Silica-based mesoporous nanoparticles for controlled d

Journal of Tissue Engineering 4, 204173141350335 DOI: 10.1177/2041731413503357

Citation Report

#	Article	IF	CITATIONS
1	Inorganic nanobiomaterial drug carriers for medicine. Tissue Engineering and Regenerative Medicine, 2013, 10, 296-309.	3.7	29
2	Novel Hybrid Nanorod Carriers of Fluorescent Hydroxyapatite Shelled with Mesoporous Silica Effective for Drug Delivery and Cell Imaging. Journal of the American Ceramic Society, 2014, 97, 3071-3076.	3.8	23
3	Packaging biological cargoes in mesoporous materials: opportunities for drug delivery. Expert Opinion on Drug Delivery, 2014, 11, 1781-1793.	5.0	42
4	Multifunctional Hybrid Nanocarrier: Magnetic CNTs Ensheathed with Mesoporous Silica for Drug Delivery and Imaging System. ACS Applied Materials & Interfaces, 2014, 6, 2201-2208.	8.0	101
5	Mesoporous bioactive nanocarriers in electrospun biopolymer fibrous scaffolds designed for sequential drug delivery. RSC Advances, 2014, 4, 4444-4452.	3.6	31
6	Therapeutic bioactive microcarriers: Co-delivery of growth factors and stem cells for bone tissue engineering. Acta Biomaterialia, 2014, 10, 520-530.	8.3	82
7	Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy. APL Materials, 2014, 2, .	5.1	30
8	A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants. Colloids and Surfaces B: Biointerfaces, 2014, 123, 657-663.	5.0	102
9	Hybrid magnetic scaffolds of gelatin–siloxane incorporated with magnetite nanoparticles effective for bone tissue engineering. RSC Advances, 2014, 4, 40841-40851.	3.6	47
10	Development of biocompatible apatite nanorod-based drug-delivery system with in situ fluorescence imaging capacity. Journal of Materials Chemistry B, 2014, 2, 2039.	5.8	45
11	Positron Emission Tomography Image-Guided Drug Delivery: Current Status and Future Perspectives. Molecular Pharmaceutics, 2014, 11, 3777-3797.	4.6	93
12	Mesochanneled Hierarchically Porous Aluminosiloxane Aerogel Microspheres as a Stable Support for pH-Responsive Controlled Drug Release. ACS Applied Materials & Interfaces, 2014, 6, 15564-15574.	8.0	26
13	Therapeutic foam scaffolds incorporating biopolymer-shelled mesoporous nanospheres with growth factors. Acta Biomaterialia, 2014, 10, 2612-2621.	8.3	29
14	Pomegranateâ€Structured Electrosprayed Microspheres for Longâ€Term Controlled Drug Release. Particle and Particle Systems Characterization, 2015, 32, 529-535.	2.3	21
15	Silicaâ€based mesoporous nanobiomaterials as promoter of bone regeneration process. Journal of Biomedical Materials Research - Part A, 2015, 103, 3703-3716.	4.0	38
16	Tetracycline-Containing MCM-41 Mesoporous Silica Nanoparticles for the Treatment of Escherichia coli. Molecules, 2015, 20, 19690-19698.	3.8	45
17	Aptamer-Functionalized Nanoparticles as "Smart Bombs― The Unrealized Potential for Personalized Medicine and Targeted Cancer Treatment. Targeted Oncology, 2015, 10, 467-485.	3.6	12
18	Drug–Polymer Electrostatic Complexes as New Structuring Agents for the Formation of Drug-Loaded Ordered Mesoporous Silica. Langmuir, 2015, 31, 12839-12844.	3.5	27

#	Article	IF	CITATIONS
19	Study on size effect of the silica nanospheres with solid core and mesoporous shell on cellular uptake. Biomedical Materials (Bristol), 2015, 10, 065012.	3.3	14
20	Stability and controlled antibiotic release from thin films embedded with antibiotic loaded mesoporous silica nanoparticles. RSC Advances, 2015, 5, 107839-107846.	3.6	11
21	Cytotoxicity of curcumin silica nanoparticle complexes conjugated with hyaluronic acid on colon cancer cells. International Journal of Biological Macromolecules, 2015, 74, 162-170.	7.5	38
22	Therapeutic-designed electrospun bone scaffolds: Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomaterialia, 2015, 16, 103-116.	8.3	130
23	Novel magnetic nanocomposite injectables: calcium phosphate cements impregnated with ultrafine magnetic nanoparticles for bone regeneration. RSC Advances, 2015, 5, 13411-13419.	3.6	55
24	Osteoinductive Fibrous Scaffolds of Biopolymer/Mesoporous Bioactive Glass Nanocarriers with Excellent Bioactivity and Long-Term Delivery of Osteogenic Drug. ACS Applied Materials & Interfaces, 2015, 7, 1140-1152.	8.0	132
25	Novel wrinkled periodic mesoporous organosilica nanoparticles for hydrophobic anticancer drug delivery. Journal of Porous Materials, 2015, 22, 1-10.	2.6	57
26	Controlling antibiotic release from mesoporous silica nano drug carriers via self-assembled polyelectrolyte coating. Journal of Materials Science: Materials in Medicine, 2015, 26, 117.	3.6	29
27	Core–shell designed scaffolds for drug delivery and tissue engineering. Acta Biomaterialia, 2015, 21, 2-19.	8.3	158
28	Helical mesoporous silica as an inorganic heterogeneous chiral trigger for asymmetric autocatalysis with amplification of enantiomeric excess. Chemical Communications, 2015, 51, 8742-8744.	4.1	56
29	Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumor Biology, 2015, 36, 5727-5742.	1.8	96
30	Morphology control of microporous silica particles obtained by gradual injection of reactants. Journal of Sol-Gel Science and Technology, 2015, 76, 156-163.	2.4	5
31	Mechanisms of Drug Release in Nanotherapeutic Delivery Systems. Chemical Reviews, 2015, 115, 3388-3432.	47.7	412
32	Vancomycin-modified silica: Synthesis, controlled release and biological activity of the drug. International Journal of Pharmaceutics, 2015, 486, 226-231.	5.2	14
33	Nanocomposite scaffolds incorporated with hydrophobically-functionalized mesoporous nanocarriers for the effective loading and long-term delivery of osteogenic drugs. RSC Advances, 2015, 5, 26832-26842.	3.6	7
34	Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1253-1263.	3.3	212
35	Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine, 2015, 10, 1233-1246.	3.3	80
36	Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics. Langmuir, 2015, 31, 11344-11352.	3.5	24

#	Article	IF	CITATIONS
37	L-DOPA stabilization on sol–gel silica to be used as neurological nanoreservoirs: Structural and spectroscopic studies. Materials Letters, 2015, 161, 160-163.	2.6	6
38	Mesoporous molecularly imprinted polymer nanoparticles as a sustained release system of azithromycin. RSC Advances, 2015, 5, 98880-98891.	3.6	30
39	Periodic 3D nanoporous silica modified by amine or SPION nanoparticles as NSAID delivery system. Journal of Porous Materials, 2016, 23, 1633-1645.	2.6	15
40	Nanotherapeutics of PTEN Inhibitor with Mesoporous Silica Nanocarrier Effective for Axonal Outgrowth of Adult Neurons. ACS Applied Materials & Interfaces, 2016, 8, 18741-18753.	8.0	21
41	pH-responsive release of chlorhexidine from modified nanoporous silica nanoparticles for dental applications. BioNanoMaterials, 2016, 17, 59-72.	1.4	34
42	Materials for Inorganic Controlled Release Technology. , 2016, , 1-16.		7
43	Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo characterization. Drug Delivery, 2016, 23, 3387-3398.	5.7	24
44	Synthesis of silica particles from rice straw waste using a simple extraction method. IOP Conference Series: Materials Science and Engineering, 2016, 128, 012040.	0.6	45
45	Mesoporous nanocarriers for the loading and stabilization of 5-aminolevulinic acid. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	4
46	Bioinspired Silica Offers a Novel, Green, and Biocompatible Alternative to Traditional Drug Delivery Systems. ACS Biomaterials Science and Engineering, 2016, 2, 1493-1503.	5.2	22
47	The Silicaâ€based Formulations for Drug Delivery, Bone Treatment, and Bone Regeneration. ChemBioEng Reviews, 2016, 3, 229-246.	4.4	6
48	Large-scale preparation of morphology-controlled microporous silica particles via gradual injection of reactants with different surfactants. Journal of Sol-Gel Science and Technology, 2016, 79, 440-446.	2.4	5
49	Synthesis of the mesostructured polymer-silica composite and silicon dioxide through polymer swelling in silica precursor. Adsorption, 2016, 22, 663-671.	3.0	7
50	Role of pore size and morphology in musculo-skeletal tissue regeneration. Materials Science and Engineering C, 2016, 61, 922-939.	7.3	305
51	Multifunctional Mesoporous/Hollow Silica for Cancer Nanotheranostics. Springer Series in Biomaterials Science and Engineering, 2016, , 307-354.	1.0	1
52	Toward a Delaminated Organotalc: The Use of Polyamidoamine Dendrons. ACS Applied Materials & Interfaces, 2016, 8, 1884-1892.	8.0	17
53	Triple Hit with Drug Carriers: pH- and Temperature-Responsive Theranostics for Multimodal Chemo- and Photothermal Therapy and Diagnostic Applications. ACS Applied Materials & Interfaces, 2016, 8, 8967-8979.	8.0	93
54	Biocompatibility of Mesoporous Silica Nanoparticles?. Comments on Inorganic Chemistry, 2016, 36, 61-80.	5.2	265

#	Article	IF	CITATIONS
55	Mesoporous silica materials functionalized with folic acid: preparation, characterization and release profile study with methotrexate. Journal of Sol-Gel Science and Technology, 2016, 77, 186-204.	2.4	55
56	Inhibition of osteoclastogenesis through siRNA delivery with tunable mesoporous bioactive nanocarriers. Acta Biomaterialia, 2016, 29, 352-364.	8.3	52
57	Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. ACS Applied Materials & Interfaces, 2017, 9, 10309-10337.	8.0	111
58	Adsorption behavior of some metal ions on nanoparticles used in pharmaceutical matrices: Application to laboratory made drug formulation. Bulletin of Faculty of Pharmacy, Cairo University, 2017, 55, 155-162.	0.3	5
59	Thermal desorption—Gas chromatographic methodology for the determination of residual solvents in mesoporous silica. Journal of Chromatography A, 2017, 1500, 160-166.	3.7	7
60	Marine Biopolymer-Based Nanomaterials as a Novel Platform for Theranostic Applications. Polymer Reviews, 2017, 57, 631-667.	10.9	45
61	Polymer-modified fibrous mesoporous silica nanoparticles as coating material for open-tubular capillary electrochromatography. Journal of Chromatography A, 2017, 1499, 196-202.	3.7	25
62	Design and development of sustained-release glyburide-loaded silica nanoparticles. Bulletin of Materials Science, 2017, 40, 263-270.	1.7	10
63	Mesoporous nano-bioglass designed for the release of imatinib and in vitro inhibitory effects on cancer cells. Materials Science and Engineering C, 2017, 77, 725-730.	7.3	39
64	A drug delivery system based on switchable photo-controlled p-coumaric acid derivatives anchored on mesoporous silica. Journal of Materials Chemistry B, 2017, 5, 817-825.	5.8	36
65	Surface Engineering: Incorporation of Bioactive Compound. Nanomedicine and Nanotoxicology, 2017, , 111-143.	0.2	1
66	Nanostructured polysaccharide-based carriers for antimicrobial peptide delivery. Journal of Pharmaceutical Investigation, 2017, 47, 85-94.	5.3	19
67	Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles—A Platform for Drug Development. Molecules, 2017, 22, 2020.	3.8	38
68	Enhancement of Curcumin Bioavailability Using Nanocellulose Reinforced Chitosan Hydrogel. Polymers, 2017, 9, 64.	4.5	108
69	Carboxymethyl Cellulose-Grafted Mesoporous Silica Hybrid Nanogels for Enhanced Cellular Uptake and Release of Curcumin. Gels, 2017, 3, 8.	4.5	21
70	Nanospikes functionalization as a universal strategy to disperse hydrophilic particles in non-polar media. Nanotechnology, 2018, 29, 185705.	2.6	1
71	Organo-bridged silsesquioxane incorporated mesoporous silica as a carrier for the controlled delivery of ibuprofen and fluorouracil. Journal of Molecular Liquids, 2018, 258, 319-326.	4.9	42
72	Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. Journal of Controlled Release, 2018, 279, 69-78.	9.9	109

#	Article	IF	CITATIONS
73	Biosilica-enveloped ferritin cage for more efficient drug deliveries. Process Biochemistry, 2018, 68, 182-189.	3.7	19
74	Composite smart mesoporous silica nanoparticles as promising therapeutic and diagnostic candidates: Recent trends and applications. Journal of Drug Delivery Science and Technology, 2018, 44, 349-365.	3.0	47
75	Nano-carriers for targeted delivery and biomedical imaging enhancement. Therapeutic Delivery, 2018, 9, 451-468.	2.2	61
76	Insulin adsorption on functionalized silica surfaces: an accelerated molecular dynamics study. Journal of Molecular Modeling, 2018, 24, 89.	1.8	9
77	A prominent anchoring effect on the kinetic control of drug release from mesoporous silica nanoparticles (MSNs). Journal of Colloid and Interface Science, 2018, 510, 345-356.	9.4	43
78	Contemporary mesoporous materials for drug delivery applications: a review. Journal of Porous Materials, 2018, 25, 965-987.	2.6	21
79	Mesoporous silica-based nanoplatforms for the delivery of photodynamic therapy agents. Journal of Pharmaceutical Investigation, 2018, 48, 3-17.	5.3	54
80	Hierarchically porous polymer derived ceramics: A promising platform for multidrug delivery systems. Materials and Design, 2018, 140, 37-44.	7.0	44
81	Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering. International Journal of Biological Macromolecules, 2018, 110, 65-73.	7.5	38
82	pH- and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and <i>in vitro</i> studies on A549 lung cancer cell and MR imaging. Drug Development and Industrial Pharmacy, 2018, 44, 452-462.	2.0	34
83	Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer. Drug Discovery Today, 2018, 23, 315-332.	6.4	59
84	Recent developments in open tubular capillary electrochromatography from 2016 to 2017. Electrophoresis, 2018, 39, 34-52.	2.4	60
85	Synthesis, Characterization, and Applications of Some New Trimericâ€Type Cationic Surfactants. Journal of Surfactants and Detergents, 2018, 21, 343-353.	2.1	3
86	Chemo-photothermal effects of doxorubicin/silica–carbon hollow spheres on liver cancer. RSC Advances, 2018, 8, 36775-36784.	3.6	14
87	Thermoresponsive Coatings on Hollow Particles with Mesoporous Shells Serve as Stimuli-Responsive Gates to Species Encapsulation and Release. Langmuir, 2018, 34, 14608-14616.	3.5	28
88	Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics, 2018, 10, 181.	4.5	85
89	Cyclodextrin-assisted synthesis of tailored mesoporous silica nanoparticles. Beilstein Journal of Nanotechnology, 2018, 9, 693-703.	2.8	3
90	Silica Materials for Biomedical Applications in Drug Delivery, Bone Treatment or Regeneration, and MRI Contrast Agent. Review Journal of Chemistry, 2018, 8, 223-241.	1.0	3

#	Article	IF	CITATIONS
91	Polymerâ€Brushâ€Grafted Mesoporous Silica Nanoparticles for Triggered Drug Delivery. ChemPhysChem, 2018, 19, 1956-1964.	2.1	54
92	Novel epoxy-silica nanoparticles to develop non-enzymatic colorimetric probe for analytical immuno/bioassays. Analytica Chimica Acta, 2018, 1028, 77-85.	5.4	6
93	Clinical applications of nanostructured drug delivery systems. , 2018, , 43-116.		6
94	Multifunctional hybrid nanoparticles for theranostics * *All authors have contributed equally to this work , 2018, , 177-244.		2
95	Biodegradable Polymers Grafted onto Multifunctional Mesoporous Silica Nanoparticles for Gene Delivery. ChemEngineering, 2018, 2, 24.	2.4	23
96	Photo-switchable nanoporous silica supports for controlled drug delivery. New Journal of Chemistry, 2018, 42, 13263-13271.	2.8	13
97	Structure Analysis of Fe ₃ O ₄ @SiO ₂ Core Shells Prepared from Amorphous and Crystalline SiO ₂ Particles. IOP Conference Series: Materials Science and Engineering, 2018, 367, 012010.	0.6	22
98	Nanostructured biomaterials embedding bioactive molecules. , 2018, , 143-158.		Ο
99	Enhancing cinnamon essential oil activity by nanoparticle encapsulation to control seed pathogens. Industrial Crops and Products, 2018, 124, 755-764.	5.2	57
100	Nanoradiopharmaceuticals in current molecular medicine. , 2018, , 553-569.		2
101	Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics, 2018, 10, 118.	4.5	573
102	Microfluidic preparation of monodisperse polymeric microspheres coated with silica nanoparticles. Scientific Reports, 2018, 8, 8525.	3.3	42
103	Prolonged and continuous antibacterial and anti-biofilm activities of thin films embedded with gentamicin-loaded mesoporous silica nanoparticles. Applied Nanoscience (Switzerland), 2018, 8, 1471-1482.	3.1	13
104	cRGD functionalised nanocarriers for targeted delivery of bioactives. Journal of Drug Targeting, 2019, 27, 111-124.	4.4	32
105	<p>Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release</p> . International Journal of Nanomedicine, 2019, Volume 14, 5503-5526.	6.7	34
106	Electrophoretic deposition of GHK-Cu loaded MSN-chitosan coatings with pH-responsive release of copper and its bioactivity. Materials Science and Engineering C, 2019, 104, 109746.	7.3	19
107	Synthesize and survey the drug loading efficiency of the porous nano silica modified by gelatin. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 035017.	1.5	2
108	Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 4882-4898.	5.2	100

#	Article	IF	CITATIONS
109	Polymeric Mesoporous Silica Nanoparticles for Enhanced Delivery of 5-Fluorouracil In Vitro. Pharmaceutics, 2019, 11, 288.	4.5	51
110	Nanoparticles for improvement in oral bioavailability. , 2019, , 371-410.		6
111	Novel approaches for the design, delivery and administration of vaccine technologies. Clinical and Experimental Immunology, 2019, 196, 189-204.	2.6	82
112	Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review. Applied Sciences (Switzerland), 2019, 9, 1083.	2.5	61
113	Magnetic Mesocellular Foam Functionalized by Curcumin for Potential Multifunctional Therapeutics. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2077-2090.	1.8	6
114	Quantum chemical modeling of iron oxide magnetic nanoparticles functionalized with cytarabine. Chemical Physics Letters, 2019, 719, 12-21.	2.6	11
115	Myristic Acid Coated Protein Immobilised Mesoporous Silica Particles as pH Induced Oral Delivery System for the Delivery of Biomolecules. Pharmaceuticals, 2019, 12, 153.	3.8	2
116	Interfacial interaction of anesthetic lidocaine and mesoporous silica nanoparticles in aqueous solutions and its release properties. Journal of Materials Chemistry B, 2019, 7, 7026-7032.	5.8	10
117	Porous Nanosilica Hybrids Biocompatible Polymer For Enhancing Anticancer Drugs Loading Efficiency And Targeted Delivery. Materials Today: Proceedings, 2019, 18, 4157-4163.	1.8	0
118	Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview. RSC Advances, 2019, 9, 35566-35578.	3.6	20
119	Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine and Pharmacotherapy, 2019, 109, 1100-1111.	5.6	357
120	Effects of silica nanoparticles on endolysosome function in primary cultured neurons. Canadian Journal of Physiology and Pharmacology, 2019, 97, 297-305.	1.4	17
121	Combinatory Cancer Therapeutics with Nanoceria-Capped Mesoporous Silica Nanocarriers through pH-triggered Drug Release and Redox Activity. ACS Applied Materials & Interfaces, 2019, 11, 288-299.	8.0	52
122	DFT study of SiO2 nanoparticles as a drug delivery system: structural and mechanistic aspects. Structural Chemistry, 2019, 30, 715-726.	2.0	21
123	Comparing the drug loading and release of silica aerogel and PVA nano fibers. Journal of Non-Crystalline Solids, 2019, 503-504, 186-193.	3.1	17
124	Pd nanoparticle incorporated mesoporous silicas with excellent catalytic activity and dual responsivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124074.	4.7	17
125	Nanocarriers in photodynamic therapy—in vitro and in vivo studies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1509.	6.1	46
126	Effects of Zn-Doped Mesoporous Bioactive Glass Nanoparticles in Etch-and-Rinse Adhesive on the Microtensile Bond Strength. Nanomaterials, 2020, 10, 1943.	4.1	13

#	Article	IF	CITATIONS
127	Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheat's take-all disease. Pesticide Biochemistry and Physiology, 2020, 170, 104696.	3.6	53
128	Studies on the Exposure of Gadolinium Containing Nanoparticles with Monochromatic X-rays Drive Advances in Radiation Therapy. Nanomaterials, 2020, 10, 1341.	4.1	10
129	Receptor-Mediated <i>In Vivo</i> Targeting of Breast Cancer Cells with 17α-Ethynylestradiol-Conjugated Silica-Coated Gold Nanoparticles. Langmuir, 2020, 36, 14819-14828.	3.5	12
130	A ROS-scavenging multifunctional nanoparticle for combinational therapy of diabetic nephropathy. Nanoscale, 2020, 12, 23607-23619.	5.6	22
131	Antisolvent precipitative immobilization of micro and nanostructured griseofulvin on laboratory cultured diatom frustules for enhanced aqueous dissolution. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111308.	5.0	10
132	Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques. Journal of Drug Delivery Science and Technology, 2020, 59, 101906.	3.0	37
133	Synthesis and characterization of CTAB-silica nanocapsules and its adsorption behavior towards Pd(II) ions in aqueous solution. Advanced Powder Technology, 2020, 31, 3205-3214.	4.1	18
134	Silica-based antibacterial coatings for dental implants. , 2020, , 145-171.		3
135	Zero-order and prolonged release of atenolol from microporous FAU and BEA zeolites, and mesoporous MCM-41: Experimental and theoretical investigations. Journal of Controlled Release, 2020, 327, 140-149.	9.9	9
136	Hydrocarbon Molecules Separation using Nanoporous Materials. , 2020, , 217-264.		0
137	Facile and rapid ultrasound-mediated synthesis of spherical mesoporous silica submicron particles with high surface area and worm-like mesoporosity. Materials Letters, 2020, 281, 128620.	2.6	18
138	Sacrificial sulphonated polystyrene template-assisted synthesis of mesoporous hollow core-shell silica nanoparticles for drug-delivery application. Bulletin of Materials Science, 2020, 43, 1.	1.7	1
139	The protein corona determines the cytotoxicity of nanodiamonds: implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery. Nanoscale Advances, 2020, 2, 4798-4812.	4.6	17
140	Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Advanced Science, 2020, 7, 2003584.	11.2	49
141	Preparation, Characterization, and In Vitro Sustained Release Profile of Resveratrol-Loaded Silica Aerogel. Molecules, 2020, 25, 2752.	3.8	27
142	Mesoporous silica particles as potential carriers for protein drug delivery: protein immobilization and the effect of displacer on γ-globulin release. Drug Development and Industrial Pharmacy, 2020, 46, 576-586.	2.0	3
143	PLA–PCL–PEG–PCL–PLA based micelles for improving the ocular permeability of dexamethasone: development, characterization, and <i>inÂvitro</i> evaluation. Pharmaceutical Development and Technology, 2020, 25, 704-719.	2.4	25
144	Roughness Effects on the Surface Charge Properties of Silica Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 7274-7286.	3.1	38

#	Article	IF	CITATIONS
145	Different sources of silicon precursors influencing on surface characteristics and pore morphologies of mesoporous silica nanoparticles. Applied Surface Science, 2020, 513, 145568.	6.1	21
146	Label-Free Fluorescent Mesoporous Bioglass for Drug Delivery, Optical Triple-Mode Imaging, and Photothermal/Photodynamic Synergistic Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 2218-2229.	4.6	33
147	Nanoparticles modified by polydopamine: Working as "drug―carriers. Bioactive Materials, 2020, 5, 522-541.	15.6	203
148	Fabrication of temperature and pH sensitive decorated magnetic nanoparticles as effective biosensors for targeted delivery of acyclovir anti-cancer drug. Journal of Molecular Liquids, 2020, 309, 113024.	4.9	39
149	Biomineralization process in hard tissues: The interaction complexity within protein and inorganic counterparts. Acta Biomaterialia, 2021, 120, 20-37.	8.3	73
151	Mesoporous silica nanoparticles loaded with alamandine as a potential new therapy against cancer. Journal of Drug Delivery Science and Technology, 2021, 61, 102216.	3.0	1
152	Emerging Nano-Based Drug Delivery Approach for Cancer Therapeutics. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 271-293.	0.3	2
153	Mesoporous Silica Nanoparticles. , 2021, , 458-513.		0
154	Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics, 2021, 13, 143.	4.5	30
155	Nanoencapsulated aroma finishing on fabric by sol-gel process. , 2021, , .		1
156	Metal oxide-based ceramics. , 2021, , 301-331.		0
157	Gold nanoclusters as prospective carriers and detectors of pramipexole. RSC Advances, 2021, 11, 16619-16632.	3.6	20
158	Emerging mesoporous silica nanoparticle-mediated controlled and targeted drug delivery system: Present status and future prospects. , 2021, , 457-481.		0
159	Novel IMB16-4 Compound Loaded into Silica Nanoparticles Exhibits Enhanced Oral Bioavailability and Increased Anti-Liver Fibrosis In Vitro. Molecules, 2021, 26, 1545.	3.8	9
160	Mesoporous silica coated carbon nanofibers reduce embryotoxicity via ERK and JNK pathways. Materials Science and Engineering C, 2021, 122, 111910.	7.3	1
161	Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment. Acta Biomaterialia, 2021, 122, 365-376.	8.3	49
162	Nanoparticles as Drug Delivery Systems of RNAi in Cancer Therapy. Molecules, 2021, 26, 2380.	3.8	16
163	Development of a new simple spectroscopic determination coupled acid-motivated delivery system based on fluorescence turn-off MSNs@MPA-ZnS QDs for infection. Microporous and Mesoporous Materials, 2021, 317, 110971.	4.4	8

#	Article	IF	CITATIONS
164	Drug Delivery to the Bone Microenvironment Mediated by Exosomes: An Axiom or Enigma. International Journal of Nanomedicine, 2021, Volume 16, 3509-3540.	6.7	8
165	Magnesium doped mesoporous bioactive glass nanoparticles: A promising material for apatite formation and mitomycin c delivery to the MG-63 cancer cells. Journal of Alloys and Compounds, 2021, 866, 159013.	5.5	30
166	Smart gating porous particles as new carriers for drug delivery. Advanced Drug Delivery Reviews, 2021, 174, 425-446.	13.7	51
167	Effects of Co-Solvent Nature and Acid Concentration in the Size and Morphology of Wrinkled Mesoporous Silica Nanoparticles for Drug Delivery Applications. Molecules, 2021, 26, 4186.	3.8	6
168	In vivo therapeutic evaluation of a novel bis-lawsone derivative against tumor following delivery using mesoporous silica nanoparticle based redox-responsive drug delivery system. Materials Science and Engineering C, 2021, 126, 112142.	7.3	22
169	Unveiling redox-boosted mesoporous Co@NiO–SiO2 hybrid composite with hetero-morphologies as an electrode candidate for durable hybrid supercapacitors. Journal of Materials Research and Technology, 2021, 13, 1899-1907.	5.8	10
170	Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165, 31-40.	4.3	41
171	Nanoarchitectonics: Complexes and Conjugates of Platinum Drugs with Silicon Containing Nanocarriers. An Overview. International Journal of Molecular Sciences, 2021, 22, 9264.	4.1	10
172	ROS responsive mesoporous silica nanoparticles for smart drug delivery: A review. Journal of Drug Delivery Science and Technology, 2021, 64, 102599.	3.0	21
173	Investigations and Concerns about the Fate of Transgenic DNA and Protein in Livestock. , 0, , .		0
174	Costunolide Loaded in pH-Responsive Mesoporous Silica Nanoparticles for Increased Stability and an Enhanced Anti-Fibrotic Effect. Pharmaceuticals, 2021, 14, 951.	3.8	9
175	Adsorption/Desorption Behaviors and SERS Chemical Enhancement of 6-Mercaptopurine on a Nanostructured Gold Surface: The Au20 Cluster Model. Molecules, 2021, 26, 5422.	3.8	8
176	Constructing biocompatible MSN@Ce@PEG nanoplatform for enhancing regenerative capability of stem cell via ROS-scavenging in periodontitis. Chemical Engineering Journal, 2021, 423, 130207.	12.7	20
177	Ash transformation mechanism during combustion of rice husk and rice straw. Fuel, 2022, 307, 121768.	6.4	41
178	Dual-responsive mesoporous poly-N-isopropylacrylamide-hydroxyapatite composite microspheres for controlled anticancer drug delivery. Journal of Sol-Gel Science and Technology, 2021, 97, 600-609.	2.4	6
179	Synthesis and Characterization of Mesoporous Mg- and Sr-Doped Nanoparticles for Moxifloxacin Drug Delivery in Promising Tissue Engineering Applications. International Journal of Molecular Sciences, 2021, 22, 577.	4.1	28
180	Current Stimuli-Responsive Mesoporous Silica Nanoparticles for Cancer Therapy. Pharmaceutics, 2021, 13, 71.	4.5	37
181	Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction. Frontiers in Cell and Developmental Biology, 2020, 8, 614545.	3.7	39

#	Article	IF	CITATIONS
182	One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. Journal of Controlled Release, 2020, 324, 471-481.	9.9	64
183	Antioxidant activity and modified release profiles of morin and hesperetin flavonoids loaded in Mg- or Ag-modified SBA-16 carriers. Materials Today Communications, 2020, 24, 101198.	1.9	10
184	Reduced Graphene Oxide/Mesoporous Silica Nanocarriers for pH-Triggered Drug Release and Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 2577-2587.	4.6	25
185	Effect of Aminated Mesoporous Bioactive Glass Nanoparticles on the Differentiation of Dental Pulp Stem Cells. PLoS ONE, 2016, 11, e0150727.	2.5	58
186	Mesoporous Silica Nanoparticles (MSN): A Nanonetwork and Hierarchical Structure in Drug Delivery. Journal of Nanomedicine Research, 2015, 2, .	1.8	10
187	Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature. Current Drug Targets, 2015, 16, 592-609.	2.1	42
188	Mesoporous Silica Nanoparticles. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 192-246.	0.3	3
189	Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation, 2015, 5, 124.	0.3	553
190	Inhibitory Effects of Silica Nanoparticles Loaded with Hematoporphyrin on Breast Cancer Cell Line. Middle East Journal of Rehabilitation and Health Studies, 2018, 5, .	0.4	1
191	Applications of Nanopharmaceuticals in Delivery and Targeting. Environmental Chemistry for A Sustainable World, 2021, , 73-114.	0.5	0
192	Augmented phytotoxic effect of nanoencapsulated ophiobolin A. Natural Product Research, 2022, 36, 1143-1150.	1.8	3
193	Synthesis of mesoporous silica derived from geothermal waste with cetyl trimethyl ammonium bromide (CTAB) surfactant as drug delivery carrier. AIP Conference Proceedings, 2020, , .	0.4	11
194	Silica Based Nanomaterial for Drug Delivery. , 2021, , 57-89.		3
195	Melatonin Alleviates Silica Nanoparticle-Induced Lung Inflammation via Thioredoxin-Interacting Protein Downregulation. Antioxidants, 2021, 10, 1765.	5.1	5
196	State of the Art Review on Emerging Applications of Mesoporous Silica. The Open Nanomedicine and Nanotechnology Journal, 2020, 6, 12-20.	1.5	3
198	Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coordination Chemistry Reviews, 2022, 452, 214309.	18.8	81
199	A Pilot Study on Nanotherapy of Momordica charantia against Trimethyltin Chloride-Induced Neurotoxicity in Danio rerio (Zebrafish). Journal of Nanomaterials, 2021, 2021, 1-12.	2.7	3
200	Wettability and Stability of Naproxen, Ibuprofen and/or Cyclosporine A/Silica Delivery Systems. Colloids and Interfaces, 2022, 6, 11.	2.1	4

#	Article	IF	CITATIONS
201	Targeting Multidrug Resistance With Antimicrobial Peptide-Decorated Nanoparticles and Polymers. Frontiers in Microbiology, 2022, 13, 831655.	3.5	6
202	The advances in nanomedicine for bone and cartilage repair. Journal of Nanobiotechnology, 2022, 20, 141.	9.1	43
203	A simple method for the synthesis of carboxymethylated wrinkled mesoporous silica nanoparticles and preparation of a WMS-curcumin conjugate. Journal of Sol-Gel Science and Technology, 2022, 102, 288-295.	2.4	5
204	Porous Silicon Nanocarriers with Stimulusâ€Cleavable Linkers for Effective Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2200076.	7.6	11
205	Clot structure-based physical-matching design of platelet cloaking nano-delivery system facilitates specific arteriovenous thrombolysis. Chemical Engineering Journal, 2022, 441, 135982.	12.7	8
207	Ethology of Sunn-pest oviposition in interaction with deltamethrin loaded on mesoporous silica nanoparticles as a nanopesticide. Chemical and Biological Technologies in Agriculture, 2022, 9, .	4.6	11
208	In vitro and in vivo evaluation of brimonidine loaded silica nanoparticles-laden silicone contact lenses to manage glaucoma. Journal of Biomaterials Applications, 2022, 37, 333-343.	2.4	3
209	Tissue engineering using scaffolds for bone reconstruction: a review of sol-gel silica materials for bone morphogenetic proteins (BMP) encapsulation and release. Journal of Sol-Gel Science and Technology, 0, , .	2.4	0
210	Mesoporous Silica Based Cancer Theranostic: A Modern Approach in Upcoming Medicine. , 0, , .		0
211	Porous biomaterials for tissue engineering: a review. Journal of Materials Chemistry B, 2022, 10, 8111-8165.	5.8	27
212	pH-Responsive Release of Anesthetic Lidocaine Derivative QX-OH from Mesoporous Silica Nanoparticles Mediated by Ester Bonds. SSRN Electronic Journal, 0, , .	0.4	0
213	pH-Sensitive Polyacrylic Acid-Gated Mesoporous Silica Nanocarrier Incorporated with Calcium Ions for Controlled Drug Release. Materials, 2022, 15, 5926.	2.9	6
214	Application of Porous Nanomaterials for Sustained and Targeted Drug Release. Advances in Science and Technology, 0, , .	0.2	3
215	Novel lipid-coated mesoporous silica nanoparticles loaded with thymoquinone formulation to increase its bioavailability in the brain and organs of Wistar rats. BMC Pharmacology & Toxicology, 2022, 23, .	2.4	3
216	Mesoporous silica coated SPIONs containing curcumin and silymarin intended for breast cancer therapy. DARU, Journal of Pharmaceutical Sciences, 2022, 30, 331-341.	2.0	7
217	Silica/Proteoliposomal Nanocomposite as a Potential Platform for Ion Channel Studies. Molecules, 2022, 27, 6658.	3.8	0
218	Sericin nanoparticles: Future nanocarrier for target-specific delivery of chemotherapeutic drugs. Journal of Molecular Liquids, 2022, 368, 120717.	4.9	8
219	Mesoporous silicas in materials engineering: Nanodevices for bionanotechnologies. Materials Today Bio, 2022, 17, 100472.	5.5	13

# 220	ARTICLE Facile synthesis of fluorescent mesoporous nanocarriers with pH-sensitive controlled release of naturally derived dieckol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130535.	IF 4.7	Citations
221	pH-responsive release of anesthetic lidocaine derivative QX-OH from mesoporous silica nanoparticles mediated by ester bonds. Journal of Drug Delivery Science and Technology, 2022, 78, 103977.	3.0	1
222	Smart drug delivery systems and their clinical potential. , 2023, , 401-436.		1
223	A systemic review on development of mesoporous nanoparticles as a vehicle for transdermal drug delivery. Nanotheranostics, 2023, 7, 70-89.	5.2	18
224	Key Parameters for the Rational Design, Synthesis, and Functionalization of Biocompatible Mesoporous Silica Nanoparticles. Pharmaceutics, 2022, 14, 2703.	4.5	17
225	Recent Advances in Mesoporous Silica Nanoparticle-Mediated Drug Delivery for Breast Cancer Treatment. Pharmaceutics, 2023, 15, 227.	4.5	9
226	Fiber and textile in drug delivery to combat multidrug resistance microbial infection. , 2023, , 359-387.		1
227	Mesoporous Silica Nanoparticles: Drug Delivery Vehicles for Antidiabetic Molecules. ChemBioChem, 2023, 24, .	2.6	7
228	Nanotechnology for DNA and RNA delivery. , 2023, , 81-111.		1
229	Ordered mesoporous silica nanocarriers: An innovative paradigm and a promising therapeutic efficient carrier for delivery of drugs. Journal of Drug Delivery Science and Technology, 2023, 82, 104306.	3.0	6
230	Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Medicinal Research Reviews, 2023, 43, 717-774.	10.5	32
231	Dissolution control and stability improvement of silica nanoparticles in aqueous media. Journal of Nanoparticle Research, 2023, 25, .	1.9	6
232	Low-Dimensional Hollow Nanostructures: From Morphology Control to the Release of an Active Pharmaceutical Ingredient. Chemistry of Materials, 2023, 35, 1877-1890.	6.7	2
233	Mesoporous Silica Nanoparticles as a Potential Nanoplatform: Therapeutic Applications and Considerations. International Journal of Molecular Sciences, 2023, 24, 6349.	4.1	15
234	Anti-Balamuthia mandrillaris and anti-Naegleria fowleri effects of drugs conjugated with various nanostructures. Archives of Microbiology, 2023, 205, .	2.2	0
235	Targeted multidrug delivery systems to kill antibiotic-resistant Staphylococcus aureus. Journal of Drug Delivery Science and Technology, 2023, 86, 104622.	3.0	1
236	Investigation of Paracetamol Entrapped Nanoporous Silica Nanoparticles in Transdermal Drug Delivery System. Applied Biochemistry and Biotechnology, 0, , .	2.9	1
237	Phosphorylcholine and KR12-Containing Corneal Implants in HSV-1-Infected Rabbit Corneas. Pharmaceutics, 2023, 15, 1658.	4.5	1

		CITATION REPORT		
# 238	ARTICLE ROS Responsive Silica Nanoparticles for Controlled and Targeted Drug Delivery. , 2023	, , 327-346.	IF	Citations
239	pH-Responsive Biomaterials for the Treatment of Dental Caries—A Focussed and Criti Pharmaceutics, 2023, 15, 1837.	cal Review.	4.5	3
240	Fucoidan-Coated Silica Nanoparticles Promote the Differentiation of Human Mesenchy into the Osteogenic Lineage. ACS Biomaterials Science and Engineering, 2023, 9, 4907	mal Stem Cells 7-4915.	5.2	1
241	Green Nanotechnology–Based Drug Delivery Systems. , 2023, , 1-5.			0
242	Recent development of polymer nanomicelles in the treatment of eye diseases. Frontie Bioengineering and Biotechnology, 0, 11, .	rs in	4.1	4
243	Synergistic effect of CoFe2O4–85S nano bio-glass composites for hyperthermia and delivery. Materialia, 2023, 32, 101884.	controlled drug	2.7	0
244	Small Gold Clusters: Structure, Energetics and Biomedical Applications. , 2024, , 523-5	67.		0
245	Combinatorial treatment using bevacizumab/pemetrexed loaded core-shell silica nanop non-small cell lung cancer. Science and Technology of Advanced Materials, 2023, 24, .	varticles for	6.1	0
246	Effect of silica-based mesoporous nanomaterials on human blood cells. Chemico-Biolog Interactions, 2024, 387, 110784.	gical	4.0	2
247	Mesoporous Silica Nanoparticles: Types, Synthesis, Role in the Treatment of Alzheimera Other Applications. Pharmaceutics, 2023, 15, 2666.	à€™s Disease, and	4.5	1
248	The Potential of Nano-Based Photodynamic Treatment as a Therapy against Oral Leuko Narrative Review. Journal of Clinical Medicine, 2023, 12, 6819.	plakia: A	2.4	1
249	Toxicological Profiling and Long-Term Effects of Bare, PEGylated- and Galacto-Oligosaccharide-Functionalized Mesoporous Silica Nanoparticles. International Molecular Sciences, 2023, 24, 16158.	Journal of	4.1	2
250	CD-44 active cystamine-bridged hyaluronic acid-polydopamine nanoparticles for chemo cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 202)-photothermal 24, 682, 132879.	4.7	0
251	Potential Applications and Additive Manufacturing Technology-Based Considerations o Silica: A Review. AAPS PharmSciTech, 2024, 25, .	f Mesoporous	3.3	1
252	Posaconazole Loading and Release Behavior in Surface-Modified Mesoporous Silica Nai System. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2023, 16, 615-632.	noparticular	0.2	0
253	Fabrication of Activated Charcoal from Paddy Waste for Bioethanol Production. Clean Production Technologies, 2024, , 127-149.	Energy	0.5	0
254	Advancing Cancer Treatment: Enhanced Combination Therapy through Functionalized Nanoparticles. Biomedicines, 2024, 12, 326.	Porous	3.2	0
255	Cutting-edge advancements in anticancer drug delivery and scope for theranostics usin biocompatible multifunctional mesoporous silica nanoparticles. Journal of Drug Deliver Technology, 2024, 94, 105504.	y Science and	3.0	0

#	Article	IF	CITATIONS
256	Rifampicin adsorption and release study using Santa Barbara amorphous-16 modified Al (SBA-16-Al) for a drug delivery system. RSC Advances, 2024, 14, 7371-7382.	3.6	0