391-402.	oonses in	0.7	13
154	The anterior and centromedian thalamus: Anatomy, function, and dysfunction in epileps Research, 2022, 182, 106913.	y. Epilepsy	0.8	9
155	Disrupting ripples: Methods, results, and caveats in closedâ€loop approaches in rodents Sleep Research, 2022, 31, e13532.	. Journal of	1.7	11
180	Impact of optogenetic pulse design on CA3 learning and replay: A neural model. Cell Rep 2022, , 100208.	oorts Methods,	1.4	1
181	Low-Power Lossless Data Compression for Wireless Brain Electrophysiology. Sensors, 20)22, 22, 3676.	2.1	2
182	The role of inhibitory circuits in hippocampal memory processing. Nature Reviews Neuro 23, 476-492.	science, 2022,	4.9	35

#	Article	IF	CITATIONS
183	Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Advanced Drug Delivery Reviews, 2022, 187, 114399.	6.6	6
184	Reversal learning: It's just a phase. Current Biology, 2022, 32, R849-R851.	1.8	0
185	High-resolution optogenetics in space and time. Trends in Neurosciences, 2022, 45, 854-864.	4.2	7
186	Hippocampal-Prefrontal Î, Coupling Develops as Mice Become Proficient in Associative Odorant Discrimination Learning. ENeuro, 2022, 9, ENEURO.0259-22.2022.	0.9	2
187	Phase-locked closed-loop ultrasound stimulation modulates theta and gamma rhythms in the mouse hippocampus. Frontiers in Neuroscience, 0, 16, .	1.4	4
188	The Theta Paradox: 4-8 Hz EEG Oscillations Reflect Both Sleep Pressure and Cognitive Control. Journal of Neuroscience, 2022, 42, 8569-8586.	1.7	22
191	Large-scale, closed-loop interrogation of neural circuits underlying cognition. Trends in Neurosciences, 2022, 45, 968-983.	4.2	9
193	Closed-loop optogenetic control of the dynamics of neural activity in non-human primates. Nature Biomedical Engineering, 2023, 7, 559-575.	11.6	11
194	Correcting the hebbian mistake: Toward a fully error-driven hippocampus. PLoS Computational Biology, 2022, 18, e1010589.	1.5	6
195	Reward-based decision-making in mesial temporal lobe epilepsy patients with unilateral hippocampal sclerosis pre- and post-surgery. NeuroImage: Clinical, 2022, 36, 103251.	1.4	1
196	Stable, interactive modulation of neuronal oscillations produced through brain-machine equilibrium. Cell Reports, 2022, 41, 111616.	2.9	13
197	GRINtrode: a neural implant for simultaneous two-photon imaging and extracellular electrophysiology in freely moving animals. Neurophotonics, 2022, 9, .	1.7	4
198	Human hippocampal responses to network intracranial stimulation vary with theta phase. ELife, 0, 11, .	2.8	4
199	Modulation effect of mouse hippocampal neural oscillations by closed-loop transcranial ultrasound stimulation. Journal of Neural Engineering, 2022, 19, 066038.	1.8	4
200	Rhythmic coordination and ensemble dynamics in the hippocampal-prefrontal network during odor-place associative memory and decision making. ELife, 0, 11, .	2.8	10
201	Frequency matters: how changes in hippocampal theta frequency can influence temporal coding, anxiety-reduction, and memory. Frontiers in Systems Neuroscience, 0, 16, .	1.2	2
204	Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, and hippocampus. Hippocampus, 2023, 33, 465-487.	0.9	16
205	Hippocampal dysfunction underlies delusions of control in schizophrenia. Medical Hypotheses, 2023, 173, 111043.	0.8	0

#	Article	IF	CITATIONS
206	Theta oscillations represent collective dynamics of multineuronal membrane potentials of murine hippocampal pyramidal cells. Communications Biology, 2023, 6, .	2.0	1
207	Gamma amplitude is coupled to opposed hippocampal theta-phase states during the encoding and retrieval of episodic memories in humans. Current Biology, 2023, 33, 1836-1843.e6.	1.8	7
208	Hippocampal inactivation during rearing on hind legs impairs spatial memory. Scientific Reports, 2023, 13, .	1.6	2
211	Effects of Phase-dependent Stimulation on Hippocampal Oscillations: A Computational Modeling Approach. , 2023, , .		0