Greater Gains in Strength and Power With Intraset Rest

Journal of Strength and Conditioning Research 27, 3116-3131 DOI: 10.1519/jsc.0b013e3182891672

Citation Report

#	Article	IF	CITATIONS
1	Effects of Set Configuration of Resistance Exercise on Perceived Exertion. Perceptual and Motor Skills, 2014, 119, 825-837.	0.6	49
2	Acute response to cluster sets in trained and untrained men. European Journal of Applied Physiology, 2015, 115, 2383-2393.	1.2	54
3	Optimal load for maximizing upper-body power: Test-retest reproducibility. Isokinetics and Exercise Science, 2016, 24, 115-124.	0.2	7
4	Ingestion of High Molecular Weight Carbohydrate Enhances Subsequent Repeated Maximal Power: A Randomized Controlled Trial. PLoS ONE, 2016, 11, e0163009.	1.1	13
5	Velocity Drives Greater Power Observed During Back Squat Using Cluster Sets. Journal of Strength and Conditioning Research, 2016, 30, 235-243.	1.0	54
6	The impact of repetition mechanics on the adaptations resulting from strength-, hypertrophy- and cluster-type resistance training. European Journal of Applied Physiology, 2016, 116, 1875-1888.	1.2	21
7	Effects of short inter-repetition rest periods on power output losses during the half squat exercise. Isokinetics and Exercise Science, 2016, 24, 323-330.	0.2	11
8	Inter-repetition rest training and traditional set configuration produce similar strength gains without cortical adaptations. Journal of Sports Sciences, 2016, 34, 1473-1484.	1.0	35
9	The acute effects of multi-ingredient pre-workout ingestion on strength performance, lower body power, and anaerobic capacity. Journal of the International Society of Sports Nutrition, 2016, 13, 11.	1.7	44
10	Theoretical and Practical Aspects of Different Cluster Set Structures: A Systematic Review. Journal of Strength and Conditioning Research, 2017, 31, 848-867.	1.0	94
11	The widespread misuse of effect sizes. Journal of Science and Medicine in Sport, 2017, 20, 446-450.	0.6	82
12	The Importance of Muscular Strength: Training Considerations. Sports Medicine, 2018, 48, 765-785.	3.1	405
13	Acute Effects of the Elevation Training Mask on Strength Performance in Recreational Weight lifters. Journal of Strength and Conditioning Research, 2018, 32, 482-489.	1.0	28
14	Impact of inserted long rest periods during repeated sprint exercise on performance adaptation. European Journal of Sport Science, 2018, 18, 47-53.	1.4	8
15	The effect of resistance training set configuration on strength, power, and hormonal adaptation in female volleyball players. Applied Physiology, Nutrition and Metabolism, 2018, 43, 154-164.	0.9	19
16	Validity and Reliability of a Commercially-Available Velocity and Power Testing Device. Sports, 2018, 6, 170.	0.7	10
17	High-speed resistance training in elderly women: Effects of cluster training sets on functional performance and quality of life. Experimental Gerontology, 2018, 110, 216-222.	1.2	44
18	Reply to the commentary on: High-speed resistance training in elderly women: Effects of cluster training sets on functional performance and quality of life. Experimental Gerontology, 2019, 123, 34-35.	1.2	0

CITATION REPORT

#	Article	IF	CITATIONS
19	Joint-Level Analyses of the Back Squat With and Without Intraset Rest. International Journal of Sports Physiology and Performance, 2019, 14, 583-589.	1.1	6
20	Effect of Strength on Velocity and Power During Back Squat Exercise in Resistance-Trained Men and Women. Journal of Strength and Conditioning Research, 2019, 33, 1-7.	1.0	17
21	Different Cluster Sets Result in Similar Metabolic, Endocrine, and Perceptual Responses in Trained Men. Journal of Strength and Conditioning Research, 2019, 33, 346-354.	1.0	27
22	Reducing the Loss of Velocity and Power in Women Athletes via Rest Redistribution. International Journal of Sports Physiology and Performance, 2020, 15, 255-261.	1.1	14
23	Effects of cluster training sets on muscle power and force–velocity relationship in postmenopausal women. Sport Sciences for Health, 2020, 16, 257-265.	0.4	2
24	Cluster training sets is an important stimulus for promoting gains in muscle power regardless of resistance training program design in older women. Science and Sports, 2020, 35, 239.e1-239.e8.	0.2	3
25	Resistance Exercise–induced Regulation of Muscle Protein Synthesis to Intraset Rest. Medicine and Science in Sports and Exercise, 2020, 52, 1022-1030.	0.2	13
26	Changes in Bench Press Velocity and Power After 8 Weeks of High-Load Cluster- or Traditional-Set Structures. Journal of Strength and Conditioning Research, 2020, 34, 2734-2742.	1.0	18
27	Acute Effects of Cluster and Rest Redistribution Set Structures on Mechanical, Metabolic, and Perceptual Fatigue During and After Resistance Training: A Systematic Review and Meta-analysis. Sports Medicine, 2020, 50, 2209-2236.	3.1	34
28	Rest Redistribution Does Not Alter Hormone Responses in Resistance-Trained Women. Journal of Strength and Conditioning Research, 2020, 34, 1867-1874.	1.0	7
29	A short set configuration attenuates the cardiac parasympathetic withdrawal after a whole-body resistance training session. European Journal of Applied Physiology, 2020, 120, 1905-1919.	1.2	9
30	A Cluster Set Protocol in the Half Squat Exercise Reduces Mechanical Fatigue and Lactate Concentrations in Comparison with a Traditional Set Configuration. Sports, 2020, 8, 45.	0.7	5
31	Chronic Effects of Altering Resistance Training Set Configurations Using Cluster Sets: A Systematic Review and Meta-Analysis. Sports Medicine, 2021, 51, 707-736.	3.1	24
32	Efficacy of Rest Redistribution During Squats: Considerations for Strength and Sex. Journal of Strength and Conditioning Research, 2021, 35, 586-595.	1.0	7
33	The Effects of Set Structure Manipulation on Chronic Adaptations to Resistance Training: A Systematic Review and Meta-Analysis. Sports Medicine, 2021, 51, 1061-1086.	3.1	24
34	Effect of rest period configurations on systemic inflammatory response in resistance-trained women. Journal of Sports Sciences, 2021, 39, 1504-1511.	1.0	3
35	Effect of Resistance-Training Programs Differing in Set Configuration on Maximal Strength and Explosive-Action Performance. International Journal of Sports Physiology and Performance, 2021, 16, 243-249.	1.1	4
36	The effect of resistance training set configuration on strength and muscular performance adaptations in male powerlifters. Scientific Reports, 2021, 11, 7844.	1.6	4

ARTICLE

37

IF CITATIONS

38	The effect of a six-week plyometric training performed with different set configurations on explosive performance: cluster vs. traditional set configurations. Journal of Sports Medicine and Physical Fitness, 2021, 61, 892-898.	0.4	2
39	Effects of Plyometric and Cluster Resistance Training on Explosive Power and Maximum Strength in Karate Players. International Journal of Applied Exercise Physiology, 2017, 6, 34-44.	0.4	9
40	Effect of Inter-Repetition Rest vs. Traditional Strength Training on Lower Body Strength, Rate of Force Development, and Muscle Architecture. Applied Sciences (Switzerland), 2021, 11, 45.	1.3	9
41	A Systematic Review with Meta-Analysis of the Effect of Resistance Training on Whole-Body Muscle Growth in Healthy Adult Males. International Journal of Environmental Research and Public Health, 2020, 17, 1285.	1.2	23
42	Integrated Power Training Mode in Soccer: Merging Complex Training with Cluster Set. International	0.0	0

ПÐОÐÐ'Ð' ПОКÐЖÐÐ'ЊÐ†Ð' ЖÐÐ"ÐÐ,ЬÐЎЇ Ð**Ð**†Ð–Ð'ЧÐЎЇ ПІÐ"Ð"ОТÐŽÐ'Ð,ЕÐЎЦТÐ,DÐŽ ЮÐÐ'Ð¥ Ð'Ð

43	Effectiveness of a power-training block with two cluster set configurations in recreationally trained young adults on sprint performance. Revista Andaluza De Medicina Del Deporte, 2020, 13, 29-34.	0.1	0
44	Are cluster sets an effective method to induce muscular hypertrophy in response to resistance training?. Revista Brasileira De Ciencias Do Esporte, 0, 42, .	0.4	0
45	Effect of Inter-Repetition Rest vs. Traditional Resistance Training on the Upper Body Strength Rate of Force Development and Triceps Brachii Muscle Architecture. Journal of Human Kinetics, 2022, 81, 189-198.	0.7	1
46	Methods for Controlling and Reporting Resistance Training Proximity to Failure: Current Issues and Future Directions. Sports Medicine, 2022, 52, 1461-1472.	3.1	11
47	Practical Application of Traditional and Cluster Set Configurations Within a Resistance Training Program. Strength and Conditioning Journal, 2022, 44, 87-101.	0.7	2
48	Transcranial Direct Current Stimulation of Motor Cortex Enhances Spike Performances of Professional Female Volleyball Players. Journal of Motor Behavior, 2023, 55, 18-30.	0.5	4
49	Impact of Interrepetition Rest on Muscle Blood Flow and Exercise Tolerance during Resistance Exercise. Medicina (Lithuania), 2022, 58, 822.	0.8	0
50	Blood Flow Restriction Therapy Preserves Lower Extremity Bone and Muscle Mass After ACL Reconstruction. Sports Health, 2023, 15, 361-371.	1.3	10

51	Effect of Set-Structure on Upper-Body Muscular Hypertrophy and Performance in Recreationally-Trained Male and Female. Journal of Strength and Conditioning Research, 2022, 36, 2176-2185.	1.0	2
52	Effect of different training frequencies on maximal strength performance and muscle hypertrophy in trained individuals—a within-subject design. PLoS ONE, 2022, 17, e0276154.	1.1	3
53	Longitudinal Effects of Traditional and Rest Redistribution Set Configurations on Explosive-Strength and Strength-Endurance Manifestations. Journal of Strength and Conditioning Research, 2022, Publish Ahead of Print, .	1.0	2