Tau Clearance Mechanisms and Their Possible Role in the Disease

Frontiers in Neurology 4, 122 DOI: 10.3389/fneur.2013.00122

Citation Report

#	Article	IF	CITATIONS
1	Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury. Journal of Neuroscience, 2014, 34, 16180-16193.	1.7	797
2	Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease. Biochemical Pharmacology, 2014, 88, 508-516.	2.0	196
3	Lithium and Autophagy. ACS Chemical Neuroscience, 2014, 5, 434-442.	1.7	114
4	Oxidative stress and its effect on cell functional activity in Alzheimer's disease. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2014, 8, 181-191.	0.2	3
5	Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of Tau aggregates. Human Molecular Genetics, 2014, 23, 6762-6772.	1.4	17
6	The Role of Tau Oligomers in the Onset of Alzheimer's Disease Neuropathology. ACS Chemical Neuroscience, 2014, 5, 1178-1191.	1.7	85
7	Tau-induced neurodegeneration: mechanisms and targets. Neuroscience Bulletin, 2014, 30, 346-358.	1.5	78
8	"Tau Oligomers,―What We Know and What We Don't Know. Frontiers in Neurology, 2014, 5, 1.	1.1	138
9	Cerebrospinal Fluid Levels of a 20–22 kDa NH2 Fragment of Human Tau Provide a Novel Neuronal Injury Biomarker in Alzheimer's Disease and Other Dementias. Journal of Alzheimer's Disease, 2014, 42, 211-226.	1.2	40
10	Yeast Model of Amyloid-β and Tau Aggregation in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 47, 9-16.	1.2	16
11	Cycloheximide Treatment Causes a ZVAD-Sensitive Protease-Dependent Cleavage of Human Tau in Drosophila Cells. Journal of Alzheimer's Disease, 2015, 49, 1161-1168.	1.2	2
12	Autophagy in Alzheimer's disease. Reviews in the Neurosciences, 2015, 26, 385-95.	1.4	167
13	Alzheimer's disease — Recent biomarker developments in relation to updated diagnostic criteria. Clinica Chimica Acta, 2015, 449, 3-8.	0.5	25
14	Macroautophagy of Aggregation-Prone Proteins in Neurodegenerative Disease. , 2015, , 117-137.		3
15	Clearance systems in the brain—implications for Alzheimer disease. Nature Reviews Neurology, 2015, 11, 457-470.	4.9	1,127
16	Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Experimental and Molecular Medicine, 2015, 47, e147-e147.	3.2	650
17	The twenty-four KDa C-terminal tau fragment increases with aging in tauopathy mice: implications of prion-like properties. Human Molecular Genetics, 2015, 24, 6403-6416.	1.4	50
18	Neuropathology of Beta-propeller protein associated neurodegeneration (BPAN): a new tauopathy. Acta Neuropathologica Communications, 2015, 3, 39.	2.4	37

#	Article	IF	CITATIONS
19	Time dynamics of protein complexes in the AD11 transgenic mouse model for Alzheimer's disease like pathology. BMC Neuroscience, 2015, 16, 28.	0.8	2
20	Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2016, 8, 129.	1.7	5
21	In vivo Differential Brain Clearance and Catabolism of Monomeric and Oligomeric Alzheimer's Aβ protein. Frontiers in Aging Neuroscience, 2016, 8, 223.	1.7	34
22	A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging?. Frontiers in Molecular Neuroscience, 2016, 9, 93.	1.4	53
23	Targets and Strategies Toward the Development of Alzheimer Therapeutics. Topics in Medicinal Chemistry, 2016, , 1-25.	0.4	0
24	Aquaporin-4 and Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 52, 391-402.	1.2	41
25	Blood biomarkers for brain injury: What are we measuring?. Neuroscience and Biobehavioral Reviews, 2016, 68, 460-473.	2.9	182
26	Blood–brain barrier and blood–cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathology, 2016, 33, 89-96.	1.1	76
27	The Dynamics and Turnover of Tau Aggregates in Cultured Cells. Journal of Biological Chemistry, 2016, 291, 13175-13193.	1.6	59
28	Non-parametric Survival Analysis of EPG5 Gene with Age at Onset of Alzheimer's Disease. Journal of Molecular Neuroscience, 2016, 60, 436-444.	1.1	8
29	Prospects and Challenges for Alzheimer Therapeutics. , 2016, , 605-637.		2
30	LRRK2 Promotes Tau Accumulation, Aggregation and Release. Molecular Neurobiology, 2016, 53, 3124-3135.	1.9	40
31	Genes associated with Parkinson's disease: regulation of autophagy and beyond. Journal of Neurochemistry, 2016, 139, 91-107.	2.1	88
32	Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutritional Neuroscience, 2016, 19, 21-31.	1.5	65
33	Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathologica Communications, 2016, 4, 22.	2.4	175
34	Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurotherapeutics, 2016, 13, 179-189.	2.1	113
35	Strain-Specific Altered Regulatory Response of Rab7a and Tau in Creutzfeldt-Jakob Disease and Alzheimer's Disease. Molecular Neurobiology, 2017, 54, 697-709.	1.9	23
36	Aberrant proteolytic processing and therapeutic strategies in Alzheimer disease. Advances in Biological Regulation, 2017, 64, 33-38.	1.4	30

#	Article	IF	CITATIONS
37	Blocking SIRT1 inhibits cell proliferation and promotes aging through the PI3K/AKT pathway. Life Sciences, 2017, 190, 84-90.	2.0	26
38	Characterization of isolated tau-reactive antibodies from the IVIG product, plasma of patients with Alzheimer's disease and cognitively normal individuals. Journal of Neuroimmunology, 2017, 313, 16-24.	1.1	11
39	Novel Cell Model for Tauopathy Induced by a Cell-Permeable Tau-Related Peptide. ACS Chemical Neuroscience, 2017, 8, 2734-2745.	1.7	11
40	Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Progress in Neurobiology, 2017, 158, 15-44.	2.8	48
41	Discovery of Novel and Highly Selective Inhibitors of Calpain for the Treatment of Alzheimer's Disease: 2-(3-Phenyl-1 <i>H</i> -pyrazol-1-yl)-nicotinamides. Journal of Medicinal Chemistry, 2017, 60, 7123-7138.	2.9	28
42	Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochemical Research, 2017, 42, 876-890.	1.6	190
43	Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation. Journal of NeuroImmune Pharmacology, 2017, 12, 163-170.	2.1	18
44	Bayesian Cox Proportional Hazards Model in Survival Analysis of HACE1 Gene with Age at Onset of Alzheimer's Disease. International Journal of Clinical Biostatistics and Biometrics, 2017, 3, .	0.2	1
45	Designing of dual inhibitors for GSK-3β and CDK5: Virtual screening and <i>in vitro</i> biological activities study. Oncotarget, 2017, 8, 18118-18128.	0.8	21
46	Clearance of Amyloid Beta and Tau in Alzheimer's Disease: from Mechanisms to Therapy. Neurotoxicity Research, 2018, 34, 733-748.	1.3	137
47	Tau Proteolysis in the Pathogenesis of Tauopathies: Neurotoxic Fragments and Novel Biomarkers. Journal of Alzheimer's Disease, 2018, 63, 13-33.	1.2	111
48	The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer's disease. Progress in Neurobiology, 2018, 168, 104-127.	2.8	74
49	A preclinical perspective on the enhanced vulnerability to Alzheimer's disease after early-life stress. Neurobiology of Stress, 2018, 8, 172-185.	1.9	45
50	Synaptic activity protects against AD and FTD-like pathology via autophagic-lysosomal degradation. Molecular Psychiatry, 2018, 23, 1530-1540.	4.1	39
51	"Tau immunotherapy: Hopes and hindrances― Human Vaccines and Immunotherapeutics, 2018, 14, 277-284.	1.4	15
52	Biological evaluation and energetic analyses of novel GSKâ€3 β inhibitors. Journal of Cellular Biochemistry, 2018, 119, 3510-3518.	1.2	4
53	iPSC Modeling of Presenilin1 Mutation in Alzheimer's Disease with Cerebellar Ataxia. Experimental Neurobiology, 2018, 27, 350-364.	0.7	25
54	Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. Particle and Fibre Toxicology, 2018, 15, 44.	2.8	39

#	Article	IF	CITATIONS
55	Blood and cerebrospinal fluid biomarkers. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 158, 217-233.	1.0	10
56	Alzheimer's disease (AD) therapeutics – 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochemical Pharmacology, 2018, 158, 359-375.	2.0	59
57	Endolysosomal degradation of Tau and its role in glucocorticoidâ€driven hippocampal malfunction. EMBO Journal, 2018, 37, .	3.5	73
58	Profiling biomarkers of traumatic axonal injury: From mouse to man. Clinical Neurology and Neurosurgery, 2018, 171, 6-20.	0.6	25
59	Secretion of full-length Tau or Tau fragments in cell culture models. Propagation of Tau in vivo and in vitro. Biomolecular Concepts, 2018, 9, 1-11.	1.0	14
60	Effects of diesel exhaust particles on the expression of tau and autophagy proteins in human neuroblastoma cells. Environmental Toxicology and Pharmacology, 2018, 62, 54-59.	2.0	11
61	Molecular and functional signatures in a novel Alzheimer's disease mouse model assessed by quantitative proteomics. Molecular Neurodegeneration, 2018, 13, 2.	4.4	62
62	Spleen tyrosine kinase (SYK) blocks autophagic Tau degradation in vitro and in vivo. Journal of Biological Chemistry, 2019, 294, 13378-13395.	1.6	31
63	Propagation of Tau via Extracellular Vesicles. Frontiers in Neuroscience, 2019, 13, 698.	1.4	78
64	Combining P301L and S320F tau variants produces a novel accelerated model of tauopathy. Human Molecular Genetics, 2019, 28, 3255-3269.	1.4	24
65	Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells. PLoS ONE, 2019, 14, e0225145.	1.1	10
66	Involvement of organelles and inter-organellar signaling in the pathogenesis of HIV-1 associated neurocognitive disorder and Alzheimer's disease. Brain Research, 2019, 1722, 146389.	1.1	16
67	Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau. Nature Communications, 2019, 10, 4443.	5.8	47
68	Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports, 2019, 13, 684-699.	2.3	46
69	Tauopathy: A common mechanism for neurodegeneration and brain aging. Mechanisms of Ageing and Development, 2019, 178, 72-79.	2.2	83
70	Prenatal noise stress aggravates cognitive decline and the onset and progression of beta amyloid pathology in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2019, 77, 66-86.	1.5	36
71	Four-repeat tauopathies. Progress in Neurobiology, 2019, 180, 101644.	2.8	141
72	Oleocanthal-Rich Extra-Virgin Olive Oil Restores the Blood–Brain Barrier Function through NLRP3 Inflammasome Inhibition Simultaneously with Autophagy Induction in TgSwDI Mice. ACS Chemical Neuroscience, 2019, 10, 3543-3554.	1.7	39

#	Article	IF	CITATIONS
73	Disturbance of Intracerebral Fluid Clearance and Blood–Brain Barrier in Vascular Cognitive Impairment. International Journal of Molecular Sciences, 2019, 20, 2600.	1.8	24
74	Phosphorylation and Acetylation of Proteins as Posttranslational Modification: Implications in Human Health and Associated Diseases. , 2019, , 69-86.		5
75	Neuronally derived extracellular vesicles: an emerging tool for understanding Alzheimer's disease. Molecular Neurodegeneration, 2019, 14, 22.	4.4	51
76	Tau Protein and Zebrafish Models for Tau-Induced Neurodegeneration. Journal of Alzheimer's Disease, 2019, 69, 339-353.	1.2	7
77	Pharmacological doses of melatonin impede cognitive decline in tauâ€related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. Journal of Pineal Research, 2019, 67, e12578.	3.4	53
78	Alteration of the Wnt/GSK3β/βâ€ʿcatenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer's disease model. International Journal of Molecular Medicine, 2019, 44, 313-323.	1.8	20
79	Tauopathy. , 2019, , .		2
80	Failures in Protein Clearance Partly Underlie Late Onset Neurodegenerative Diseases and Link Pathology to Genetic Risk. Frontiers in Neuroscience, 2019, 13, 1304.	1.4	6
81	lt's all about tau. Progress in Neurobiology, 2019, 175, 54-76.	2.8	134
82	The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau). Autophagy, 2019, 15, 583-598.	4.3	39
83	Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer's disease. Journal of Biomolecular Structure and Dynamics, 2020, 38, 248-262.	2.0	37
84	Autophagy Dysfunction in Alzheimer's Disease:ÂMechanistic Insights and New Therapeutic Opportunities. Biological Psychiatry, 2020, 87, 797-807.	0.7	69
85	Noise exposure accelerates the risk of cognitive impairment and Alzheimer's disease: Adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neuroscience and Biobehavioral Reviews, 2020, 117, 110-128.	2.9	54
86	The interaction of α-synuclein and Tau: A molecular conspiracy in neurodegeneration?. Seminars in Cell and Developmental Biology, 2020, 99, 55-64.	2.3	35
87	Degradation of proteins by PROTACs and other strategies. Acta Pharmaceutica Sinica B, 2020, 10, 207-238.	5.7	196
88	Disease-modifying strategies in primary tauopathies. Neuropharmacology, 2020, 167, 107842.	2.0	7
89	Role of endolysosomes and inter-organellar signaling in brain disease. Neurobiology of Disease, 2020, 134, 104670.	2.1	18
90	Resveratrol Protects Optic Nerve Head Astrocytes from Oxidative Stress-Induced Cell Death by Preventing Caspase-3 Activation, Tau Dephosphorylation at Ser422 and Formation of Misfolded Protein Aggregates. Cellular and Molecular Neurobiology, 2020, 40, 911-926.	1.7	17

#	Article	IF	CITATIONS
91	Neural stem cell therapy for neurovascular injury in Alzheimer's disease. Experimental Neurology, 2020, 324, 113112.	2.0	60
92	Transition metal nickel prevents Tau aggregation in Alzheimer's disease. International Journal of Biological Macromolecules, 2020, 156, 1359-1365.	3.6	15
93	Tau accumulates in Crohn's disease gut. FASEB Journal, 2020, 34, 9285-9296.	0.2	17
94	Small molecule modulation of the p75 neurotrophin receptor inhibits multiple amyloid beta-induced tau pathologies. Scientific Reports, 2020, 10, 20322.	1.6	19
95	Neuropathology changed by 3- and 6-months low-level PM2.5 inhalation exposure in spontaneously hypertensive rats. Particle and Fibre Toxicology, 2020, 17, 59.	2.8	20
96	Transmissible Endosomal Intoxication: A Balance between Exosomes and Lysosomes at the Basis of Intercellular Amyloid Propagation. Biomedicines, 2020, 8, 272.	1.4	18
97	Periâ€arterial pathways for clearance of α‧ynuclein and tau from the brain: Implications for the pathogenesis of dementias and for immunotherapy. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2020, 12, e12070.	1.2	17
98	Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain, 2020, 143, 2576-2593.	3.7	227
99	New Insights Into Drug Discovery Targeting Tau Protein. Frontiers in Molecular Neuroscience, 2020, 13, 590896.	1.4	78
100	Tauopathy-Associated Tau Fragment Ending at Amino Acid 224 Is Generated by Calpain-2 Cleavage. Journal of Alzheimer's Disease, 2020, 74, 1143-1156.	1.2	7
101	Brain Derived Exosomes Are a Double-Edged Sword in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 79.	1.4	64
102	Trehalose against Alzheimer's Disease: Insights into a Potential Therapy. BioEssays, 2020, 42, e1900195.	1.2	38
103	Pathological manifestation of the induced pluripotent stem cellâ€derived cortical neurons from an earlyâ€onset Alzheimer's disease patient carrying a presenilinâ€1 mutation (S170F). Cell Proliferation, 2020, 53, e12798.	2.4	14
104	Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation <i>In Vitro</i> . Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	26
105	Alzheimer's disease: phenotypic approaches using disease models and the targeting of tau protein. Expert Opinion on Therapeutic Targets, 2020, 24, 319-330.	1.5	18
106	Specific Degradation of Endogenous Tau Protein and Inhibition of Tau Fibrillation by Tanshinone IIA through the Ubiquitin–Proteasome Pathway. Journal of Agricultural and Food Chemistry, 2020, 68, 2054-2062.	2.4	20
107	β-Arrestin2 arrests the clearance of tau in FTLD. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6968-6970.	3.3	2
108	Small molecule therapeutics for tauopathy in Alzheimer's disease: Walking on the path of most resistance. European Journal of Medicinal Chemistry, 2021, 209, 112915.	2.6	48

#	Article	IF	Citations
109	αâ€synuclein abnormalities trigger focal tau pathology, spreading to various brain areas in Parkinson disease. Journal of Neurochemistry, 2021, 157, 727-751.	2.1	13
110	Age dependent trans-cellular propagation of human tau aggregates in Drosophila disease models. Brain Research, 2021, 1751, 147207.	1.1	4
111	Neuroprotective effects of oleocanthal in neurological disorders. , 2021, , 671-679.		0
112	Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Frontiers in Neurology, 2020, 11, 595532.	1.1	144
114	Strain-specific clearance of seed-dependent tau aggregation by lithium-induced autophagy. Biochemical and Biophysical Research Communications, 2021, 543, 65-71.	1.0	6
115	Lactobacillus Rhamnosus UBLR-58 and Diclofenac Potentiate the Anti- Alzheimer Activity of Curcumin in Mice. Current Enzyme Inhibition, 2021, 17, 49-56.	0.3	4
116	Enhancing Top-Down Proteomics of Brain Tissue with FAIMS. Journal of Proteome Research, 2021, 20, 2780-2795.	1.8	36
117	Tau seeds are subject to aberrant modifications resulting in distinct signatures. Cell Reports, 2021, 35, 109037.	2.9	14
118	Alzheimer's disease and type 2 diabetes mellitus: Pathophysiologic and pharmacotherapeutics links. World Journal of Diabetes, 2021, 12, 745-766.	1.3	28
119	Possible Mechanisms of Tau Spread and Toxicity in Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 707268.	1.8	41
120	Implications of Valosin-containing Protein in Promoting Autophagy to Prevent Tau Aggregation. Neuroscience, 2021, 476, 125-134.	1.1	2
121	Alzheimer's Disease and other Tauopathies: Exploring Efficacy of Medicinal Plant-derived Compounds in Alleviating Tau-mediated Neurodegeneration. Current Molecular Pharmacology, 2022, 15, 361-379.	0.7	16
122	Enlargement of early endosomes and traffic jam in basal forebrain cholinergic neurons in Alzheimer's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 207-218.	1.0	2
123	Readily Releasable Stores of Calcium in Neuronal Endolysosomes: Physiological and Pathophysiological Relevance. Advances in Experimental Medicine and Biology, 2020, 1131, 681-697.	0.8	9
124	Mechanisms of Axonal Sorting of Tau and Influence of theÂAxon Initial Segment on Tau Cell Polarity. Advances in Experimental Medicine and Biology, 2019, 1184, 69-77.	0.8	21
125	Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 1955-1962.	1.4	26
126	Altered Cholesterol Intracellular Trafficking and the Development of Pathological Hallmarks of Sporadic AD. Journal of Parkinson's Disease and Alzheimer's Disease, 2014, 1, .	1.5	4
127	Development of AD-Like Pathology in Skeletal Muscle. Journal of Parkinson's Disease and Alzheimer's Disease, 2019, 6, 1-10.	1.5	6

#	Article	IF	CITATIONS
129	Dynamic changes of autophagic flux induced by Abeta in the brain of postmortem Alzheimer's disease patients, animal models and cell models. Aging, 2020, 12, 10912-10930.	1.4	23
130	Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases. Current Topics in Medicinal Chemistry, 2020, 20, 2025-2043.	1.0	18
131	The Integrative Five-Fluid Circulation System in the Human Body. Open Journal of Molecular and Integrative Physiology, 2016, 06, 45-97.	0.6	11
132	Tau Post-Translational Modifications: Potentiators of Selective Vulnerability in Sporadic Alzheimer's Disease. Biology, 2021, 10, 1047.	1.3	14
133	Human Tau Isoforms and Proteolysis for Production of Toxic Tau Fragments in Neurodegeneration. Frontiers in Neuroscience, 2021, 15, 702788.	1.4	33
134	Neurodegenerative Diseases and Autophagy. , 2018, , 299-343.		1
141	Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies. Chemical Society Reviews, 2022, 51, 513-565.	18.7	68
142	Regulation of Neurodegeneration-associated Protein Fragments by the N-degron Pathways. Neurotoxicity Research, 2022, 40, 298-318.	1.3	5
143	Therapeutic strategies for tauopathies and drug repurposing as a potential approach. Biochemical Pharmacology, 2022, 198, 114979.	2.0	7
144	The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Frontiers in Cellular Neuroscience, 2022, 16, 844211.	1.8	7
145	Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. International Journal of Molecular Sciences, 2022, 23, 5404.	1.8	36
146	SUMO1 Modification of Tau in Progressive Supranuclear Palsy. Molecular Neurobiology, 2022, 59, 4419-4435.	1.9	4
147	The association of enlarged perivascular space with microglia-related inflammation and Alzheimer's pathology in cognitively normal elderly. Neurobiology of Disease, 2022, 170, 105755.	2.1	15
149	Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer's Disease?. International Journal of Molecular Sciences, 2022, 23, 6098.	1.8	8
150	Tauopathy and Epilepsy Comorbidities and Underlying Mechanisms. Frontiers in Aging Neuroscience, 0, 14, .	1.7	7
151	Bioinspired Self-assembly Nanochaperone Inhibits Tau-Derived PHF6 Peptide Aggregation in Alzheimer's Disease. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1062-1070.	2.0	3
153	Membrane estrogen receptor ERÎ \pm activation improves tau clearance via autophagy induction in a tauopathy cell model. Brain Research, 2022, 1795, 148079.	1.1	6
154	Tau propagation and autophagy. , 2022, , 173-194.		0

#	Article	IF	CITATIONS
155	Based on molecular structures: Amyloid-β generation, clearance, toxicity and therapeutic strategies. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	6
156	The Role of Glymphatic System in Alzheimer's and Parkinson's Disease Pathogenesis. Biomedicines, 2022, 10, 2261.	1.4	19
158	Chaperoning activity of the cyclophilin family prevents tau aggregation. Protein Science, 2022, 31, .	3.1	4
159	The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer's disease. Frontiers in Endocrinology, 0, 13, .	1.5	7
160	Tau kinetics in Alzheimer's disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	5
161	Direct and Indirect Effects of Filamin A on Tau Pathology in Neuronal Cells. Molecular Neurobiology, 2023, 60, 1021-1039.	1.9	4
162	Alterations in Cerebellar Microtubule Cytoskeletal Network in a ValproicAcid-Induced Rat Model of Autism Spectrum Disorders. Biomedicines, 2022, 10, 3031.	1.4	4
163	Neurobiochemical, Peptidomic, and Bioinformatic Approaches to Characterize Tauopathy Peptidome Biomarker Candidates in Experimental Mouse Model of Traumatic Brain Injury. Molecular Neurobiology, 2023, 60, 2295-2319.	1.9	0
164	24-Hydroxycholesterol Induces Tau Proteasome-Dependent Degradation via the SIRT1/PGC1α/Nrf2 Pathway: A Potential Mechanism to Counteract Alzheimer's Disease. Antioxidants, 2023, 12, 631.	2.2	2
165	Levosimendan inhibits disulfide tau oligomerization and ameliorates tau pathology in TauP301L-BiFC mice. Experimental and Molecular Medicine, 2023, 55, 612-627.	3.2	1
166	An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer's disease. Nature Communications, 2023, 14, .	5.8	26