Stem Cell Therapy for Craniofacial Bone Regeneration: Feasibility Trial

Cell Transplantation 22, 767-777

DOI: 10.3727/096368912x652968

Citation Report

#	Article	IF	CITATIONS
1	Regenerative Strategies for Craniofacial Disorders. Frontiers in Physiology, 2012, 3, 453.	1.3	18
2	Stem cells in dentistry – Part II: Clinical applications. Journal of Prosthodontic Research, 2012, 56, 229-248.	1.1	148
3	Comparison of the Use of Adipose Tissue–Derived and Bone Marrow–Derived Stem Cells for Rapid Bone Regeneration. Journal of Dental Research, 2013, 92, 1136-1141.	2.5	48
4	Stem Cell Transplantation in Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis of Animal Studies. PLoS Biology, 2013, 11, e1001738.	2.6	107
5	Surgical Approaches Based on Biological Objectives: GTR versus GBR Techniques. International Journal of Dentistry, 2013, 2013, 1-13.	0.5	29
6	Mesenchymal Stem Cells Systemically Injected into Femoral Marrow of Dogs Home to Mandibular Defects to Enhance New Bone Formation. Tissue Engineering - Part A, 2014, 20, 140120073424008.	1.6	18
7	Regeneration of the Living Pulp. , 2014, , 237-250.		1
9	Standardization and Safety of Alveolar Bone–derived Stem Cell Isolation. Journal of Dental Research, 2014, 93, 55-61.	2.5	53
10	Optimized Cell Survival and Seeding Efficiency for Craniofacial Tissue Engineering Using Clinical Stem Cell Therapy. Stem Cells Translational Medicine, 2014, 3, 1495-1503.	1.6	29
11	Advanced Biomatrix Designs for Regenerative Therapy of Periodontal Tissues. Journal of Dental Research, 2014, 93, 1203-1211.	2.5	47
12	The Dental Pulp., 2014,,.		20
13	Safety in mesenchymal stem cell transplantation. Biomedical Research and Therapy, 2014, 1, .	0.3	3
14	Ability of stem and progenitor cells in the dental pulp to form hard tissue. Japanese Dental Science Review, 2015, 51, 75-83.	2.0	11
15	Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean Journal of Internal Medicine, 2015, 30, 279.	0.7	61
16	Manufacturing of dental pulp cell-based products from human third molars: current strategies and future investigations. Frontiers in Physiology, 2015, 6, 213.	1.3	33
17	Clinical Application of Mesenchymal Stem Cells and Novel Supportive Therapies for Oral Bone Regeneration. BioMed Research International, 2015, 2015, 1-16.	0.9	55
18	Comparative Investigation of Human Amniotic Epithelial Cells and Mesenchymal Stem Cells for Application in Bone Tissue Engineering. Stem Cells International, 2015, 2015, 1-14.	1.2	28
19	PreliminaryIn VitroAssessment of Stem Cell Compatibility with Cross-Linked Poly(Îμ-caprolactone) Tj ETQq1 1 0 2015, 1-8.	0.784314 rg 1.2	gBT /Overlock 27

#	Article	IF	Citations
20	Recent advances in bone regeneration using adult stem cells. World Journal of Stem Cells, 2015, 7, 630.	1.3	37
21	Bone Engineering of Maxillary Sinus Bone Deficiencies Using Enriched CD90+ Stem Cell Therapy: A Randomized Clinical Trial. Journal of Bone and Mineral Research, 2015, 30, 1206-1216.	3.1	76
22	Emerging Regenerative Approaches for Periodontal Reconstruction: A Systematic Review From the AAP Regeneration Workshop. Journal of Periodontology, 2015, 86, S134-52.	1.7	60
23	Production of Human Dental Pulp Cells with a Medicinal Manufacturing Approach. Journal of Endodontics, 2015, 41, 1492-1499.	1.4	24
24	Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration. Biomaterials, 2015, 56, 68-77.	5.7	132
25	Current Concepts of Bone Tissue Engineering for Craniofacial Bone Defect Repair. Craniomaxillofacial Trauma & Reconstruction, 2015, 8, 23-30.	0.6	65
27	Comparison of Mesenchymal Stem Cells Isolated From Pulp and Periodontal Ligament. Journal of Periodontology, 2015, 86, 283-291.	1.7	50
28	Clinical Applications of Cellâ€Based Approaches in Alveolar Bone Augmentation: A Systematic Review. Clinical Implant Dentistry and Related Research, 2015, 17, e17-34.	1.6	19
29	Periodontal Regeneration., 2015,, 459-469.		17
30	Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold. Stem Cells International, 2016, 2016, 1-13.	1.2	47
31	A Comparative Evaluation of the Mechanical Properties of Two Calcium Phosphate/Collagen Composite Materials and Their Osteogenic Effects on Adipose-Derived Stem Cells. Stem Cells International, 2016, 2016, 1-12.	1.2	17
32	Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. International Journal of Cell Biology, 2016, 2016, 1-24.	1.0	394
33	Dental and Nondental Stem Cell Based Regeneration of the Craniofacial Region: A Tissue Based Approach. Stem Cells International, 2016, 2016, 1-20.	1.2	18
34	Regenerative Perspective in Modern Dentistry. Dentistry Journal, 2016, 4, 10.	0.9	1
35	Bone Regeneration in Implant Dentistry: Role of Mesenchymal Stem Cells. , 2016, , .		2
36	Advanced Engineering Strategies for Periodontal Complex Regeneration. Materials, 2016, 9, 57.	1.3	31
37	Vertical Bone Augmentation Using Bone Marrow–Derived Stem Cells. Implant Dentistry, 2016, 25, 54-62.	1.7	11
38	Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review. Journal of Biomedical Materials Research - Part A, 2016, 104, 1276-1284.	2.1	49

#	ARTICLE	IF	Citations
39	Treatment of Periâ€Implant Defects in the Rabbit's <scp>Tibia</scp> with Adipose or Bone Marrowâ€Derived Mesenchymal Stems Cells. Clinical Implant Dentistry and Related Research, 2016, 18, 1003-1014.	1.6	7
40	Mesenchymal stem cells (MSCs) as skeletal therapeutics–an update. Journal of Biomedical Science, 2016, 23, 41.	2.6	60
41	Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Research and Therapy, 2016, 7, 33.	2.4	229
42	Stem cell regenerative potential for plastic and reconstructive surgery. Cell and Tissue Banking, 2016, 17, 735-744.	0.5	9
43	Recent Advances in Stem Cells. Pancreatic Islet Biology, 2016, , .	0.1	1
44	Design of Injectable Materials to Improve Stem Cell Transplantation. Current Stem Cell Reports, 2016, 2, 207-220.	0.7	134
45	Stem Cells for Periodontal Regeneration. Pancreatic Islet Biology, 2016, , 165-186.	0.1	0
46	Regenerative Medicine in Facial Plastic and Reconstructive Surgery. JAMA Facial Plastic Surgery, 2016, 18, 391-394.	2.2	9
47	Bone Marrow Stromal Stem Cells in Tissue Engineering and Regenerative Medicine. Hormone and Metabolic Research, 2016, 48, 700-713.	0.7	101
48	Bone Marrow Stromal Stem Cells for Bone Repair: Basic and Translational Aspects. Pancreatic Islet Biology, 2016, , 213-232.	0.1	4
50	Dental Stem Cells. Pancreatic Islet Biology, 2016, , .	0.1	2
51	Dental Stem Cells: Possibility for Generation of a Bio-tooth. Pancreatic Islet Biology, 2016, , 167-196.	0.1	2
52	Stem and progenitor cells: advancing bone tissue engineering. Drug Delivery and Translational Research, 2016, 6, 159-173.	3.0	33
53	Regenerative Medicine for Periodontal and Peri-implant Diseases. Journal of Dental Research, 2016, 95, 255-266.	2.5	194
54	Preclinical Studies of Stem Cell Transplantation in Intracerebral Hemorrhage: a Systemic Review and Meta-Analysis. Molecular Neurobiology, 2016, 53, 5269-5277.	1.9	27
55	Evolving New Strategies for Periodontal, Endodontic, and Alveolar Bone Regeneration., 2017, , 109-137.		1
56	Similarities and differences between porcine mandibular and limb bone marrow mesenchymal stem cells. Archives of Oral Biology, 2017, 77, 1-11.	0.8	28
57	Low-serum culture with novel medium promotes maxillary/mandibular bone marrow stromal cell proliferation and osteogenic differentiation ability. Clinical Oral Investigations, 2017, 21, 2709-2719.	1.4	8

#	ARTICLE	IF	Citations
58	Can stem cells enhance bone formation in the human edentulous alveolar ridge? A systematic review and meta-analysis. Cell and Tissue Banking, 2017, 18, 217-228.	0.5	13
59	Exercise affects biological characteristics of mesenchymal stromal cells derived from bone marrow and adipose tissue. International Orthopaedics, 2017, 41, 1199-1209.	0.9	17
62	The Effects of Adipose-Derived Stem Cells Differentiated Into Endothelial Cells and Osteoblasts on Healing of Critical Size Calvarial Defects. Journal of Craniofacial Surgery, 2017, 28, 1874-1879.	0.3	14
63	A novel cytotherapy device for rapid screening, enriching and combining mesenchymal stem cells into a biomaterial for promoting bone regeneration. Scientific Reports, 2017, 7, 15463.	1.6	13
64	Amniotic fluid-derived stem cells mixed with platelet rich plasma for restoration of rat alveolar bone defect. Acta Biochimica Et Biophysica Sinica, 2017, 49, 197-207.	0.9	14
65	Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence?. Cells Tissues Organs, 2017, 204, 59-83.	1.3	258
66	Stem cell therapy for reconstruction of alveolar cleft and trauma defects in adults: A randomized controlled, clinical trial. Clinical Implant Dentistry and Related Research, 2017, 19, 793-801.	1.6	56
67	The Role of Skeletal Stem Cells in the Reconstruction of Bone Defects. Journal of Craniofacial Surgery, 2017, 28, 1136-1141.	0.3	8
69	Biologics and Cell Therapy Tissue Engineering Approaches for the Management of the Edentulous Maxilla: A Systematic Review. International Journal of Oral and Maxillofacial Implants, 2017, 31, s121-s164.	0.6	19
70	Stem cells and dental tissue reconstruction. , 2017, , 325-353.		2
71	Emerging Perspectives in Scaffold for Tissue Engineering in Oral Surgery. Stem Cells International, 2017, 2017, 1-11.	1,2	68
72	Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World Journal of Stem Cells, 2017, 9, 45.	1.3	8
73	Lower Senescence of Adipose-Derived Stem Cells than Donor-Matched Bone Marrow Stem Cells for Surgical Ventricular Restoration. Stem Cells and Development, 2018, 27, 612-623.	1.1	15
74	Bone tissue engineering in oral peri-implant defects in preclinical <i>in vivo</i> research: A systematic review and meta-analysis. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e336-e349.	1.3	28
75	A Review of Randomized Controlled Trials in Cleft and Craniofacial Surgery. Journal of Craniofacial Surgery, 2018, 29, 293-301.	0.3	18
76	Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Archives of Oral Biology, 2018, 85, 23-39.	0.8	27
77	Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. Journal of Cranio-Maxillo-Facial Surgery, 2018, 46, 222-229.	0.7	35
78	Topics of regenerative medicine for prosthodontists. Annals of Japan Prosthodontic Society, 2018, 10, 105-110.	0.0	0

#	Article	IF	Citations
79	Preconditioning of bone marrow-derived mesenchymal stem cells with N-acetyl-L-cysteine enhances bone regeneration via reinforced resistance to oxidative stress. Biomaterials, 2018, 185, 25-38.	5.7	61
80	Recent Advances in Stem Cell and Tissue Engineering. , 2018, , .		0
81	Comparison of Intraoral Bone Regeneration with Iliac and Alveolar BMSCs. Journal of Dental Research, 2018, 97, 1229-1235.	2.5	22
82	Autologous liquid platelet rich fibrin: A novel drug delivery system. Acta Biomaterialia, 2018, 75, 35-51.	4.1	85
83	The Role of Fibroblast Growth Factors in Tooth Development and Incisor Renewal. Stem Cells International, 2018, 2018, 1-14.	1.2	27
84	Macrophages: The Bridge between Inflammation Resolution and Tissue Repair?. Journal of Dental Research, 2018, 97, 1079-1081.	2.5	48
85	Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Research and Therapy, 2018, 9, 213.	2.4	132
86	Continuing Challenges in Advancing Preclinical Science in Skeletal Cell-Based Therapies and Tissue Regeneration. Journal of Bone and Mineral Research, 2018, 33, 1721-1728.	3.1	7
87	Novel Biological and Technological Platforms for Dental Clinical Use. Frontiers in Physiology, 2018, 9, 1102.	1.3	20
88	Effects of mesenchymal stem cells transplantation on cognitive deficits in animal models of Alzheimer's disease: A systematic review and metaâ€analysis. Brain and Behavior, 2018, 8, e00982.	1.0	16
89	The use of TLR2 modified BMSCs for enhanced bone regeneration in the inflammatory micro-environment. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 3329-3337.	1.9	14
90	A biomimetic self-assembling peptide promotes bone regeneration in vivo: A rat cranial defect study. Bone, 2019, 127, 602-611.	1.4	32
91	Cell-Based Therapies for Alveolar Bone and Periodontal Regeneration: Concise Review. Stem Cells Translational Medicine, 2019, 8, 1286-1295.	1.6	34
93	Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model. International Journal of Molecular Sciences, 2019, 20, 5015.	1.8	115
94	Combination of polyetherketoneketone scaffold and human mesenchymal stem cells from temporomandibular joint synovial fluid enhances bone regeneration. Scientific Reports, 2019, 9, 472.	1.6	30
95	Barrier membranes: More than the barrier effect?. Journal of Clinical Periodontology, 2019, 46, 103-123.	2.3	148
96	Personalized scaffolding technologies for alveolar bone regenerative medicine. Orthodontics and Craniofacial Research, 2019, 22, 69-75.	1.2	32
97	Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1577-1584.	1.9	64

#	ARTICLE	IF	CITATIONS
98	Bone, Periodontal and Dental Pulp Regeneration in Dentistry: A Systematic Scoping Review. Brazilian Dental Journal, 2019, 30, 77-95.	0.5	19
99	Extraction Socket Preservation Using Growth Factors and Stem Cells: a Systematic Review. Journal of Oral & Maxillofacial Research, 2019, 10, e7.	0.3	13
100	Bone Tissue Regeneration in the Oral and Maxillofacial Region: A Review on the Application of Stem Cells and New Strategies to Improve Vascularization. Stem Cells International, 2019, 2019, 1-15.	1.2	65
101	Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS ONE, 2019, 14, e0225472.	1.1	135
102	Osteogenic commitment of Wharton's jelly mesenchymal stromal cells: mechanisms and implications for bioprocess development and clinical application. Stem Cell Research and Therapy, 2019, 10, 356.	2.4	22
103	Cell therapy for orofacial bone regeneration: A systematic review and metaâ€analysis. Journal of Clinical Periodontology, 2019, 46, 162-182.	2.3	51
104	Assessment of Hedgehog Signaling Pathway Activation for Craniofacial Bone Regeneration in a Critical-Sized Rat Mandibular Defect. JAMA Facial Plastic Surgery, 2019, 21, 110-117.	2.2	16
105	Mesenchymal Stem Cells for Periodontal Tissue Regeneration in Elderly Patients. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1351-1358.	1.7	6
106	Enhance Mandibular Symphyseal Surface Bone Growth with Autologous Mesenchymal Stem Cell Sheets: An Animal Study. Aesthetic Plastic Surgery, 2020, 44, 191-200.	0.5	3
107	Tissue-Engineered Bone Using Mesenchymal Stem Cells Versus Conventional Bone Grafts in the Regeneration of Maxillary Alveolar Bone: A Systematic Review and Meta-analysis. International Journal of Oral and Maxillofacial Implants, 2020, 35, 79-90.	0.6	19
108	Identification of a prolonged action molecular GLP-1R agonist for the treatment of femoral defects. Biomaterials Science, 2020, 8, 1604-1614.	2.6	10
109	Characterization of progenitor/stem cell population from human dental socket and their multidifferentiation potential. Cell and Tissue Banking, 2020, 21, 31-46.	0.5	8
110	Emerging local delivery strategies to enhance bone regeneration. Biomedical Materials (Bristol), 2020, 15, 062001.	1.7	7
111	Functional Validation of a New Alginate-based Hydrogel Scaffold Combined with Mesenchymal Stem Cells in a Rat Hard Palate Cleft Model. Plastic and Reconstructive Surgery - Global Open, 2020, 8, e2743.	0.3	9
112	Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules, 2020, 25, 4802.	1.7	12
113	Prospects of Advanced Therapy Medicinal Products–Based Therapies in Regenerative Dentistry: Current Status, Comparison with Global Trends in Medicine, and Future Perspectives. Journal of Endodontics, 2020, 46, S175-S188.	1.4	1
114	<p>Osteoimmune Modulation and Guided Osteogenesis Promoted by Barrier Membranes Incorporated with S-Nitrosoglutathione (GSNO) and Mesenchymal Stem Cell-Derived Exosomes</p> . International Journal of Nanomedicine, 2020, Volume 15, 3483-3496.	3.3	26
115	Efficacy of autologous stem cells for bone regeneration during endosseous dental implants insertion - A systematic review of human studies. Journal of Oral Biology and Craniofacial Research, 2020, 10, 347-355.	0.8	7

#	Article	IF	CITATIONS
116	Current and future trends in periodontal tissue engineering and bone regeneration. Plastic and Aesthetic Research, 0, 8, 3.	0.2	32
117	Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells. Stem Cell Research and Therapy, 2021, 12, 31.	2.4	32
118	Regenerative Approaches in Oral and Maxillofacial Surgery. , 2021, , 171-196.		0
119	Đ'ĐŸĐ›Đ~Đ' ĐœĐ†ĐžĐ"Đ•ĐĐĐ~Đ¥ Đ¡Đ¢ĐžĐ'Đ'Đ£ĐОВĐ~Đ¥ ĐšĐ»Đ†Đ¢Đ~Đ•ĐĐ•ĐŸĐ•ĐЕБІГ Đ—ĐĐŸĐĐ»Đ	¬Đ ᡚžĐ" Đž	ĐŸĐОЦĐ
120	Characterization of the stemness and osteogenic potential of oral and sinus mucosal cells. Journal of the Formosan Medical Association, 2022, 121, 652-659.	0.8	3
121	Comparison of Osteogenic Potentials of Dental Pulp and Bone Marrow Mesenchymal Stem Cells Using the New Cell Transplantation Platform, CellSaic, in a Rat Congenital Cleft-Jaw Model. International Journal of Molecular Sciences, 2021, 22, 9478.	1.8	12
122	Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 704048.	2.0	32
123	Migration and phenotype switching of macrophages at early-phase of bone-formation by secretomes from bone marrow derived mesenchymal stem cells using rat calvaria bone defect model. Journal of Dental Sciences, 2022, 17, 421-429.	1.2	11
124	A systematic review on regenerative alveolar graft materials in clinical trials: Risk of bias and meta-analysis. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2022, 75, 356-365.	0.5	5
125	Regenerative Approaches in Oral Medicine. , 2021, , 197-264.		0
126	Manipulation of Macrophages to Enhance Bone Repair and Regeneration. Mechanical Engineering Series, 2015, , 65-84.	0.1	3
127	Cementum and Periodontal Ligament Regeneration. Advances in Experimental Medicine and Biology, 2015, 881, 207-236.	0.8	27
128	Comparative Study on Acellular Dermal Graft Versus Propylene Mesh Both Either Loaded or Unloaded with BM-MSCs in Healing of Skull Bone Defect in Rats: Histological and Immunohistochemical Study. International Journal of Stem Cells, 2018, 11, 216-226.	0.8	5
129	An Overview on Stem Cells in Tissue Regeneration. Current Pharmaceutical Design, 2019, 25, 2086-2098.	0.9	27
130	Clinical Application of Bone Marrow Mesenchymal Stem/Stromal Cells to Repair Skeletal Tissue. International Journal of Molecular Sciences, 2020, 21, 9759.	1.8	131
131	Reforming craniofacial orthodontics via stem cells. Journal of International Society of Preventive and Community Dentistry, 2015, 5, 13.	0.4	4
132	The Current Status of Stem Cell Regeneration in Intra Oral Applications—A Systematic Review. Open Journal of Stomatology, 2017, 07, 197-224.	0.1	2
133	3D architecture developments for spatial controls of periodontal ligament regeneration with angular orientations. Korean Journal of Dental Materials, 2019, 46, 215-228.	0.2	0

#	Article	IF	CITATIONS
134	Protein- and Cell-Based Therapies for Periodontal Regeneration. , 2020, , 209-230.		O
135	Recent advances in regenerative medicine. , 2020, , 367-412.		0
136	Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 425-443.	1.8	3
138	Intraoral Bone Regeneration Using Stem Cells - What a Clinician Needs to Know: Based on a 15-Year MEDLINE Search. Frontiers in Dentistry, 0, , .	0.6	0
139	Clinical Outcome and 8-Year Follow-Up of Alveolar Bone Tissue Engineering for Severely Atrophic Alveolar Bone Using Autologous Bone Marrow Stromal Cells with Platelet-Rich Plasma and β-Tricalcium Phosphate Granules. Journal of Clinical Medicine, 2021, 10, 5231.	1.0	7
140	Phenotypic, trophic, and regenerative properties of mesenchymal stem cells from different osseous tissues. Cell and Tissue Research, 2022, , 1.	1.5	4
141	The feasibility of craniofacial-derived bone marrow stem cells for the treatment of oral and maxillofacial hard tissue defects. Journal of Dental Sciences, 2022, 17, 1445-1447.	1.2	2
142	TRIM21 inhibits the osteogenic differentiation of mesenchymal stem cells by facilitating K48 ubiquitination-mediated degradation of Akt. Experimental Cell Research, 2022, 412, 113034.	1.2	7
143	Extracellular Vesicles in Musculoskeletal Regeneration: Modulating the Therapy of the Future. Cells, 2022, 11, 43.	1.8	10
145	PERIODONTAL REGENERATION WITH OSSEOUS GRAFTS: A REVIEW. , 2022, , 12-16.		0
146	Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. Journal of Stomatology, Oral and Maxillofacial Surgery, 2022, 123, e650-e659.	0.5	6
147	Spheroid co-culture of BMSCs with osteocytes yields ring-shaped bone-like tissue that enhances alveolar bone regeneration. Scientific Reports, 2022, 12, .	1.6	3
148	Clinical and patientâ€reported outcomes of tissue engineering strategies for periodontal and periâ€implant reconstruction. Periodontology 2000, 2023, 91, 217-269.	6.3	14
150	Applications of regenerative techniques in adult orthodontics. Frontiers in Dental Medicine, 0, 3, .	0.5	0
151	Stem Cells and Dentofacial Orthodontic Treatment Potential. Journal of the California Dental Association, 2021, 49, 677-684.	0.0	0
152	The current regenerative medicine approaches of craniofacial diseases: A narrative review. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	11
153	Tissue Induction in Plastic and Maxillo-facial Surgery. , 0, , .		0
154	Regenerative Potential of Granulation Tissue in Periodontitis: A Systematic Review and Meta-analysis. Stem Cells International, 2023, 2023, 1-11.	1.2	0

Article IF Citations

Leveraging neural crest pluripotency to extend retinal and craniofacial niches for building neurovascular organoids—a theranostic and drug development perspective. , 2023, , 55-118.