Iron oxide nanoparticles and magnetic field exposure p attenuating free radical-induced damage in rats with sp

International Journal of Nanomedicine

8,2259

DOI: 10.2147/ijn.s44238

Citation Report

#	Article	IF	CITATIONS
1	Wi-Fi (2.45ÂGHz)- and Mobile Phone (900 and 1800ÂMHz)-Induced Risks on Oxidative Stress and Elements in Kidney and Testis of Rats During Pregnancy and the Development of Offspring. Biological Trace Element Research, 2013, 156, 221-229.	3.5	66
2	Nanoparticulate strategies for the five R's of traumatic spinal cord injury intervention: restriction, repair, regeneration, restoration and reorganization. Nanomedicine, 2014, 9, 331-348.	3.3	15
3	Liver antioxidant stores protect the brain from electromagnetic radiation (900 and 1800 MHz)-induced oxidative stress in rats during pregnancy and the development of offspring. Journal of Maternal-Fetal and Neonatal Medicine, 2014, 27, 1915-1921.	1.5	31
4	Effects of Prenatal and Postnatal Exposure of Wi-Fi on Development of Teeth and Changes in Teeth Element Concentration in Rats. Biological Trace Element Research, 2015, 163, 193-201.	3.5	10
6	Combination of cold atmospheric plasma and iron nanoparticles in breast cancer: gene expression and apoptosis study. OncoTargets and Therapy, 2016, Volume 9, 5911-5917.	2.0	44
7	Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. Cells Tissues Organs, 2016, 202, 52-66.	2.3	37
8	Extremely low-frequency electromagnetic fields: A possible non-invasive therapeutic tool for spinal cord injury rehabilitation. Electromagnetic Biology and Medicine, 2017, 36, 1-14.	1.4	12
9	An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells. Small, 2017, 13, 1702207.	10.0	147
10	Extremely low frequency magnetic field protects injured spinal cord from the microglia- and iron-induced tissue damage. Electromagnetic Biology and Medicine, 2017, 36, 330-340.	1.4	15
11	Mechanisms of Cellular Effects Directly Induced by Magnetic Nanoparticles under Magnetic Fields. Journal of Nanomaterials, 2017, 2017, 1-13.	2.7	24
12	Neurotrophin-conjugated nanoparticles prevent retina damage induced by oxidative stress. Cellular and Molecular Life Sciences, 2018, 75, 1255-1267.	5.4	23
13	Magnetic Composite Biomaterials for Neural Regeneration. Frontiers in Bioengineering and Biotechnology, 2019, 7, 179.	4.1	26
14	Drug Delivery Applications of Nanoparticles in the Spine. Methods in Molecular Biology, 2020, 2059, 121-143.	0.9	3
15	Effect of Low Intensity Magnetic Field Stimulation on Calcium-Mediated Cytotoxicity After Mild Spinal Cord Contusion Injury in Rats. Annals of Neurosciences, 2020, 27, 49-56.	1.7	4
16	Research advances of biomaterials-based microenvironment-regulation therapies for repair and regeneration of spinal cord injury. Biomedical Materials (Bristol), 2021, 16, 052002.	3.3	15
17	Therapeutic targets and nanomaterial-based therapies for mitigation of secondary injury after spinal cord injury. Nanomedicine, 2021, 16, 2013-2028.	3.3	5
18	Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. Nanomaterials, 2021, 11, 2337.	4.1	48
19	Nanobiotechnology in Parkinson's Disease. , 2019, , 177-208.		0

CITATION REPORT

#	Article	IF	CITATIONS
20	Lower Metal Element Levels in Hypertrophic Scars: A Potential Mechanism of Aberrant Cicatrix Hyperplasia. Medical Science Monitor, 2020, 26, e925202.	1.1	0
21	Electromagnetic Field Stimulation Attenuates Phasic Nociception after Complete Spinal Cord Injury in Rats. Brain Sciences, 2021, 11, 1431.	2.3	1
22	Evaluation of the radio-protective role of PEG-Fe3O4 NPs on γ-irradiated male Wistar rats. Environmental Nanotechnology, Monitoring and Management, 2022, 17, 100620.	2.9	1
23	A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioactive Materials, 2023, 19, 550-568.	15.6	36
24	Therapeutic Potential of Low-Intensity Magnetic Field Stimulation in 6-Hydroxydopamine Rat Model of Parkinson's Disease: From Inflammation to Motor Function. Annals of Neurosciences, 2023, 30, 11-19.	1.7	0
25	Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomaterials Science and Engineering, 2023, 9, 106-138.	5.2	23
26	Electromagnetic field stimulation facilitates motor neuron excitability, myogenesis and muscle contractility in spinal cord transected rats. Journal of Biosciences, 2022, 47, .	1.1	0
27	Recent advances in nanomaterials for the treatment of spinal cord injury. Materials Today Bio, 2023, 18, 100524.	5.5	7
28	Magnetic Nanomaterials Mediate Electromagnetic Stimulations of Nerves for Applications in Stem Cell and Cancer Treatments. Journal of Functional Biomaterials, 2023, 14, 58.	4.4	2