Influence of spray drying operating conditions on micro oil properties

Food Science and Technology 33, 171-178 DOI: 10.1590/s0101-20612013000500025

Citation Report

#	Article	IF	CITATIONS
1	Microencapsulation of babassu coconut milk. Food Science and Technology, 2013, 33, 737-744.	1.7	19
2	Microencapsulation of pequi pulp by spray drying: use of modified starches as encapsulating agent. Engenharia Agricola, 2014, 34, 980-991.	0.7	24
3	Optimization of Fish Oil Spray Drying Using a Protein:Inulin System. Drying Technology, 2014, 32, 279-290.	3.1	64
4	Application of maltodextrin in green corn extract powder production. Powder Technology, 2014, 263, 89-95.	4.2	22
5	Characterization of Microencapsulated Rosemary Essential Oil and Its Antimicrobial Effect on Fresh Dough. Food and Bioprocess Technology, 2014, 7, 2560.	4.7	33
6	Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 2014, 101, 524-532.	10.2	415
7	Physical and chemical properties of encapsulated rosemary essential oil by spray drying using whey protein–inulin blends as carriers. International Journal of Food Science and Technology, 2014, 49, 1522-1529.	2.7	93
8	Microencapsulation of Essential Oils Using Spray Drying Technology. , 2015, , 235-251.		8
9	Effect of homogenization parameters on selected physical properties of lemon aroma powder. Food and Bioproducts Processing, 2015, 94, 405-413.	3.6	32
10	Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. Powder Technology, 2016, 297, 44-49.	4.2	84
11	Novel approaches in nanoencapsulation of aromas and flavors. , 2016, , 363-419.		4
12	Studies of spray drying process of sour milk products with the application of ultrasonic vibrations. , 2016, , .		7
13	Polymeric Encapsulates of Essential Oils and Their Constituents: A Review of Preparation Techniques, Characterization, and Sustainable Release Mechanisms. Polymer Reviews, 2016, 56, 668-701.	10.9	61
14	Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods. Critical Reviews in Food Science and Nutrition, 2017, 57, 1423-1434.	10.3	39
15	Formulation and characterization of Turkish oregano microcapsules prepared by spray-drying technology. Pharmaceutical Development and Technology, 2017, 22, 792-803.	2.4	16
16	Microencapsulated Rosemary (<i>Rosmarinus officinalis</i>) Essential Oil as a Biopreservative in Minas Frescal Cheese. Journal of Food Processing and Preservation, 2017, 41, e12759.	2.0	41
17	Physical characteristics of phycocyanin from spirulina microcapsules using different coating materials with freeze drying method. IOP Conference Series: Earth and Environmental Science, 2017, 55, 012060.	0.3	15
18	Microencapsulated <i>Lactobacillus reuteri</i> combined with modified atmosphere as a way to improve tuna burger shelf life. International Journal of Food Science and Technology, 2017, 52, 1576-1584.	2.7	10

TATION REDO

#	Article	IF	CITATIONS
19	Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. Food and Bioprocess Technology, 2017, 10, 1354-1366.	4.7	49
20	Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: Characterization and oxidative stability studies. International Journal of Biological Macromolecules, 2017, 104, 1986-1995.	7.5	57
21	Effect of Addition of Native Agave Fructans on Spray-Dried Chayote (Sechium edule) and Pineapple (Ananas comosus) Juices: Rheology, Microstructure, and Water Sorption. Food and Bioprocess Technology, 2017, 10, 2069-2080.	4.7	8
22	Stability study of α-toc/β-CD powders obtained by microwave heating and encapsulation process. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1473-1480.	3.6	7
24	Spray drying of sisal liquids extracts (Furcraea spp.): Overall performance of the drying process. Powder Technology, 2017, 321, 163-172.	4.2	8
25	Microencapsulation of sardine oil: Application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydrate Polymers, 2017, 174, 540-548.	10.2	46
26	Microencapsulated ginger oil properties: Influence of operating parameters. Drying Technology, 2017, 35, 1098-1107.	3.1	18
27	Physicochemical and Thermal Stability of Microcapsules of Cinnamon Essential Oil by Spray Drying. Journal of Food Processing and Preservation, 2017, 41, e12919.	2.0	47
28	Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. Journal of Food Measurement and Characterization, 2017, 11, 50-57.	3.2	23
29	Proposing Novel Encapsulating Matrices for Spray-Dried Cinger Essential Oil from the Whey Protein Isolate-Inulin/Maltodextrin Blends. Food and Bioprocess Technology, 2017, 10, 115-130.	4.7	55
30	Effect of maltodextrin reduction and native agave fructans addition on the physicochemical properties of spray-dried mango and pineapple juices. Food Science and Technology International, 2018, 24, 519-532.	2.2	22
31	In-vitro digestion of refined kenaf seed oil microencapsulated in β-cyclodextrin/gum arabic/sodium caseinate by spray drying. Journal of Food Engineering, 2018, 225, 34-41.	5.2	14
32	Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Research International, 2018, 105, 936-944.	6.2	39
33	Effect of Maltodextrin Reduction and Native Agave Fructans Addition on the Rheological Behavior of Spray-Dried Juices. , 2018, , .		0
34	Microencapsulation of refined kenaf (Hibiscus cannabinus L.) seed oil by spray drying using β-cyclodextrin/gum arabic/sodium caseinate. Journal of Food Engineering, 2018, 237, 78-85.	5.2	97
35	Effect of Gum Arabic, β yclodextrin, and Sodium Caseinate as Encapsulating Agent on the Oxidative Stability and Bioactive Compounds of Sprayâ€Dried Kenaf Seed Oil. Journal of Food Science, 2018, 83, 2288-2294.	3.1	10
36	Improvement of the characteristics of fish gelatin – gum arabic through the formation of the polyelectrolyte complex. Carbohydrate Polymers, 2019, 223, 115068.	10.2	15
37	Buriti oil microencapsulation in chickpea protein-pectin matrix as affected by spray drying parameters. Food and Bioproducts Processing, 2019, 117, 183-193.	3.6	32

#	Article	IF	CITATIONS
38	Microencapsulation of cocoa liquor nanoemulsion with whey protein using spray drying to protection of volatile compounds and antioxidant capacity. Journal of Microencapsulation, 2019, 36, 447-458.	2.8	10
39	Microencapsulation of pink pepper essential oil: Properties of spray-dried pectin/SPI double-layer versus SPI single-layer stabilized emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123806.	4.7	28
40	Application of encapsulated natural bioactive compounds from red pepper waste in yogurt. Journal of Microencapsulation, 2019, 36, 704-714.	2.8	44
41	Production of spray-dried starch molecular inclusion complexes on an industrial scale. Food and Bioproducts Processing, 2019, 116, 186-195.	3.6	17
42	Physical characterization of Arabica ground coffee with different roasting degrees. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180191.	0.8	21
43	Tuna red meat hydrolysate as core and wall polymer for fish oil encapsulation: a comparative analysis. Journal of Food Science and Technology, 2019, 56, 2134-2146.	2.8	19
44	Microencapsulation of Elsholtzia ciliata Herb Ethanolic Extract by Spray-Drying: Impact of Resistant-Maltodextrin Complemented with Sodium Caseinate, Skim Milk, and Beta-Cyclodextrin on the Quality of Spray-Dried Powders. Molecules, 2019, 24, 1461.	3.8	22
45	Effects of spray drying process parameters on the physical properties and digestibility of the microencapsulated product from <i>Moringa stenopetala</i> leaves extract. Cogent Food and Agriculture, 2019, 5, 1690316.	1.4	9
46	Co-encapsulation of coenzyme Q10 and vitamin E: A study of microcapsule formation and its relation to structure and functionalities using single droplet drying and micro-fluidic-jet spray drying. Journal of Food Engineering, 2019, 247, 45-55.	5.2	32
47	Influence of spray-drying conditions on microencapsulation of fish oil and chia oil. Drying Technology, 2020, 38, 279-292.	3.1	64
48	Multilayer perceptron neural networking for prediction of quality attributes of spray-dried vegetable oil powder. Soft Computing, 2020, 24, 9821-9833.	3.6	8
49	Fabrication of Spray-Dried Microcapsules Containing Noni Juice Using Blends of Maltodextrin and Gum Acacia: Physicochemical Properties of Powders and Bioaccessibility of Bioactives during In Vitro Digestion. Foods, 2020, 9, 1316.	4.3	20
50	Physical and Functional Properties, Digestibility, and Storage Stability of Spray- and Freeze-Dried Microencapsulated Bioactive Products from Moringa stenopetala Leaves Extract. Industrial Crops and Products, 2020, 156, 112891.	5.2	39
51	Production and characterization of pineapple-mint juice by spray drying. Powder Technology, 2020, 375, 409-419.	4.2	17
52	Production of oil palm milk powder by spray drying technique. Materials Today: Proceedings, 2020, 31, 306-312.	1.8	6
53	Effect of microwave treatment on preparation of stable PUFA enriched vegetable oil powder and its influence on quality parameters. Journal of Food Processing and Preservation, 2020, 44, e14374.	2.0	10
54	Technology, Science and Culture - A Global Vision, Volume II. , 2020, , .		2
55	Microencapsulation of Fish Oil Using Fish Protein Hydrolysate, Maltodextrin, and Gum Arabic: Effect on Structural and Oxidative Stability. Journal of Aquatic Food Product Technology, 2020, 29, 293-306.	1.4	12

CITATION REPORT

#	Article	IF	CITATIONS
56	Spray drying and storage of probioticâ€enriched almond milk: probiotic survival and physicochemical properties. Journal of the Science of Food and Agriculture, 2020, 100, 3697-3708.	3.5	54
57	Azadirachta indica A. Juss (Meliaceae) microencapsulated bioinsecticide: Spray drying technique optimization, characterization, in vitro release, and degradation kinetics. Powder Technology, 2021, 382, 144-161.	4.2	6
58	Parametric analysis of the spray drying process for the production of starch molecular inclusion complexes with fatty acids. Drying Technology, 2021, 39, 580-595.	3.1	6
59	Candlenut oil encapsulation with Hidroxypropyl Methylcellulose (HPMC) for body lotion application. IOP Conference Series: Materials Science and Engineering, 0, 1011, 012046.	0.6	1
60	Concepts, processing, and recent developments in encapsulating essential oils. Chinese Journal of Chemical Engineering, 2021, 30, 255-271.	3.5	26
61	<i>Varronia verbenacea</i> and <i>Achyrocline satureioides</i> essential oils in granules and microparticles: Stability and <i>in vitro</i> release studies. Drying Technology, 2021, 39, 1895-1911.	3.1	2
62	Production of vitex (Vitex agnus ―castus L.) extract in powder form using sprayâ€drying: Potential for the production of functional foods. Journal of Food Processing and Preservation, 2021, 45, e15333.	2.0	0
63	Preparation of Thymus vulgaris Essential Oil Microcapsules by Complex Coacervation and Direct Emulsion: Synthesis, Characterization and Controlled Release Properties. Arabian Journal for Science and Engineering, 2021, 46, 5429-5446.	3.0	11
64	Optimization of drying parameters in the microencapsulation of volatile oil from Spiranthera odoratissima leaves. Research, Society and Development, 2021, 10, e57510414322.	0.1	1
65	Microencapsulation of Essential Oils by Spray-Drying and Influencing Factors. Journal of Food Quality, 2021, 2021, 1-15.	2.6	20
66	Improving the stability of phycocyanin by spray dried microencapsulation. Journal of Food Processing and Preservation, 2021, 45, e15646.	2.0	15
67	Spray Drying as a Method of Choice for Obtaining High Quality Products from Food Wastes– A Review. Food Reviews International, 2023, 39, 1953-1985.	8.4	4
68	Sprayâ€dried microcapsules of red palm oleinâ€flaxseed oil blend: Development, physicochemical characterization, and evaluation of its potential applications as a fat replacer and βâ€carotene fortificant in cupcakes. Journal of Food Processing and Preservation, 2021, 45, e15663.	2.0	2
69	A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil. Foods, 2021, 10, 1522.	4.3	9
70	Production of nutty-like flavour from soybean protein isolate hydrolysate pretreated or assisted by microwave irradiation: impact of encapsulation on nutty flavour quality. Journal of Food Science and Technology, 2022, 59, 1958-1967.	2.8	3
71	Physicochemical properties, microstructure, and storage stability of Pulicaria jaubertii extract microencapsulated with different protein biopolymers and gum arabic as wall materials. International Journal of Biological Macromolecules, 2021, 187, 939-954.	7.5	30
72	Functional Characteristics and Physical Properties of Spray Dried Starch Inclusion Complexes with Drugs. Starch/Staerke, 2022, 74, 2100176.	2.1	2
73	COMPORTAMENTO DE ÓLEO ESSENCIAL DE ALECRIM MICROENCAPSULADO POR SPRAY DRYING EM DIFERENTES UMIDADES RELATIVAS, Revista Ciência AgrÃcola, 2017, 14, 73.	0.1	3

CITATION REPORT

#	Article	IF	CITATIONS
74	EXTRAÇÃO DO ÓLEO ESSENCIAL DA AMÊNDOA DO BUTIÕCAPITATA. , 0, , .		0
75	Characteristics of dry milk- carbohydrate mixtures of spray drying carbohydrate. Food Resources, 2018, 6, 206-212.	0.3	3
76	Instant tea from Condonopsis javanica L. root extract via spray drying. Foods and Raw Materials, 2020, 8, 385-391.	2.1	3
78	Effect of spray drying process parameters on Uncaria tomentosa (Willd. ex Schult.) DC. dried extracts. Revista Fitos, 2020, 14, 469-475.	0.2	0
79	Utilization of liquid smoke nanoencapsulation in fresh fish fillets as a preservation material. IOP Conference Series: Earth and Environmental Science, 2020, 530, 012001.	0.3	1
80	Food Powders Bulk Properties. Food Engineering Series, 2021, , 1-36.	0.7	4
81	Liquorice (Glycyrrhiza Glabra): Production of Instant Soluble Microcapsules. Harran Tarım Ve Gıda Bilimleri Dergisi, 0, , .	0.5	0
82	Extraction optimization and microencapsulation of Berberine from Berberis vulgaris incorporated in a functional orange drink: Physiochemical attributes and kinetic release studies. Journal of Berry Research, 2021, , 1-21.	1.4	1
83	Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocolloids, 2022, 125, 107430.	10.7	53
84	Essential-oil capsule preparation and its application in food preservation: A review. Food Reviews International, 2023, 39, 4124-4158.	8.4	6
85	Influence of spray drying parameters on the physicochemical characteristics of microencapsulated orange (Citrus sinensis L.) essential oil. Materials Today: Proceedings, 2022, 60, 2026-2033.	1.8	3
86	Nanoencapsulation of Mandarin Essential Oil: Fabrication, Characterization, and Storage Stability. Foods, 2022, 11, 54.	4.3	9
87	Determination of Prunus mahaleb L. (Mahaleb) Kernel Adulteration Using Volatile Compounds Combined with Chemometrics. Food Analytical Methods, 2022, 15, 2372-2381.	2.6	5
90	Effect of excipient wall materials on the development of ginger oleoresin microcapsules: assessing the physicochemical, antioxidant and structural properties. Journal of the Science of Food and Agriculture, 2023, 103, 73-82.	3.5	3
91	Optimization of sprayâ€dried probiotic buttermilk powder using response surface methodology and evaluation of its shelf stability. Journal of Food Processing and Preservation, 0, , .	2.0	1
92	Encapsulation of Bioactive Compounds in Turnip Juice and Investigation of the Possibilities of Their Use in Probiotic Food Production. SSRN Electronic Journal, 0, , .	0.4	0
93	Encapsulation of Bioactive compounds in shalgam and investigation of the possibilities of their use in probiotic food production. Food Bioscience, 2022, , 102166.	4.4	0
94	Impact of food viscosity on in vitro gastric emptying using dynamic and semi-dynamic models. Food Hydrocolloids, 2023, 137, 108410.	10.7	9

CITATION REPORT

#	Article	IF	CITATIONS
95	A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. Journal of Food Protection, 2023, 86, 100025.	1.7	16
96	Fermented cereal soup with artichoke (<scp><i>Cynara scolymus</i></scp> L.) bracts: volatile profile, functional, powder and sensory properties. Journal of the Science of Food and Agriculture, 2023, 103, 2564-2573.	3.5	0
97	Effect of wet processing on the grinding characteristics and functional properties of sorghum. Applied Food Research, 2023, 3, 100255.	4.0	1
98	Microstructural influence on physical properties and release profiles of sesame oil encapsulated into sodium alginate-tamarind mucilage hydrogel beads. Carbohydrate Polymer Technologies and Applications, 2023, 5, 100302.	2.6	3
99	Non-GMO-high oleic soybean meal value addition and studying the functional and reconstitution behavior. International Journal of Food Properties, 2023, 26, 708-728.	3.0	1
100	Comparison of physicochemical properties and oxidative stability of microencapsulated perilla oil powder prepared by freeze-drying and spray-drying. Food Science and Biotechnology, 0, , .	2.6	0
101	Production of red fruit (<i>Pandanus conoideus</i>) oil powder using spray drying and freeze drying. International Journal of Food Engineering, 2023, 19, 211-224.	1.5	0
102	Optimization of the Spray-Drying Encapsulation of Sea Buckthorn Berry Oil. Foods, 2023, 12, 2448.	4.3	5
103	Novel Insights Into the Recovery and Stabilization of Rosmarinus officinalis Volatile Aroma Compounds Using Green Solvents. Food and Bioprocess Technology, 0, , .	4.7	1
104	Protection of antioxidant components and production of a natural food colourant powder from Ardisia compressa juice. Powder Technology, 2024, 431, 119123.	4.2	0
105	Quality of Commercial Blends for Tarhana, Bey's and Sarajevska Soup. Lecture Notes in Bioengineering, 2023, , 285-302.	0.4	0
106	Effect of Maltodextrin Concentration on Anthocyanin Content and Antioxidant Activity of Rukem Fruits Extract Powder. Jurnal Teknologi Dan Industri Pangan, 2023, 34, 142-151.	0.3	0
107	Effect of replacing durum wheat semolina with Tenebrio molitor larvae powder on the techno-functional properties of the binary blends. Current Research in Food Science, 2024, 8, 100672.	5.8	1
108	Encapsulation of açaÃ-(Euterpe oleracea) pulp with whey protein isolate by spray-drying: An optimization study using response surface methodology (RSM). , 2023, 1, 1539-1546.		0
109	Production of biopesticide from Melia azedarach Linn extract obtained by supercritical fluid extraction for the control of Tetranychus urticae. Biocatalysis and Agricultural Biotechnology, 2024, 56, 103018.	3.1	0
110	Spray-dryer and microencapsulation—application of starch as a carrier. , 2024, , 271-294.		0
111	Drying and characterization of red beet color liquid process waste to develop a novel bulking agent. Journal of Cleaner Production, 2024, 442, 141030.	9.3	0
112	Enhancement of oxidative stability of polyunsaturated fatty acidâ€rich fish oil: microencapsulation using chitosanâ€whey protein complex and betalain. International Journal of Food Science and Technology, 2024, 59, 2286-2296.	2.7	0

#	Article	IF	CITATIONS
113	An in-depth comparative study of various plant-based protein-alginate complexes in the production of hemp seed oil microcapsules by supercritical carbon dioxide solution-enhanced dispersion. Food Hydrocolloids, 2024, 153, 110001.	10.7	0
114	Physico-Chemical Characterization of Encapsulated Fennel Essential Oil under the Influence of Spray-Drying Conditions. Processes, 2024, 12, 577.	2.8	0