Integrative Study of Physiological Changes Associated v Oyster Larvae

PLoS ONE 8, e64534 DOI: 10.1371/journal.pone.0064534

Citation Report

#	Article	IF	CITATIONS
1	Differences in the Gene Expression Profiles of Haemocytes from Schistosome-Susceptible and -Resistant Biomphalaria glabrata Exposed to Schistosoma mansoni Excretory-Secretory Products. PLoS ONE, 2014, 9, e93215.	1.1	22
2	Autolysis in <i>Vibrio tubiashii</i> and <i>Vibrio coralliilyticus</i> . Canadian Journal of Microbiology, 2014, 60, 57-63.	0.8	5
3	Complete Genome Sequence for the Shellfish Pathogen Vibrio coralliilyticus RE98 Isolated from a Shellfish Hatchery. Genome Announcements, 2014, 2, .	0.8	25
4	Effect of the probiotic strainPhaeobacter gallaeciensisafter bacterial challenge on the complete larval development ofPecten maximus. Aquatic Living Resources, 2014, 27, 27-34.	0.5	9
5	Stimulation of heterotrophic bacteria associated with wild-caught blue mussel (Mytilus edulis) adults results in mass mortality. Aquaculture, 2014, 431, 136-138.	1.7	15
6	Identification of potential general markers of disease resistance in American oysters, Crassostrea virginica through gene expression studies. Fish and Shellfish Immunology, 2014, 41, 27-36.	1.6	26
7	Identification of potential markers and sensitive tissues for low or high salinity stress in an intertidal mud crab (Macrophthalmus japonicus). Fish and Shellfish Immunology, 2014, 41, 407-416.	1.6	30
8	Physiological basis of extreme growth rate differences in the spat of oyster (Crassostrea gigas). Marine Biology, 2014, 161, 1627-1637.	0.7	30
9	Deep transcriptome sequencing of Pecten maximus hemocytes: A genomic resource for bivalve immunology. Fish and Shellfish Immunology, 2014, 37, 154-165.	1.6	72
10	Physiological changes in Pacific oyster Crassostrea gigas exposed to the herpesvirus OsHV-1μVar. Aquaculture, 2014, 432, 304-310.	1.7	24
11	The use of -omic tools in the study of disease processes in marine bivalve mollusks. Journal of Invertebrate Pathology, 2015, 131, 137-154.	1.5	45
12	Mortalities of Eastern and Pacific Oyster Larvae Caused by the Pathogens Vibrio coralliilyticus and Vibrio tubiashii. Applied and Environmental Microbiology, 2015, 81, 292-297.	1.4	97
13	Bacterial diseases in marine bivalves. Journal of Invertebrate Pathology, 2015, 131, 11-31.	1.5	137
14	Vibrio Infections Associated with Yesso Scallop (Patinopecten yessoensis) Larval Culture. Journal of Shellfish Research, 2015, 34, 213-216.	0.3	8
15	Predicting growth and mortality of bivalve larvae using gene expression and supervised machine learning. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2015, 16, 59-72.	0.4	5
16	Isolation and genotyping of potentially pathogenic Vibrio alginolyticus associated with Ruditapes decussatus larva and juvenile mass mortalities. Aquaculture International, 2015, 23, 1033-1047.	1.1	8
17	Ontogeny of bivalve immunity: assessing the potential of nextâ€generation sequencing techniques. Reviews in Aquaculture, 2015, 7, 197-217.	4.6	20
18	Multiple Roles of Peroxiredoxins in Inflammation. Molecules and Cells, 2016, 39, 60-64.	1.0	115

#	Article	IF	CITATIONS
19	First Report of Vibrio tubiashii Associated with a Massive Larval Mortality Event in a Commercial Hatchery of Scallop Argopecten purpuratus in Chile. Frontiers in Microbiology, 2016, 7, 1473.	1.5	15
20	Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Marine Drugs, 2016, 14, 159.	2.2	172
21	Transcriptomic profiling of Chamelea gallina from sites along the Abruzzo coast (Italy), subject to periodic localized mortality events. Marine Biology, 2016, 163, 1.	0.7	6
22	Hsp70 gene expansions in the scallop Patinopecten yessoensis and their expression regulation after exposure to the toxic dinoflagellate Alexandrium catenella. Fish and Shellfish Immunology, 2016, 58, 266-273.	1.6	49
23	Prophylactic effect of <i>Haslea ostrearia</i> culture supernatant containing the pigment marennine to stabilize bivalve hatchery production. Aquatic Living Resources, 2016, 29, 401.	0.5	19
24	Metabolic responses of clam Ruditapes philippinarum exposed to its pathogen Vibrio tapetis in relation to diet. Developmental and Comparative Immunology, 2016, 60, 96-107.	1.0	8
25	Clam focal and systemic immune responses to QPX infection revealed by RNA-seq technology. BMC Genomics, 2016, 17, 146.	1.2	20
26	The immunological capacity in the larvae of Pacific oyster Crassostrea gigas. Fish and Shellfish Immunology, 2016, 49, 461-469.	1.6	36
27	Transcriptome analysis of the pearl oyster (Pinctada fucata) hemocytes in response to Vibrio alginolyticus infection. Gene, 2016, 575, 421-428.	1.0	52
28	Transcriptomic analysis of oyster Crassostrea gigas larvae illustrates the response patterns regulated by catecholaminergic system upon acute heat and bacterial stress. Developmental and Comparative Immunology, 2017, 73, 52-60.	1.0	21
29	Upregulating Nrf2-dependent antioxidant defenses in Pacific oysters Crassostrea gigas: Investigating the Nrf2/Keap1 pathway in bivalves. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 195, 16-26.	1.3	20
30	Effects of hydrodynamic factors on <i>Pecten maximus</i> larval development. Aquaculture Research, 2017, 48, 5463-5471.	0.9	3
31	Complete Genome Sequence of Vibrio coralliilyticus 58, Isolated from Pacific Oyster (Crassostrea) Tj ETQq0 0 0	rgBT/Ove 0.8	rlogk 10 Tf 50
32	Isolation of Vibrionaceae from wild blue mussel (Mytilus edulis) adults and their impact on blue mussel larviculture. FEMS Microbiology Ecology, 2017, 93, .	1.3	26
33	Effect of marennine produced by the blue diatom Haslea ostrearia on behavioral, physiological and biochemical traits of juvenile Mytilus edulis and Crassostrea virginica. Aquaculture, 2017, 467, 138-148.	1.7	10
34	Three Draft Genome Sequences of Vibrio coralliilyticus Strains Isolated from Bivalve Hatcheries. Genome Announcements, 2017, 5, .	0.8	4
35	New Insights into Pathogenic Vibrios Affecting Bivalves in Hatcheries: Present and Future Prospects. Frontiers in Microbiology, 2017, 8, 762.	1.5	102
36	Identification of clam plasma proteins that bind its pathogen Quahog Parasite Unknown. Fish and Shellfish Immunology, 2018, 77, 214-221.	1.6	4

CITATION REPORT

#	Article	IF	Citations
37	Metabolomics Study of Immune Responses of New Zealand Greenshellâ"¢ Mussels (Perna canaliculus) Infected with Pathogenic Vibrio sp Marine Biotechnology, 2018, 20, 396-409.	1.1	82
38	Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an <i>in vivo</i> study with oyster embryos. Nanotoxicology, 2018, 12, 63-78.	1.6	23
39	Complete Genome Sequence of a Bacteriophage, pVco-5, That Infects Vibrio coralliilyticus , Which Causes Bacillary Necrosis in Pacific Oyster (Crassostrea gigas) Larvae. Genome Announcements, 2018, 6, .	0.8	5
40	Inefficient immune response is associated with microbial permissiveness in juvenile oysters affected by mass mortalities on field. Fish and Shellfish Immunology, 2018, 77, 156-163.	1.6	32
41	Metabolism of the Pacific oyster, <i>Crassostrea gigas</i> , is influenced by salinity and modulates survival to the Ostreid herpesvirus OsHV-1. Biology Open, 2018, 7, .	0.6	54
42	Gill transcriptomic analysis in fast- and slow-growing individuals of Mytilus galloprovincialis. Aquaculture, 2019, 511, 734242.	1.7	14
43	Differential expressions of HSP70 gene between golden and brown noble scallops Chlamys nobilis under heat stress and bacterial challenge. Fish and Shellfish Immunology, 2019, 94, 924-933.	1.6	19
44	Insights into Mussel Microbiome. , 2019, , 95-120.		10
45	Low pH reduced survival of the oyster Crassostrea gigas exposed to the Ostreid herpesvirus 1 by altering the metabolic response of the host. Aquaculture, 2019, 503, 167-174.	1.7	17
46	Responses of Mytilus galloprovincialis to challenge with the emerging marine pathogen Vibrio coralliilyticus. Fish and Shellfish Immunology, 2019, 84, 352-360.	1.6	29
47	Application of lipidomics in bivalve aquaculture, a review. Reviews in Aquaculture, 2020, 12, 678-702.	4.6	21
48	Vulnerability of glutathione-depleted Crassostrea gigas oysters to Vibrio species. Marine Environmental Research, 2020, 154, 104870.	1.1	8
49	Vibrio coralliilyticus as an agent of red spotting disease in the sea urchin Strongylocentrotus intermedius. Aquaculture Reports, 2020, 16, 100244.	0.7	9
50	Temporal proteomic profiling reveals insight into critical developmental processes and temperature-influenced physiological response differences in a bivalve mollusc. BMC Genomics, 2020, 21, 723.	1.2	6
51	Comparative genomic analysis of Vibrios yields insights into genes associated with virulence towards C. gigas larvae. BMC Genomics, 2020, 21, 599.	1.2	11
52	Hydrocarbon degradation in oily sludge by bacterial consortium assisted with alfalfa (Medicago) Tj ETQq1 1 0.78	4314 rgB1 0.6	[/Qyerlock]
53	Contrasting Immunomodulatory Effects of Probiotic and Pathogenic Bacteria on Eastern Oyster, Crassostrea Virginica, Larvae. Vaccines, 2020, 8, 588.	2.1	20
54	Transcriptome analysis of Catarina scallop (Argopecten ventricosus) juveniles treated with highly-diluted immunomodulatory compounds reveals activation of non-self-recognition system. PLoS ONE, 2020, 15, e0233064.	1.1	10

CITATION REPORT

#	Article	IF	CITATIONS
55	Autophagy Dually Induced by AMP Surplus and Oxidative Stress Enhances Hemocyte Survival and Bactericidal Capacity via AMPK Pathway in Crassostrea hongkongensis. Frontiers in Cell and Developmental Biology, 2020, 8, 411.	1.8	11
56	Identification and Genome Analysis of Vibrio coralliilyticus Causing Mortality of Pacific Oyster (Crassostrea gigas) Larvae. Pathogens, 2020, 9, 206.	1.2	15
57	A proteomic study of resistance to Brown Ring disease in the Manila clam, Ruditapes philippinarum. Fish and Shellfish Immunology, 2020, 99, 641-653.	1.6	14
58	Mechanistic molecular responses of the giant clam Tridacna crocea to Vibrio coralliilyticus challenge. PLoS ONE, 2020, 15, e0231399.	1.1	7
59	Larval Geoduck (Panopea generosa) Proteomic Response to Ciliates. Scientific Reports, 2020, 10, 6042.	1.6	5
60	Pathogenesis of experimental vibriosis in blue mussel (Mytilus edulis) larvae based on accurate positioning of GFP-tagged Vibrio strains and histopathological and ultrastructural changes of the host. Aquaculture, 2021, 535, 736347.	1.7	5
61	Lipid metabolism changes in clam Meretrix petechialis in response to Vibrio infection and the identification of Vibrio-resistance markers. Aquaculture, 2021, 539, 736611.	1.7	11
62	Susceptibility variation to the main pathogens of Crassostrea gigas at the larval, spat and juvenile stages using unselected and selected oysters to OsHV-1 and/or V. aestuarianus. Journal of Invertebrate Pathology, 2021, 183, 107601.	1.5	11
63	Dynamic Immune Response to Vibriosis in Pacific Oyster Crassostrea gigas Larvae during the Infection Process as Supported by Accurate Positioning of GFP-Tagged Vibrio Strains. Microorganisms, 2021, 9, 1523.	1.6	6
64	Can only one physiological trait determinate the adverse effect of green fluorescent protein (GFP) incorporation on Vibrio virulence?. Applied Microbiology and Biotechnology, 2021, 105, 7899-7912.	1.7	1
65	Histopathological and immunological changes in green mussel, Perna viridis, challenged with Vibrio alginolyticus. Fish and Shellfish Immunology, 2021, 118, 169-179.	1.6	4
66	Combating Parasites: Immune Response and Inflammation. , 2014, , 241-270.		1
67	Factors other than metalloprotease are required for full virulence of French Vibrio tubiashii isolates in oyster larvae. Microbiology (United Kingdom), 2015, 161, 997-1007.	0.7	24
68	Spatial and Temporal Dynamics of Mass Mortalities in Oysters Is Influenced by Energetic Reserves and Food Quality. PLoS ONE, 2014, 9, e88469.	1.1	84
70	Changes in gluconeogenesis pathways and key genes associated with mass mortality in the clam Meretrix petechialis upon Vibrio infection. Aquaculture, 2022, 548, 737691.	1.7	2
71	Whole genome analysis and specific PCR primer development for Vibrio coralliilyticus, combined with transcription and metabolome analysis of red spotting disease in the sea urchin, Strongylocentrotus intermedius. Aquaculture Reports, 2022, 22, 100957.	0.7	3
72	Comparison of Vibrio coralliilyticus virulence in Pacific oyster larvae and corals. Microbiology (United Kingdom), 2022, 168, .	0.7	1
73	Bacteriophages improve survival and metamorphosis of larval Pacific oysters (Crassostrea gigas) exposed to Vibrio coralliilyticus strain RE98. Aquaculture, 2022, 555, 738242.	1.7	4

		CITATION REPORT	
#	Article	IF	CITATIONS
75	General introduction to pathophysiology of finfish, crustacea, and mollusks. , 2022, , 49-71.		1
76	Lipidomic insights into the immune response and pearl formation in transplanted pearl oyster Pinctada fucata martensii. Frontiers in Immunology, 0, 13, .	2.2	3
77	Characterization of the lipidomic profile of clam Meretrix petechialis in response to Vibrio parahaemolyticus infection. Fish and Shellfish Immunology, 2023, 134, 108602.	1.6	1