Dietary Patterns Differently Associate with Inflammatic Overweight and Obese Subjects

PLoS ONE

9, e109434

DOI: 10.1371/journal.pone.0109434

Citation Report

#	Article	IF	CITATIONS
1	Metagenomics Health Claim: Are you Rich Enough in your Gut Micro biota?. Biology and Medicine (Aligarh), 2014, 07, .	0.3	0
2	Le microbiote intestinal : un nouvel acteur de la nutrition ?. Cahiers De Nutrition Et De Dietetique, 2015, 50, 6S22-6S29.	0.3	O
3	The influence of diet on the gut microbiota and its consequences for health. Current Opinion in Biotechnology, 2015, 32, 195-199.	6.6	148
4	Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans. Translational Research, 2015, 166, 401-411.	5.0	59
5	Natural environments, ancestral diets, and microbial ecology: is there a modern "paleo-deficit disorder� Part II. Journal of Physiological Anthropology, 2015, 34, 9.	2.6	25
6	Influence of Dietary Factors on Gut Microbiota. , 2016, , 147-154.		O
8	Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance. Obesity Facts, 2016, 9, 379-391.	3.4	48
9	Immune Dysfunction as a Cause and Consequence of Malnutrition. Trends in Immunology, 2016, 37, 386-398.	6.8	411
10	Increased asthma and adipose tissue inflammatory gene expression with obesity and Inuit migration to a western country. Respiratory Medicine, 2016, 111, 8-15.	2.9	7
11	The relationship between non-HDL cholesterol and macrophage phenotypes in human adipose tissue. Journal of Lipid Research, 2016, 57, 1899-1905.	4.2	23
12	High-fat diet modifies the PPAR- \hat{l}^3 pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5934-E5943.	7.1	180
13	Effect of a post-weaning diet supplemented with functional feed additives on ileal transcriptome activity and serum cytokines in piglets challenged with lipopolysaccharide. Veterinary Immunology and Immunopathology, 2016, 182, 136-149.	1.2	7
14	Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food and Function, 2016, 7, 1788-1796.	4.6	106
15	Probiotics in prevention and treatment of obesity: a critical view. Nutrition and Metabolism, 2016, 13, 14.	3.0	235
16	Gut microbiota, obesity and diabetes. Postgraduate Medical Journal, 2016, 92, 286-300.	1.8	377
17	Losing weight for a better health: Role for the gut microbiota. Clinical Nutrition Experimental, 2016, 6, 39-58.	2.0	28
18	The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews Nephrology, 2016, 12, 169-181.	9.6	258
19	Glycemic index, glycemic load, and common psychological disorders. American Journal of Clinical Nutrition, 2016, 103, 201-209.	4.7	59

#	Article	IF	CITATIONS
20	Prebiotics: why definitions matter. Current Opinion in Biotechnology, 2016, 37, 1-7.	6.6	326
21	<i>Akkermansia muciniphila</i> i>and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	12.1	1,379
22	High-fat meal, systemic inflammation and glucose homeostasis in obese children and adolescents. International Journal of Obesity, 2017, 41, 986-989.	3.4	7
24	Energy balance and obesity: what are the main drivers?. Cancer Causes and Control, 2017, 28, 247-258.	1.8	455
25	The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?. Therapie, 2017, 72, 21-38.	1.0	28
27	lonic liquid-based reagents improve the stability of midterm fecal sample storage. Journal of Microbiological Methods, 2017, 139, 68-73.	1.6	2
28	The Microbiota-Obesity Connection, Part 2. Holistic Nursing Practice, 2017, 31, 204-209.	0.7	0
29	Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. Journal of Nutrition, 2017, 147, 1468S-1475S.	2.9	268
30	Dietary Assessment in the MetaCardis Study: Development and Relative Validity of an Online Food Frequency Questionnaire. Journal of the Academy of Nutrition and Dietetics, 2017, 117, 878-888.	0.8	32
31	Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women. British Journal of Nutrition, 2017, 118, 343-352.	2.3	93
32	Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	0.6	36
33	Social Influences on Prevotella and the Gut Microbiome of Young Monkeys. Psychosomatic Medicine, 2017, 79, 888-897.	2.0	47
34	Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Metaâ€Analysis of Prospective Studies. Journal of the American Heart Association, 2017, 6, .	3.7	376
35	A systematic review of the effect of yogurt consumption on chronic diseases risk markers in adults. European Journal of Nutrition, 2017, 56, 1375-1392.	3.9	25
36	Rethinking Diet to Aid Human–Microbe Symbiosis. Trends in Microbiology, 2017, 25, 100-112.	7.7	99
37	Immune System in Undernourished Host. , 2017, , 77-86.		1
38	Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality?. Archives of Medical Research, 2017, 48, 735-753.	3.3	59
39	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	5.8	155

#	Article	IF	CITATIONS
40	Worse inflammatory profile in omnivores than in vegetarians associates with the gut microbiota composition. Diabetology and Metabolic Syndrome, 2017, 9, 62.	2.7	78
41	Dietary Patterns and Healthy Aging. , 2017, , 223-254.		1
42	Specific properties of probiotic strains: relevance and benefits for the host. EPMA Journal, 2018, 9, 205-223.	6.1	68
43	Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutrition Research Reviews, 2018, 31, 153-163.	4.1	144
44	Mild mitochondrial uncoupling induces HSL/ATGL-independent lipolysis relying on a form of autophagy in 3T3-L1 adipocytes. Journal of Cellular Physiology, 2018, 233, 1247-1265.	4.1	15
45	Gut microbiota and obesity: Concepts relevant to clinical care. European Journal of Internal Medicine, 2018, 48, 18-24.	2.2	95
46	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiology Spectrum, 2017, 5, .	3.0	125
47	Estrogens and female liver health. Steroids, 2018, 133, 38-43.	1.8	46
48	Targeted Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially Affects Insulin Sensitivity in Humans. Diabetes Care, 2018, 41, 398-405.	8.6	69
49	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health., 0,, 453-483.		8
50	Dietary Pattern and Macronutrients Profile on the Variation of Inflammatory Biomarkers: Scientific Update. Cardiology Research and Practice, 2018, 2018, 1-18.	1.1	49
51	Long-term metabolic effects of malnutrition: Liver steatosis and insulin resistance following early-life protein restriction. PLoS ONE, 2018, 13, e0199916.	2.5	24
52	Pregestational overweight and obesity are associated with differences in gut microbiota composition and systemic inflammation in the third trimester. PLoS ONE, 2018, 13, e0200305.	2.5	64
53	Fecal Microbiota Transplantation: a Future Therapeutic Option for Obesity/Diabetes?. Current Diabetes Reports, 2019, 19, 51.	4.2	91
54	Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics, 2019, 15, 140.	3.0	26
55	Immune Dysfunctions and Immunotherapy in Colorectal Cancer: The Role of Dendritic Cells. Cancers, 2019, 11, 1491.	3.7	20
56	Predictors of Obesity among Gut Microbiota Biomarkers in African American Men with and without Diabetes. Microorganisms, 2019, 7, 320.	3.6	27
57	Plant-Based Fat, Dietary Patterns Rich in Vegetable Fat and Gut Microbiota Modulation. Frontiers in Nutrition, 2019, 6, 157.	3.7	38

#	Article	IF	CITATIONS
58	Towards improved pharmacotherapy in pulmonary arterial hypertension. Can diet play a role?. Clinical Nutrition ESPEN, 2019, 30, 159-169.	1.2	6
59	Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Current Obesity Reports, 2019, 8, 229-242.	8.4	85
60	Overall Dietary Quality Relates to Gut Microbiota Diversity and Abundance. International Journal of Molecular Sciences, 2019, 20, 1835.	4.1	61
61	A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Frontiers in Physiology, 2018, 9, 1958.	2.8	39
62	The Gut Microbiome in Vegetarians. , 2019, , 393-400.		1
63	The effect of surgical fecal stream diversion of the healthy colon on the colonic microbiota. European Journal of Gastroenterology and Hepatology, 2019, 31, 451-457.	1.6	7
64	Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB Journal, 2019, 33, 4741-4754.	0.5	27
65	Remitted affective disorders and high familial risk of affective disorders associate with aberrant intestinal microbiota. Acta Psychiatrica Scandinavica, 2019, 139, 174-184.	4.5	35
66	Baseline Pro-inflammatory Diet Is Inversely Associated with Change in Weight and Body Fat 6ÂMonths Following-up to Bariatric Surgery. Obesity Surgery, 2019, 29, 457-463.	2.1	14
67	Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clinical Nutrition, 2020, 39, 994-1018.	5.0	61
68	Diet Quality, Obesity and Breast Cancer Risk: An Epidemiologic Study in $C\tilde{A}^3$ rdoba, Argentina. Nutrition and Cancer, 2020, 72, 1026-1035.	2.0	6
69	Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition, 2020, 60, 2174-2211.	10.3	284
70	Engineering the Gut Microbiome for Treatment of Obesity: A Review of Current Understanding and Progress. Biotechnology Journal, 2020, 15, e2000013.	3.5	15
71	Immunomodulatory Effects of Diet and Nutrients in Systemic Lupus Erythematosus (SLE): A Systematic Review. Frontiers in Immunology, 2020, 11, 1477.	4.8	48
72	Anti-Obesity Effect of Dictyophora indusiata Mushroom Polysaccharide (DIP) in High Fat Diet-Induced Obesity via Regulating Inflammatory Cascades and Intestinal Microbiome. Frontiers in Endocrinology, 2020, 11, 558874.	3.5	32
73	Dietary inflammatory potential in relation to the gut microbiome: results from a cross-sectional study. British Journal of Nutrition, 2020, 124, 931-942.	2.3	61
74	Contribution of macronutrients to obesity: implications for precision nutrition. Nature Reviews Endocrinology, 2020, 16, 305-320.	9.6	113
7 5	Yogurt Intake Reduces All-Cause and Cardiovascular Disease Mortality: A Meta-Analysis of Eight Prospective Cohort Studies. Chinese Journal of Integrative Medicine, 2020, 26, 462-468.	1.6	10

#	Article	IF	CITATIONS
76	Prebiotic potential of polyphenols, its effect on gut microbiota and anthropometric/clinical markers: A systematic review of randomised controlled trials. Trends in Food Science and Technology, 2020, 99, 634-649.	15.1	64
77	Does total antioxidant capacity affect the features of metabolic syndrome? A systematic review. Nutrition and Food Science, 2021, 51, 100-113.	0.9	4
78	Type I Interferons as Joint Regulators of Tumor Growth and Obesity. Cancers, 2021, 13, 196.	3.7	9
79	Comparative Analysis of Gut Microbiota in Captive and Wild Oriental White Storks: Implications for Conservation Biology. Frontiers in Microbiology, 2021, 12, 649466.	3.5	17
80	Advances in dietary pattern analysis in nutritional epidemiology. European Journal of Nutrition, 2021, 60, 4115-4130.	3.9	43
82	Impact of a fermented soy beverage supplemented with acerola by-product on the gut microbiota from lean and obese subjects using an in vitro model of the human colon. Applied Microbiology and Biotechnology, 2021, 105, 3771-3785.	3.6	13
83	Beneficial Flavonoid in Foods and Anti-obesity Effect. Food Reviews International, 2023, 39, 560-600.	8.4	7
84	Association of plantâ€based diet index with inflammatory markers and sleep quality in overweight and obese female adults: A crossâ€sectional study. International Journal of Clinical Practice, 2021, 75, e14429.	1.7	13
85	Influence of pro-obesogenic dietary habits on stress-induced cognitive alterations in healthy adult volunteers. Neurobiology of Stress, 2021, 15, 100353.	4.0	1
86	Is there any mediatory association between health-related quality of life and eating behaviors to affect dietary inflammatory index (DII) among reproductive-aged women? A structural equation modeling approach. Nutrition Clinique Et Metabolisme, 2021, 35, 288-296.	0.5	3
87	2 Yogurt Consumption. , 2017, , 23-42.		0
88	Relationship between Diet and Non-alcoholic Fatty Liver Disease: A Review Article. Iranian Journal of Public Health, 2017, 46, 1007-1017.	0.5	40
89	Modified WCRF/AICR Score and All-Cause, Digestive System, Cardiovascular, Cancer and Other-Cause-Related Mortality: A Competing Risk Analysis of Two Cohort Studies Conducted in Southern Italy. Nutrients, 2021, 13, 4002.	4.1	4
90	Underlying evidence for the health benefits of fermented foods in humans. Food and Function, 2022, 13, 4804-4824.	4.6	16
91	Increasing the diversity of dietary fibers in a daily-consumed bread modifies gut microbiota and metabolic profile in subjects at cardiometabolic risk. Gut Microbes, 2022, 14, 2044722.	9.8	28
92	The Yin-Yang Concept of Pediatric Obesity and Gut Microbiota. Biomedicines, 2022, 10, 645.	3.2	4
93	Gut Microbiome, Inflammation, and Cerebrovascular Function: Link Between Obesity and Cognition. Frontiers in Neuroscience, 2021, 15, 761456.	2.8	16
98	Stem Cell Therapy in Combination with Naturopathy: Current Progressive Management of Diabetes and Associated Complications. Current Topics in Medicinal Chemistry, 2023, 23, 649-689.	2.1	6

#	Article	IF	CITATIONS
99	Bağırsak ve Akciğer Mikrobiyotaları Arasındaki İlişki. Ankara Sağlık Bilimleri Dergisi, 2021, 10, 120)-1 6. k	1
100	Effect of a diet based on the dietary guidelines for americans on inflammation markers in women at risk for cardiometabolic disease: results of a randomized, controlled trial. BMC Nutrition, 2022, 8, .	1.6	1
101	Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 133-196.	0.6	3
102	Schizophrenia and obesity: May the gut microbiota serve as a link for the pathogenesis?. , 2023, 2, .		2
103	Nature of intestinal microflora disorders in cardiovascular diseases. Gastroenterologia, 2023, 57, 115-122.	0.3	0
104	Differential impact of environmental factors on systemic and localized autoimmunity. Frontiers in Immunology, 0, 14, .	4.8	4
105	Suboptimal dietary quality is associated with mental symptoms among adults aged 40Âyears and over in China: A population-based cross-sectional study. Journal of Affective Disorders, 2023, 340, 802-811.	4.1	2
107	Gut Microbiota and Obesity: The Chicken or the Egg?. Obesities, 2023, 3, 296-321.	0.8	0
108	Sugar-Rich Food Intake Is Negatively Associated with Plasma Pentraxin 3 Levels. Journal of Obesity and Metabolic Syndrome, 2023, , .	3.6	0
109	Long-chain polyunsaturated fatty acids influence colorectal cancer progression via the interactions between the intestinal microflora and the macrophages. Molecular and Cellular Biochemistry, 0, , .	3.1	0
110	Incidence of Urinary Infections and Behavioral Risk Factors. Nutrients, 2024, 16, 446.	4.1	0
111	The consequences of poor dietary patterns on the proliferation of non-alcoholic fatty liver disease. Cogent Food and Agriculture, 2024, 10, .	1.4	O