Neural masses and fields in dynamic causal modeling

Frontiers in Computational Neuroscience 7, 57 DOI: 10.3389/fncom.2013.00057

Citation Report

#	Article	IF	CITATIONS
1	Understanding DCM: Ten simple rules for the clinician. NeuroImage, 2013, 83, 542-549.	2.1	65
2	Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study toward modeling sleep and wakefulness. Frontiers in Neural Circuits, 2014, 8, 46.	1.4	7
3	Estimation of effective connectivity via data-driven neural modeling. Frontiers in Neuroscience, 2014, 8, 383.	1.4	50
4	A systematic framework for functional connectivity measures. Frontiers in Neuroscience, 2014, 8, 405.	1.4	279
5	MULTIPLE OSCILLATORY STATES IN MODELS OF COLLECTIVE NEURONAL DYNAMICS. International Journal of Neural Systems, 2014, 24, 1450020.	3.2	28
6	A neural mass model based on single cell dynamics to model pathophysiology. Journal of Computational Neuroscience, 2014, 37, 549-568.	0.6	16
7	Applying EEG phase synchronization measures to non-linearly coupled neural mass models. Journal of Neuroscience Methods, 2014, 226, 1-14.	1.3	23
8	Large-scale brain dynamics in disorders of consciousness. Current Opinion in Neurobiology, 2014, 25, 7-14.	2.0	115
9	Beyond the Connectome: The Dynome. Neuron, 2014, 83, 1319-1328.	3.8	315
10	Neocortical dynamics due to axon propagation delays in cortico-cortical fibers: EEG traveling and standing waves with implications for top-down influences on local networks and white matter disease. Brain Research, 2014, 1542, 138-166.	1.1	47
11	A tutorial on variational Bayes for latent linear stochastic time-series models. Journal of Mathematical Psychology, 2014, 60, 1-19.	1.0	22
12	Neural masses and fields: modeling the dynamics of brain activity. Frontiers in Computational Neuroscience, 2014, 8, 149.	1.2	33
13	Empirical Bayes for Group (DCM) Studies: A Reproducibility Study. Frontiers in Human Neuroscience, 2015, 9, 670.	1.0	41
14	Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling. NeuroImage, 2015, 118, 508-519.	2.1	39
15	Modeling multiple time scale firing rate adaptation in a neural network of local field potentials. Journal of Computational Neuroscience, 2015, 38, 189-202.	0.6	8
16	Tracking slow modulations in synaptic gain using dynamic causal modelling: Validation in epilepsy. NeuroImage, 2015, 107, 117-126.	2.1	43
17	On self-feedback connectivity in neural mass models applied to event-related potentials. NeuroImage, 2015, 108, 364-376.	2.1	11
18	Circuit to Construct Mapping: A Mathematical Tool for Assisting the Diagnosis and Treatment in Major Depressive Disorder. Frontiers in Psychiatry, 2015, 6, 29.	1.3	12

λτιών Ρερώ

#	Article	IF	CITATIONS
19	A probabilistic method for determining cortical dynamics during seizures. Journal of Computational Neuroscience, 2015, 38, 559-575.	0.6	6
20	Characterization of Cortical Networks and Corticocortical Functional Connectivity Mediating Arbitrary Visuomotor Mapping. Journal of Neuroscience, 2015, 35, 12643-12658.	1.7	41
21	Parametric estimation of cross-frequency coupling. Journal of Neuroscience Methods, 2015, 243, 94-102.	1.3	44
22	Random graph theory and neuropercolation for modeling brain oscillations at criticality. Current Opinion in Neurobiology, 2015, 31, 181-188.	2.0	37
23	Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks. Neural Plasticity, 2016, 2016, 1-13.	1.0	2
24	Causal Role of Thalamic Interneurons in Brain State Transitions: A Study Using a Neural Mass Model Implementing Synaptic Kinetics. Frontiers in Computational Neuroscience, 2016, 10, 115.	1.2	15
25	Brain Network Activation Analysis Utilizing Spatiotemporal Features for Event Related Potentials Classification. Frontiers in Computational Neuroscience, 2016, 10, 137.	1.2	10
26	The Cluster Variation Method: A Primer for Neuroscientists. Brain Sciences, 2016, 6, 44.	1.1	5
27	Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 438-458.	6.6	32
28	Neural mass model-based tracking of anesthetic brain states. NeuroImage, 2016, 133, 438-456.	2.1	37
29	Intersubject variability and induced gamma in the visual cortex: DCM with empirical <scp>B</scp> ayes and neural fields. Human Brain Mapping, 2016, 37, 4597-4614.	1.9	22
30	Computational models as statistical tools. Current Opinion in Behavioral Sciences, 2016, 11, 93-99.	2.0	19
31	Circadian dynamics in measures of cortical excitation and inhibition balance. Scientific Reports, 2016, 6, 33661.	1.6	58
32	Inputs to prefrontal cortex support visual recognition in the aging brain. Scientific Reports, 2016, 6, 31943.	1.6	22
33	Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex. NeuroImage, 2016, 133, 224-232.	2.1	40
34	Probabilistic delay differential equation modeling of event-related potentials. NeuroImage, 2016, 136, 227-257.	2.1	9
35	A hemodynamic model for layered BOLD signals. NeuroImage, 2016, 125, 556-570.	2.1	128
36	Time-Variant Modeling of Brain Processes. Proceedings of the IEEE, 2016, 104, 262-281.	16.4	14

#	Article	IF	CITATIONS
37	Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations. NeuroImage, 2016, 124, 43-53.	2.1	33
38	Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating. NeuroImage, 2016, 125, 1142-1154.	2.1	41
39	Tracking Electroencephalographic Changes Using Distributions of Linear Models: Application to Propofol-Based Depth of Anesthesia Monitoring. IEEE Transactions on Biomedical Engineering, 2017, 64, 870-881.	2.5	9
40	Macroscopic neural mass model constructed from a current-based network model of spiking neurons. Biological Cybernetics, 2017, 111, 91-103.	0.6	0
41	Abnormal frontoparietal synaptic gain mediating the <scp>P</scp> 300 in patients with psychotic disorder and their unaffected relatives. Human Brain Mapping, 2017, 38, 3262-3276.	1.9	21
42	A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion. Journal of Neuroscience, 2017, 37, 3864-3874.	1.7	80
43	On the Global Dynamics of an Electroencephalographic Mean Field Model of the Neocortex. SIAM Journal on Applied Dynamical Systems, 2017, 16, 1969-2029.	0.7	6
44	Empirical validation of directed functional connectivity. NeuroImage, 2017, 146, 275-287.	2.1	33
45	Dynamic causal modelling of seizure activity in a rat model. NeuroImage, 2017, 146, 518-532.	2.1	27
46	A neural mass model of cross frequency coupling. PLoS ONE, 2017, 12, e0173776.	1.1	18
47	Modulation of taskâ€related cortical connectivity in the acute and subacute phase after stroke. European Journal of Neuroscience, 2018, 47, 1024-1032.	1.2	11
48	Peak visual gamma frequency is modified across the healthy menstrual cycle. Human Brain Mapping, 2018, 39, 3187-3202.	1.9	33
49	Generative models for clinical applications in computational psychiatry. Wiley Interdisciplinary Reviews: Cognitive Science, 2018, 9, e1460.	1.4	34
50	Dynamic Causal Modeling and Its Application to Psychiatric Disorders. , 2018, , 117-144.		4
51	Ion channels in EEC: isolating channel dysfunction in NMDA receptor antibody encephalitis. Brain, 2018, 141, 1691-1702.	3.7	58
52	Human fronto-parietal response scattering subserves vigilance at night. NeuroImage, 2018, 175, 354-364.	2.1	18
53	MULAN: Evaluation and ensemble statistical inference for functional connectivity. NeuroImage, 2018, 166, 167-184.	2.1	16
54	Great Expectations: Is there Evidence for Predictive Coding in Auditory Cortex?. Neuroscience, 2018, 389, 54-73.	1.1	281

		CITATION REPORT		
#	Article		IF	CITATIONS
55	Context-Dependent Risk Aversion: A Model-Based Approach. Frontiers in Psychology, 24	018, 9, 2053.	1.1	5
56	Repetition Priming Effects for Famous Faces through Dynamic Causal Modelling of Late Eventâ€Related Brain Potentials. European Journal of Neuroscience, 2018, 49, 1330-13	encyâ€Corrected 47.	1.2	6
57	NMDA-receptor antibodies alter cortical microcircuit dynamics. Proceedings of the Nati of Sciences of the United States of America, 2018, 115, E9916-E9925.	onal Academy	3.3	39
58	Calcium imaging and dynamic causal modelling reveal brain-wide changes in effective c synaptic dynamics during epileptic seizures. PLoS Computational Biology, 2018, 14, e1		1.5	57
59	Generic dynamic causal modelling: An illustrative application to Parkinson's disease. Ne 181, 818-830.	urolmage, 2018,	2.1	41
60	Resting-state neural activity and connectivity associated with subjective happiness. Sci 2019, 9, 12098.	entific Reports,	1.6	24
61	Dynamic causal modeling for calcium imaging: Exploration of differential effective conr sensory processing in a barrel cortical column. NeuroImage, 2019, 201, 116008.	ectivity for	2.1	4
62	Neural field models for latent state inference: Application to large-scale neuronal record Computational Biology, 2019, 15, e1007442.	lings. PLoS	1.5	5
63	Dynamic causal modelling of fluctuating connectivity in resting-state EEG. NeuroImage 476-484.	, 2019, 189,	2.1	37
64	A guide to group effective connectivity analysis, part 1: First level analysis with DCM fo NeuroImage, 2019, 200, 174-190.	r fMRI.	2.1	242
65	Increasing robustness of pairwise methods for effective connectivity in magnetic reson by using fractional moment series of BOLD signal distributions. Network Neuroscience, 1009-1037.	ance imaging 2019, 3,	1.4	5
66	A new computational approach to estimate whole-brain effective connectivity from fun structural MRI, applied to language development. Scientific Reports, 2019, 9, 8479.	ctional and	1.6	16
67	Dynamic Causal Modelling of Active Vision. Journal of Neuroscience, 2019, 39, 6265-62	275.	1.7	15
68	The Neural Dynamics of Novel Scene Imagery. Journal of Neuroscience, 2019, 39, 4375	-4386.	1.7	74
69	Dynamic Causal Modeling of the Relationship between Cognition and Theta–alpha O Adults with Down Syndrome. Cerebral Cortex, 2019, 29, 2279-2290.	scillations in	1.6	20
70	Neuronal message passing using Mean-field, Bethe, and Marginal approximations. Scier 2019, 9, 1889.	itific Reports,	1.6	88
71	Thalamocortical dynamics underlying spontaneous transitions in beta power in Parkins Neurolmage, 2019, 193, 103-114.	onism.	2.1	21
72	Neurophysiological effects of continuous cortical stimulation in epilepsy – Spike and ECoG activity. Clinical Neurophysiology, 2019, 130, 38-45.	spontaneous	0.7	5

#	ARTICLE	IF	CITATIONS
73	Estimating Directed Connectivity from Cortical Recordings and Reconstructed Sources. Brain Topography, 2019, 32, 741-752.	0.8	24
74	Working Memory Load Modulates Neuronal Coupling. Cerebral Cortex, 2019, 29, 1670-1681.	1.6	22
75	Dynamic causal modelling revisited. NeuroImage, 2019, 199, 730-744.	2.1	196
76	Co-registration of eye movements and neuroimaging for studying contextual predictions in natural reading. Language, Cognition and Neuroscience, 2020, 35, 595-612.	0.7	17
77	Dynamic effective connectivity. Neurolmage, 2020, 207, 116453.	2.1	48
78	Dynamic Causal Modeling for fMRI With Wilson-Cowan-Based Neuronal Equations. Frontiers in Neuroscience, 2020, 14, 593867.	1.4	14
79	Modules or Mean-Fields?. Entropy, 2020, 22, 552.	1.1	34
80	Dynamic Causal Modelling of the Reduced Habituation to Painful Stimuli in Migraine: An EEG Study. Brain Sciences, 2020, 10, 712.	1.1	11
81	Low-dimensional firing-rate dynamics for populations of renewal-type spiking neurons. Physical Review E, 2020, 102, 022407.	0.8	13
82	Active inference on discrete state-spaces: A synthesis. Journal of Mathematical Psychology, 2020, 99, 102447.	1.0	119
83	Changes in the Effective Connectivity of the Social Brain When Making Inferences About Close Others vs. the Self. Frontiers in Human Neuroscience, 2020, 14, 151.	1.0	16
84	Decomposing neural responses to melodic surprise in musicians and non-musicians: Evidence for a hierarchy of predictions in the auditory system. NeuroImage, 2020, 215, 116816.	2.1	28
85	GABA-ergic Dynamics in Human Frontotemporal Networks Confirmed by Pharmaco-Magnetoencephalography. Journal of Neuroscience, 2020, 40, 1640-1649.	1.7	27
86	Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG. NeuroImage, 2020, 216, 116734.	2.1	31
87	Dynamic causal modeling of hippocampal activity measured via mesoscopic voltage-sensitive dye imaging. Neurolmage, 2020, 213, 116755.	2.1	1
88	Thalamocortical inhibitory dynamics support conscious perception. NeuroImage, 2020, 220, 117066.	2.1	7
89	vmPFC Drives Hippocampal Processing during Autobiographical Memory Recall Regardless of Remoteness. Cerebral Cortex, 2020, 30, 5972-5987.	1.6	71
90	Musical prediction error responses similarly reduced by predictive uncertainty in musicians and nonâ€musicians. European Journal of Neuroscience, 2020, 51, 2250-2269.	1.2	25

		ILLI OILI	
#	Article	IF	CITATIONS
91	Bayesian fusion and multimodal DCM for EEG and fMRI. NeuroImage, 2020, 211, 116595.	2.1	30
92	The Role of Hippocampal–Ventromedial Prefrontal Cortex Neural Dynamics in Building Mental Representations. Journal of Cognitive Neuroscience, 2021, 33, 89-103.	1.1	24
93	Parcels and particles: Markov blankets in the brain. Network Neuroscience, 2021, 5, 211-251.	1.4	48
94	Cognition coming about: Self-organisation and free-energy. Physics of Life Reviews, 2021, 36, 44-46.	1.5	3
97	Pairwise maximum entropy model explains the role of white matter structure in shaping emergent co-activation states. Communications Biology, 2021, 4, 210.	2.0	10
98	Evaluating Effective Connectivity of Trust in Human–Automation Interaction: A Dynamic Causal Modeling (DCM) Study. Human Factors, 2022, 64, 1051-1069.	2.1	6
100	Neural Dynamics under Active Inference: Plausibility and Efficiency of Information Processing. Entropy, 2021, 23, 454.	1.1	22
101	A computational framework for optimal control of a self-adjustive neural system with activity-dependent and homeostatic plasticity. NeuroImage, 2021, 230, 117805.	2.1	2
103	SEED-G: Simulated EEG Data Generator for Testing Connectivity Algorithms. Sensors, 2021, 21, 3632.	2.1	15
104	Dynamic causal modelling of immune heterogeneity. Scientific Reports, 2021, 11, 11400.	1.6	3
105	Markov blankets in the brain. Neuroscience and Biobehavioral Reviews, 2021, 125, 88-97.	2.9	29
106	Cortical signatures of precision grip force control in children, adolescents, and adults. ELife, 2021, 10, .	2.8	6
107	TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. Frontiers in Psychiatry, 2021, 12, 680811.	1.3	69
108	An introduction to thermodynamic integration and application to dynamic causal models. Cognitive Neurodynamics, 2022, 16, 1-15.	2.3	4
109	Musicianship and melodic predictability enhance neural gain in auditory cortex during pitch deviance detection. Human Brain Mapping, 2021, 42, 5595-5608.	1.9	11
110	Patient-Specific Network Connectivity Combined With a Next Generation Neural Mass Model to Test Clinical Hypothesis of Seizure Propagation. Frontiers in Systems Neuroscience, 2021, 15, 675272.	1.2	12
111	Adiabatic dynamic causal modelling. NeuroImage, 2021, 238, 118243.	2.1	16
112	Multimodal electrophysiological analyses reveal that reduced synaptic excitatory neurotransmission underlies seizures in a model of NMDAR antibody-mediated encephalitis. Communications Biology, 2021, 4, 1106.	2.0	20

D

#	Article	IF	CITATIONS
113	Technical note: A fast and robust integrator of delay differential equations in DCM for electrophysiological data. NeuroImage, 2021, 244, 118567.	2.1	4
114	Predicting neuronal response properties from hemodynamic responses in the auditory cortex. NeuroImage, 2021, 244, 118575.	2.1	4
115	A brain atlas of axonal and synaptic delays based on modelling of cortico-cortical evoked potentials. Brain, 2022, 145, 1653-1667.	3.7	34
116	Modelling thalamocortical circuitry shows that visually induced LTP changes laminar connectivity in human visual cortex. PLoS Computational Biology, 2021, 17, e1008414.	1.5	6
118	DCM, Conductance Based Models and Clinical Applications. Springer Series in Computational Neuroscience, 2015, , 43-70.	0.3	6
119	Multilevel Computational Modelling in Epilepsy: Classical Studies and Recent Advances. Springer Series in Computational Neuroscience, 2015, , 161-188.	0.3	4
120	A Neural Mass Computational Framework to Study Synaptic Mechanisms Underlying Alpha and Theta Rhythms. Springer Series in Bio-/neuroinformatics, 2017, , 405-427.	0.1	3
121	Directed connectivity between primary and premotor areas underlying ankle force control in young and older adults. Neurolmage, 2020, 218, 116982.	2.1	11
127	Dynamic causal modelling of COVID-19. Wellcome Open Research, 2020, 5, 89.	0.9	32
128	Dynamic causal modelling of COVID-19. Wellcome Open Research, 2020, 5, 89.	0.9	41
128 129	Dynamic causal modelling of COVID-19. Wellcome Open Research, 2020, 5, 89. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. PLoS Computational Biology, 2017, 13, e1005507.	0.9	41 112
	Towards a theory of cortical columns: From spiking neurons to interacting neural populations of		
129	Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. PLoS Computational Biology, 2017, 13, e1005507. Classifying dynamic transitions in high dimensional neural mass models: A random forest approach.	1.5	112
129 130	Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. PLoS Computational Biology, 2017, 13, e1005507. Classifying dynamic transitions in high dimensional neural mass models: A random forest approach. PLoS Computational Biology, 2018, 14, e1006009. Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power	1.5 1.5	112 13
129 130 132	 Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. PLoS Computational Biology, 2017, 13, e1005507. Classifying dynamic transitions in high dimensional neural mass models: A random forest approach. PLoS Computational Biology, 2018, 14, e1006009. Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities. NeuroImage, 2021, 245, 118662. Causal Modeling: Methods and Their Application to Speech and Language. Innovations in Cognitive 	1.5 1.5 2.1	112 13 10
129 130 132 133	 Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. PLoS Computational Biology, 2017, 13, e1005507. Classifying dynamic transitions in high dimensional neural mass models: A random forest approach. PLoS Computational Biology, 2018, 14, e1006009. Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities. NeuroImage, 2021, 245, 118662. Causal Modeling: Methods and Their Application to Speech and Language. Innovations in Cognitive Neuroscience, 2017, 155-174. Dynamic Causal Modelling of Dynamic Dysfunction in NMDA-Receptor Antibody Encephalitis. Springer 	1.5 1.5 2.1 0.3	112 13 10 0
129 130 132 133 134	 Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. PLoS Computational Biology, 2017, 13, e1005507. Classifying dynamic transitions in high dimensional neural mass models: A random forest approach. PLoS Computational Biology, 2018, 14, e1006009. Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities. NeuroImage, 2021, 245, 118662. Causal Modeling: Methods and Their Application to Speech and Language. Innovations in Cognitive Neuroscience, 2017, , 155-174. Dynamic Causal Modelling of Dynamic Dysfunction in NMDA-Receptor Antibody Encephalitis. Springer Series in Bio-/neuroinformatics, 2017, , 121-148. Odor valence modulates cortico-cortical interactions: a preliminary study using DCM for EEC. , 2021, 	1.5 1.5 2.1 0.3	112 13 10 0 1

#	Article	IF	CITATIONS
157	A review of computational models for gamma oscillation dynamics: from spiking neurons to neural masses. Nonlinear Dynamics, 2022, 108, 1849-1866.	2.7	12
158	On the benefit of overparameterization in state reconstruction. , 2021, , .		3
164	Whole-Brain Modelling: Past, Present, and Future. Advances in Experimental Medicine and Biology, 2022, 1359, 313-355.	0.8	2
165	Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer's disease. ELife, 0, 11, .	2.8	45
167	Case Report: Prolonged Effects of Short-Term Transcranial Magnetic Stimulation on EEG Biomarkers, Spectral Power, and Seizure Frequency. Frontiers in Neuroscience, 0, 16, .	1.4	5
169	Generative Models of Brain Dynamics. Frontiers in Artificial Intelligence, 0, 5, .	2.0	11
170	Investigation on how dynamic effective connectivity patterns encode the fluctuating pain intensity in chronic migraine. Neurobiology of Pain (Cambridge, Mass), 2022, 12, 100100.	1.0	1
171	Source Models. , 2022, , 89-133.		0
172	Toward biophysical markers of depression vulnerability. Frontiers in Psychiatry, 0, 13, .	1.3	1
175	A systematic review of the prediction of consumer preference using EEG measures and machine-learning in neuromarketing research. Brain Informatics, 2022, 9, .	1.8	7
176	Closed-form continuous-time neural networks. Nature Machine Intelligence, 2022, 4, 992-1003.	8.3	16
177	Dynamic interactions between anterior insula and anterior cingulate cortex link perceptual features and heart rate variability during movie viewing. Network Neuroscience, 0, , 1-37.	1.4	0
178	Editorial: Understanding in the human and the machine. Frontiers in Systems Neuroscience, 0, 16, .	1.2	0
180	Whole-brain dynamical modelling for classification of Parkinson's disease. Brain Communications, 2022, 5, .	1.5	5
181	Frequency dependent emotion differentiation and directional coupling in amygdala, orbitofrontal and medial prefrontal cortex network with intracranial recordings. Molecular Psychiatry, 2023, 28, 1636-1646.	4.1	4
182	Global dynamics of neural mass models. PLoS Computational Biology, 2023, 19, e1010915.	1.5	5
183	Improved Neurophysiological Process Imaging through Optimisation of Kalman Filter Initial Conditions. International Journal of Neural Systems, 0, , .	3.2	1
185	Minimizing the distortions in electrophysiological source imaging of cortical oscillatory activity via Spectral Structured Sparse Bayesian Learning. Frontiers in Neuroscience, 0, 17, .	1.4	1

#	Article	IF	CITATIONS
187	Modeling the relationship between neuronal activity and the BOLD signal: contributions from astrocyte calcium dynamics. Scientific Reports, 2023, 13, .	1.6	5
194	Human body odour modulates neural processing of faces: effective connectivity analysis using EEG. , 2023, , .		0
204	Resting-State f MRI Advances for Functional Brain Dynamics. , 0, , .		0