Probenecid Blocks Human P2X7 Receptor-Induced Dye Mechanism

PLoS ONE

9, e93058

DOI: 10.1371/journal.pone.0093058

Citation Report

#	Article	IF	CITATIONS
1	R270C polymorphism leads to loss of function of the canine P2X7 receptor. Physiological Genomics, 2014, 46, 512-522.	1.0	15
2	The P2X7 Receptor Channel: Recent Developments and the Use of P2X7 Antagonists in Models of Disease. Pharmacological Reviews, 2014, 66, 638-675.	7.1	332
3	Activation, Permeability, and Inhibition of Astrocytic and Neuronal Large Pore (Hemi)channels. Journal of Biological Chemistry, 2014, 289, 26058-26073.	1.6	45
4	Selected ginsenosides of the protopanaxdiol series are novel positive allosteric modulators of <scp>P</scp> 2 <scp>X</scp> 7 receptors. British Journal of Pharmacology, 2015, 172, 3326-3340.	2.7	39
5	An Improved Method for P2X7R Antagonist Screening. PLoS ONE, 2015, 10, e0123089.	1.1	12
6	Inflammasome activation and function in liver disease. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 387-400.	8.2	451
7	Differential distribution of probenecid as detected by on-tissue mass spectrometry. Cell and Tissue Research, 2015, 360, 427-429.	1.5	5
8	Battle of the hemichannels – Connexins and Pannexins in ischemic brain injury. International Journal of Developmental Neuroscience, 2015, 45, 66-74.	0.7	43
9	Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience, 2015, 301, 168-177.	1.1	49
10	Regulation of pannexin and connexin channels and their functional role in skeletal muscles. Cellular and Molecular Life Sciences, 2015, 72, 2929-2935.	2.4	13
11	Emerging role of P2X7 receptors in CNS health and disease. Ageing Research Reviews, 2015, 24, 328-342.	5.0	58
12	Paroxetine suppresses recombinant human P2X7 responses. Purinergic Signalling, 2015, 11, 481-490.	1.1	26
13	The Selective Degradation of Synaptic Connexin 43 Protein by Hypoxia-induced Autophagy Impairs Natural Killer Cell-mediated Tumor Cell Killing. Journal of Biological Chemistry, 2015, 290, 23670-23679.	1.6	81
14	<i>N</i> -Alkyl-Substituted Isatins Enhance P2X7 Receptor-Induced Interleukin-1 <i>β</i> Release from Murine Macrophages. Mediators of Inflammation, 2016, 2016, 1-9.	1.4	8
15	Store-Operated Ca2+ Entry (SOCE) and Purinergic Receptor-Mediated Ca2+ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-Mediated Microglia Activation. Frontiers in Molecular Neuroscience, 2016, 9, 111.	1.4	31
16	Into rather unexplored terrain—transcellular transport across the blood–brain barrier. Glia, 2016, 64, 1097-1123.	2.5	118
17	The microglial ATPâ \in gated ion channel P2X7 as a CNS drug target. Glia, 2016, 64, 1772-1787.	2.5	155
18	P2X7R large pore is partially blocked by pore forming proteins antagonists in astrocytes. Journal of Bioenergetics and Biomembranes, 2016, 48, 309-324.	1.0	15

#	Article	IF	CITATIONS
19	Inhibiting the Inflammasome: A Chemical Perspective. Journal of Medicinal Chemistry, 2016, 59, 1691-1710.	2.9	113
20	Probenecid Application Prevents Clinical Symptoms and Inflammation in Experimental Autoimmune Encephalomyelitis. Inflammation, 2016, 39, 123-128.	1.7	15
21	Inhibitors of connexin and pannexin channels as potential therapeutics. , 2017, 180, 144-160.		114
22	Probenecid arrests the progression of pronounced clinical symptoms in a mouse model of multiple sclerosis. Scientific Reports, 2017, 7, 17214.	1.6	17
23	ATP promotes the fast migration of dendritic cells through the activity of pannexin 1 channels and P2X ₇ receptors. Science Signaling, 2017, 10, .	1.6	130
24	The P2X7 Receptor. Advances in Experimental Medicine and Biology, 2017, 1051, 17-53.	0.8	162
25	Probenecid directly impairs activation of the canine P2X7 receptor. Nucleosides, Nucleotides and Nucleic Acids, 2017, 36, 736-744.	0.4	10
26	Species Difference in Sensitivity of Human and Mouse P2X7 Receptors to Inhibitory Effects of Divalent Metal Cations. Biological and Pharmaceutical Bulletin, 2017, 40, 375-380.	0.6	8
27	Pannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves. Frontiers in Cellular Neuroscience, 2017, 11, 365.	1.8	14
28	Influence of the threeâ€dimensional culture of human bone marrow mesenchymal stromal cells within a macroporous polysaccharides scaffold on Pannexin 1 and Pannexin 3. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1936-e1949.	1.3	6
29	Angiotensin II-Induced Mesangial Cell Damage Is Preceded by Cell Membrane Permeabilization Due to Upregulation of Non-Selective Channels. International Journal of Molecular Sciences, 2018, 19, 957.	1.8	15
30	The two faces of pannexins: new roles in inflammation and repair. Journal of Inflammation Research, 2018, Volume 11, 273-288.	1.6	37
31	Cationic control of Panx1 channel function. American Journal of Physiology - Cell Physiology, 2018, 315, C279-C289.	2.1	18
32	Mechanistic Insight Into the Activation of the NLRP3 Inflammasome by Neisseria gonorrhoeae in Macrophages. Frontiers in Immunology, 2019, 10, 1815.	2.2	14
33	Repurposing drugs targeting the <scp>P2X7</scp> receptor to limit hyperinflammation and disease during influenza virus infection. British Journal of Pharmacology, 2019, 176, 3834-3844.	2.7	48
34	Enhanced Macrophage Pannexin 1 Expression and Hemichannel Activation Exacerbates Lethal Experimental Sepsis. Scientific Reports, 2019, 9, 160.	1.6	30
35	Pannexin1 Is Associated with Enhanced Epithelial-To-Mesenchymal Transition in Human Patient Breast Cancer Tissues and in Breast Cancer Cell Lines. Cancers, 2019, 11, 1967.	1.7	27
36	Pannexinâ€1 promotes NLRP3 activation during apoptosis but is dispensable for canonical or noncanonical inflammasome activation. European Journal of Immunology, 2020, 50, 170-177.	1.6	53

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
37	Pannexin 1 activation and inhibition is permeantâ€selective. Journal of Physiology, 2020, 598, 361-379.	1.3	31	
38	TRPV2 channel as a possible drug target for the treatment of heart failure. Laboratory Investigation, 2020, 100, 207-217.	1.7	23	
39	Revisiting the Idea That Amyloid-Î ² Peptide Acts as an Agonist for P2X7. Frontiers in Molecular Neuroscience, 2020, 13, 166.	1.4	7	
40	The Role of Purinergic Signaling in the Pathophysiology of Perinatal Hypoxic-Ischemic Encephalopathy. , 2020, , .		0	
41	Consideration of Pannexin 1 channels in COVID-19 pathology and treatment. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L121-L125.	1.3	24	
42	To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors?. Frontiers in Pharmacology, 2020, 11, 627.	1.6	30	
43	Pannexinâ€1 mediates fluid shear stressâ€sensitive purinergic signaling and cyst growth in polycystic kidney disease. FASEB Journal, 2020, 34, 6382-6398.	0.2	15	
44	Proteomic insight of seminal plasma in spinal cord injured men submitted to oral probenecid treatment for improved motility. Journal of Spinal Cord Medicine, 2020, , 1-6.	0.7	0	
45	Connexins: Key Players in the Control of Vascular Plasticity and Function. Physiological Reviews, 2020, 100, 525-572.	13.1	51	
46	Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiological Reviews, 2021, 101, 93-145.	13.1	79	
47	Human Pannexin 1 channel: Insight in structure–function mechanism and its potential physiological roles. Molecular and Cellular Biochemistry, 2021, 476, 1529-1540.	1.4	15	
48	New Inhibitory Effects of Cilnidipine on Microglial P2X7 Receptors and IL-1β Release: An Involvement in its Alleviating Effect on Neuropathic Pain. Cells, 2021, 10, 434.	1.8	14	
49	Autocrine regulation of wound healing by ATP release and P2Y2 receptor activation. Life Sciences, 2021, 283, 119850.	2.0	11	
50	Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Frontiers in Pharmacology, 2021, 12, 777607.	1.6	15	
51	Possible role of pannexin 1 channels and purinergic receptors in the pathogenesis and mechanism of action of SARS-CoV-2 and therapeutic potential of targeting them in COVID-19. Life Sciences, 2022, 297, 120482.	2.0	5	
53	P2X7 receptor activation mediates superoxide dismutase 1 (SOD1) release from murine NSC-34 motor neurons. Purinergic Signalling, 2022, 18, 451-467.	1.1	7	
54	BzATP Activates Satellite Clial Cells and Increases the Excitability of Dorsal Root Ganglia Neurons In Vivo. Cells, 2022, 11, 2280.	1.8	10	
55	6-Furopyridine Hexamethylene Amiloride Is a Non-Selective P2X7 Receptor Antagonist. Biomolecules, 2022, 12, 1309.	1.8	5	

#	Article	IF	CITATIONS
56	Effects of probenecid and brilliant blue G on rat enteric glial cells following intestinal ischemia and reperfusion. Acta Histochemica, 2023, 125, 151985.	0.9	4
57	P2X receptors: Insights from the study of the domestic dog. Neuropharmacology, 2023, 224, 109358.	2.0	5
59	Drug repurposing for cardiovascular diseases: New targets and indications for probenecid. British Journal of Pharmacology, 2023, 180, 685-700.	2.7	5
60	C-subfamily ATP binding cassette transporters extrude the calcium fluorescent probe fluo-4 from a cone photoreceptor cell line. Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 1727-1740.	1.4	0