Mapping of Near-Surface Winds in Hurricane Rita Using Land-Use Data

Monthly Weather Review 141, 4337-4349

DOI: 10.1175/mwr-d-12-00350.1

Citation Report

#	Article	IF	CITATIONS
1	Standardization of raw wind speed data under complex terrain conditions: A data-driven scheme. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 131, 12-30.	1.7	27
2	Validation of Dual-Doppler Wind Profiles with in situ Anemometry. Journal of Atmospheric and Oceanic Technology, 2015, 32, 943-960.	0.5	9
3	Validation of simulated hurricane drop size distributions using polarimetric radar. Geophysical Research Letters, 2016, 43, 910-917.	1.5	87
4	Influences on Observed Near-Surface Gust Factors in Landfalling U.S. Gulf Coast Hurricanes: 2004–08. Journal of Applied Meteorology and Climatology, 2016, 55, 2587-2611.	0.6	12
5	Monitoring Wind Characteristics and Structural Performance of a Supertall Building during a Landfall Typhoon. Journal of Structural Engineering, 2016, 142, .	1.7	39
6	A Comparison of ASOS Near-Surface Winds and WSR-88D-Derived Wind Speed Profiles Measured in Landfalling Tropical Cyclones. Weather and Forecasting, 2016, 31, 1343-1361.	0.5	6
7	Observations of vertical wind profiles of tropical cyclones at coastal areas. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152, 1-14.	1.7	49
8	Improvements to the snow melting process in a partially double moment microphysics parameterization. Journal of Advances in Modeling Earth Systems, 2017, 9, 1150-1166.	1.3	21
9	The Role of Small-Scale Vortices in Enhancing Surface Winds and Damage in Hurricane Harvey (2017). Monthly Weather Review, 2018, 146, 713-722.	0.5	45
11	Prevalence of tornado-scale vortices in the tropical cyclone eyewall. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8307-8310.	3.3	35
12	Observing Hurricane Harvey's Eyewall at Landfall. Bulletin of the American Meteorological Society, 2019, 100, 759-775.	1.7	23
13	Tornado-scale vortices in the tropical cyclone boundary layer: numerical simulation with the WRF–LES framework. Atmospheric Chemistry and Physics, 2019, 19, 2477-2487.	1.9	20
14	Mobile groundâ€based SMART radar observations and wind retrievals during the landfall of Hurricane Harvey (2017). Geoscience Data Journal, 2019, 6, 205-213.	1.8	4
15	Nearâ€Surface Maximum Winds During the Landfall of Hurricane Harvey. Geophysical Research Letters, 2019, 46, 973-982.	1.5	19
16	Observed Near-Surface Wind Structure in the Inner Core of Typhoon Goni (2015). Monthly Weather Review, 2021, , .	0.5	1
17	Evaluation of the Surface Wind Field over Land in WRF Simulations of Hurricane Wilma (2005). Part II: Surface Winds, Inflow Angles, and Boundary Layer Profiles. Monthly Weather Review, 2021, 149, 697-713.	0.5	8
18	A study of track deflection associated with the landfall of Tropical Cyclone Sidr (2007) over the Bay of Bengal and Bangladesh. Dynamics of Atmospheres and Oceans, 2021, 93, 101207.	0.7	3
19	Evaluation of boundary-layer and urban-canopy parameterizations for simulating wind in Miami during Hurricane Irma (2017). Monthly Weather Review, 2021, , .	0.5	3

#	Article	IF	CITATIONS
20	The Flexible Array of Radars and Mesonets (FARM). Bulletin of the American Meteorological Society, 2021, 102, E1499-E1525.	1.7	4
21	Transition of the Hurricane Boundary Layer during the Landfall of Hurricane Irene (2011). Journals of the Atmospheric Sciences, 2020, 77, 3509-3531.	0.6	20
23	Stormâ€Scale and Fineâ€Scale Boundary Layer Structures of Tropical Cyclones Simulated With the WRFâ€LES Framework. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035511.	1.2	10
24	Tropical Cyclones and Hurricanes: Observations. , 2019, , .		4
25	Deep Learning Parameterization of the Tropical Cyclone Boundary Layer. Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	2