Susceptibility of Interstitial Continuous Glucose Monite Position

Journal of Diabetes Science and Technology 7, 863-870

DOI: 10.1177/193229681300700408

Citation Report

#	Article	IF	CITATIONS
2	Glucose Sensing in the Peritoneal Space Offers Faster Kinetics Than Sensing in the Subcutaneous Space. Diabetes, 2014, 63, 2498-2505.	0.3	43
3	A Novel Method to Detect Pressure-Induced Sensor Attenuations (PISA) in an Artificial Pancreas. Journal of Diabetes Science and Technology, 2014, 8, 1091-1096.	1.3	64
4	Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems. Journal of Diabetes Science and Technology, 2014, 8, 1204-1214.	1.3	39
5	Continuous Glucose Monitoring in 2013. Diabetes Technology and Therapeutics, 2014, 16, S-11-S-16.	2.4	4
7	Experience With the Enlite Sensor in a Multicenter Pediatric Study. The Diabetes Educator, 2015, 41, 31-37.	2.6	4
8	Indication, organization, practical implementation and interpretation guidelines for retrospective CGM recording: A French position statement. Diabetes and Metabolism, 2015, 41, 498-508.	1.4	20
10	Update on Clinical Utility of Continuous Glucose Monitoring in Type 1 Diabetes. Current Diabetes Reports, 2016, 16, 115.	1.7	24
11	Electrochemical Glucose Biosensors for Diabetes Care. Bioanalytical Reviews, 2016, , 1-101.	0.1	4
12	Practical Considerations on the Use of Continuous Glucose Monitoring in Pediatrics and Older Adults and Nonadjunctive Use. Diabetes Technology and Therapeutics, 2017, 19, S-13-S-20.	2.4	38
13	Long-term blood glucose monitoring with implanted telemetry device in conscious and stress-free cynomolgus monkeys. Journal of Endocrinological Investigation, 2017, 40, 967-977.	1.8	11
14	Comparison of Continuous Glucose Monitoring between Dexcom G4 Platinum and HD-XG Systems in Nonhuman Primates (Macaca Fascicularis). Scientific Reports, 2017, 7, 9596.	1.6	3
15	‰ducation à l'utilisation pratique et à l'interprétation de la Mesure Continue du Glucose : position d'experts français. Medecine Des Maladies Metaboliques, 2017, 11, S1-S37.	0.1	2
16	The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers. Bioelectrochemistry, 2018, 121, 1-6.	2.4	39
17	Effect of sensor location on continuous intraperitoneal glucose sensing in an animal model. PLoS ONE, 2018, 13, e0205447.	1.1	12
18	Consistency of Continuous Ambulatory Interstitial Glucose Monitoring Sensors. Biosensors, 2018, 8, 49.	2.3	3
19	Effects of Moderate Cycling Exercise on Blood Glucose Regulation Following Successful Clinical Islet Transplantation. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 493-502.	1.8	2
20	Continuous Glucose Monitors and Automated Insulin Dosing Systems in the Hospital Consensus Guideline. Journal of Diabetes Science and Technology, 2020, 14, 1035-1064.	1.3	77
21	Evaluation of Reference Metrics for Continuous Glucose Monitoring in Persons Without Diabetes and Prediabetes. Journal of Diabetes Science and Technology, 2022, 16, 373-382.	1.3	15

CITATION REPORT

#	Article	IF	CITATIONS
22	Benefits and limitations of continuous glucose monitoring in type 1 diabetes. Expert Review of Endocrinology and Metabolism, 2020, 15, 41-49.	1.2	14
23	Monitoring of Pediatric Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 128.	1.5	25
24	Applications and pitfalls of hemoglobin A1C and alternative methods of glycemic monitoring. Journal of Diabetes and Its Complications, 2020, 34, 107585.	1.2	21
25	Utilizing continuous glucose monitoring in primary care practice: What the numbers mean. Primary Care Diabetes, 2021, 15, 199-207.	0.9	13
26	Glycemic Patterns Are Distinct in Post-Bariatric Hypoglycemia After Gastric Bypass (PBH-RYGB). Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2291-2303.	1.8	24
27	Comparison of Insulins Glargine and Degludec in Diabetic Rhesus Macaques (<i>Macaca mulatta</i>) with CGM Devices. Comparative Medicine, 2021, 71, 247-255.	0.4	1
28	Hydrogels in Emerging Technologies for Type 1 Diabetes. Chemical Reviews, 2021, 121, 11458-11526.	23.0	68
29	Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology. Diabetes Technology and Therapeutics, 2017, 19, S-44-S-50.	2.4	103
30	Integrated sensor-augmented pump therapy systems [the MiniMed® Paradigm™ Veo system and the Vibe™ and G4® PLATINUM CGM (continuous glucose monitoring) system] for managing blood glucose levels in type 1 diabetes: a systematic review and economic evaluation. Health Technology Assessment, 2016, 20, 1-252.	1.3	57
31	Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid. Modeling, Identification and Control, 2016, 37, 121-131.	0.6	12
32	Artifactual hypoglycemia in a patient with sickle cell anemia. Cmaj, 2021, 193, E1660-E1662.	0.9	1
33	Individualizing Time-in-Range Goals in Management of Diabetes Mellitus and Role of Insulin: Clinical Insights From a Multinational Panel. Diabetes Therapy, 2021, 12, 465-485.	1.2	5
34	Practical aspects of diabetes technology use: Continuous glucose monitors, insulin pumps, and automated insulin delivery systems. Journal of Clinical and Translational Endocrinology, 2022, 27, 100282.	1.0	5
36	Utility of Continuous Glucose Monitoring vs Meal Study in Detecting Hypoglycemia After Gastric Bypass. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2095-e2102.	1.8	3
37	HbA1c and Glucose Management Indicator Discordance Associated with Obesity and Type 2 Diabetes in Intermittent Scanning Glucose Monitoring System. Biosensors, 2022, 12, 288.	2.3	3
38	Automated Insulin Delivery: Benefits, Challenges, and Recommendations. A Consensus Report of the Joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association. Diabetes Care, 2022, 45, 3058-3074.	4.3	18
39	Automated insulin delivery: benefits, challenges, and recommendations. A Consensus Report of the Joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association. Diabetologia, 2023, 66, 3-22.	2.9	22
40	Mining associations between glycemic variability in awake-time and in-sleep among non-diabetic adults. Frontiers in Medical Technology, 0, 4, .	1.3	1

#	Article	IF	CITATIONS
41	Continuous Glucose Monitoring Within Hospital: A Scoping Review and Summary of Guidelines From the Joint British Diabetes Societies for Inpatient Care. Journal of Diabetes Science and Technology, 2023, 17, 611-624.	1.3	8
42	Glycaemic control and novel technology management strategies in pregestational diabetes mellitus. Frontiers in Endocrinology, 0, 13, .	1.5	4
43	Machine-Learning-Based Detection of Pressure-Induced Faults in Continuous Glucose Monitors. Industrial & Engineering Chemistry Research, 2023, 62, 2255-2262.	1.8	3
44	Feasibility of intraoperative continuous glucose monitoring: An observational study in general surgery patients. Journal of Clinical Anesthesia, 2023, 87, 111090.	0.7	3
45	Expert Guidance on Off-Label Use of Hybrid Closed-Loop Therapy in Pregnancies Complicated by Diabetes. Diabetes Technology and Therapeutics, 2023, 25, 363-373.	2.4	9
46	Effect of insulin degludec versus insulin glargine <scp>U100</scp> on nocturnal glycaemia assessed by plasma glucose profiles in people with type 1 diabetes prone to nocturnal severe hypoglycaemia. Diabetes, Obesity and Metabolism, 2023, 25, 1557-1565.	2.2	4
47	Use of Continuous Glucose Monitors to Manage Type 1 Diabetes Mellitus: Progress, Challenges, and Recommendations. Pharmacogenomics and Personalized Medicine, 0, Volume 16, 263-276.	0.4	1
48	Continuous glucose monitoring in patients with <scp>postâ€bariatric</scp> hypoglycaemia reduces hypoglycaemia and glycaemic variability. Diabetes, Obesity and Metabolism, 2023, 25, 2191-2202.	2.2	2
50	Expanding the Role of Continuous Glucose Monitoring in Modern Diabetes Care Beyond TypeÂ1 Disease. Diabetes Therapy, 2023, 14, 1241-1266.	1.2	2
55	The artificial pancreas: two alternative approaches to achieve a fully closed-loop system with optimal glucose control. Journal of Endocrinological Investigation, 2024, 47, 513-521.	1.8	1
58	Clinical Practice Update: Inpatient Insulin Pump and Integrated Insulin Delivery Systems. Contemporary Endocrinology, 2023, , 95-116.	0.3	0