Biomarkers of Cardiovascular Stress and Incident Chron

Clinical Chemistry 59, 1613-1620

DOI: 10.1373/clinchem.2013.205716

Citation Report

#	Article	IF	CITATIONS
1	The Story of Growth Differentiation Factor 15: Another Piece of the Puzzle. Clinical Chemistry, 2013, 59, 1550-1552.	1.5	44
2	Biomarkers of Cardiovascular Stress and Subclinical Atherosclerosis in the Community. Clinical Chemistry, 2014, 60, 1402-1408.	1.5	24
3	Emerging Risk Biomarkers in Cardiovascular Diseases and Disorders. Journal of Lipids, 2015, 2015, 1-50.	1.9	201
4	GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. Journal of Diabetes Research, 2015, 2015, 1-14.	1.0	321
5	Cardiovascular Biomarkers in Chronic Kidney Disease: State of Current Research and Clinical Applicability. Disease Markers, 2015, 2015, 1-16.	0.6	36
6	Iron Status and Inflammation in Early Stages of Chronic Kidney Disease. Kidney and Blood Pressure Research, 2015, 40, 366-373.	0.9	43
7	Pre-operative growth differentiation factor 15 as a novel biomarker of acute kidney injury after cardiac bypass surgery. International Journal of Cardiology, 2015, 197, 66-71.	0.8	36
8	Soluble ST2 Testing in the General Population. American Journal of Cardiology, 2015, 115, 228-25B.	0.7	15
9	Soluble ST2â€"Analytical Considerations. American Journal of Cardiology, 2015, 115, 8B-21B.	0.7	86
10	NT-ProBNP and Troponin T and Risk of Rapid Kidney Function Decline and Incident CKD in Elderly Adults. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 205-214.	2.2	46
11	Serum GDF15 Levels Correlate to Mitochondrial Disease Severity and Myocardial Strain, but Not to Disease Progression in Adult m.3243A>G Carriers. JIMD Reports, 2015, 24, 69-81.	0.7	39
12	The Expression of GDF-15 in the Human Vitreous in the Presence of Retinal Pathologies with an Inflammatory Component. Ocular Immunology and Inflammation, 2015, 24, 1-6.	1.0	3
13	Soluble ST2 in heart failure. Clinica Chimica Acta, 2015, 443, 57-70.	0.5	114
14	Effect of Atorvastatin on Growth Differentiation Factor-15 in Patients with Type 2 Diabetes Mellitus and Dyslipidemia. Diabetes and Metabolism Journal, 2016, 40, 70.	1.8	6
15	GDF-15 Is Associated with Cancer Incidence in Patients with Type 2 Diabetes. Clinical Chemistry, 2016, 62, 1612-1620.	1.5	26
16	GDF-15, iron, and inflammation in early chronic kidney disease among elderly patients. International Urology and Nephrology, 2016, 48, 839-844.	0.6	20
17	Determinants of growth differentiation factor 15 in patients with stable and acute coronary artery disease. A prospective observational study. Cardiovascular Diabetology, 2016, 15, 60.	2.7	26
18	MAP3K11/GDF15 axis is a critical driver of cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 467-482.	2.9	125

#	ARTICLE	IF	CITATIONS
19	Galectin-3 and Soluble ST2 and Kidney Function Decline in Older Adults: The Cardiovascular Health Study (CHS). American Journal of Kidney Diseases, 2016, 67, 994-996.	2.1	22
20	Estimated Glomerular Filtration Rate and Albuminuria Are Associated with Biomarkers of Cardiac Injury in a Population-Based Cohort Study: The Maastricht Study. Clinical Chemistry, 2017, 63, 887-897.	1.5	19
21	Growth Differentiation Factor–15 and Risk of CKD Progression. Journal of the American Society of Nephrology: JASN, 2017, 28, 2233-2240.	3.0	127
22	Growth Differentiation Factor 15 at 1ÂMonth After an Acute Coronary Syndrome Is Associated With Increased Risk of Major Bleeding. Journal of the American Heart Association, 2017, 6, .	1.6	27
23	Growth-differentiation factor 15 and risk of major bleeding in atrial fibrillation: Insights from the Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) trial. American Heart Journal, 2017, 190, 94-103.	1.2	42
24	Circulating GDF-15 levels predict future secondary manifestations of cardiovascular disease explicitly in women but not men with atherosclerosis. International Journal of Cardiology, 2017, 241, 430-436.	0.8	24
25	Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clinical Chemistry, 2017, 63, 140-151.	1.5	380
26	Growth Differentiation Factor 15 Predicts All-Cause Morbidity and Mortality in Stable Coronary Heart Disease. Clinical Chemistry, 2017, 63, 325-333.	1.5	97
27	Dosage du récepteur soluble sST2 : perspectives. Revue Francophone Des Laboratoires, 2017, 2017, 51-55.	0.0	0
28	An Automated Assay for Growth Differentiation Factor 15. journal of applied laboratory medicine, The, 2017, 1, 510-521.	0.6	35
29	Renocardiovascular Biomarkers: from the Perspective of Managing Chronic Kidney Disease and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2017, 4, 10.	1.1	31
30	Growth Differentiation Factor-15 Is a Predictor of Mortality in Critically III Patients with Sepsis. Disease Markers, 2017, 2017, 1-10.	0.6	54
31	Growth differentiation factor-15 is a new biomarker for survival and renal outcomes in light chain amyloidosis. Blood, 2018, 131, 1568-1575.	0.6	44
32	sST2 as a New Biomarker of Chronic Kidney Disease-Induced Cardiac Remodeling: Impact on Risk Prediction. Mediators of Inflammation, 2018, 2018, 1-9.	1.4	18
33	Cardiovascular Risk Factors in End-Stage Renal Disease Patients: The Impact of Conventional Dialysis versus Online-Hemodiafiltration., 2018,,.		0
34	The MIC-1/GDF15-GFRAL Pathway in Energy Homeostasis: Implications for Obesity, Cachexia, and Other Associated Diseases. Cell Metabolism, 2018, 28, 353-368.	7.2	255
35	Growth differentiation factor-15 and fibroblast growth factor-23 are associated with mortality in type 2 diabetes $\hat{a} \in \text{Mortal}$ An observational follow-up study. PLoS ONE, 2018, 13, e0196634.	1.1	29
36	Growth differentiation factor 15 is decreased by kidney transplantation. Clinical Biochemistry, 2019, 73, 57-61.	0.8	13

3

#	Article	IF	Citations
37	Cardiac and Stress Biomarkers and Chronic Kidney Disease Progression: The CRIC Study. Clinical Chemistry, 2019, 65, 1448-1457.	1.5	29
38	Growth Differentiation Factor-15 (GDF-15) is a Biomarker of Muscle Wasting and Renal Dysfunction in Preoperative Cardiovascular Surgery Patients. Journal of Clinical Medicine, 2019, 8, 1576.	1.0	36
39	Soluble ST2 and Galectin-3 and Progression of CKD. Kidney International Reports, 2019, 4, 103-111.	0.4	41
40	Growth differentiation factor 15 and geriatric conditions in acute coronary syndrome. International Journal of Cardiology, 2019, 290, 15-20.	0.8	16
41	Growth differentiation factor 15: A novel biomarker with high clinical potential. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 333-350.	2.7	58
42	sST2 as a novel biomarker for the prediction of in-hospital mortality after coronary artery bypass grafting. Biomarkers, 2019, 24, 268-276.	0.9	8
43	Identification of urinary candidate biomarkers of cisplatin-induced nephrotoxicity in patients with carcinoma. Journal of Proteomics, 2020, 210, 103533.	1.2	14
44	Multimarker approach including CRP, sST2 and GDFâ€15 for prognostic stratification in stable heart failure. ESC Heart Failure, 2020, 7, 2230-2239.	1.4	34
45	Evaluating the Relationship of GDF-15 with Clinical Characteristics, Cardinal Features, and Survival in Multiple Myeloma. Mediators of Inflammation, 2020, 2020, 1-13.	1.4	4
46	Cardiac biomarkers of heart failure in chronic kidney disease. Clinica Chimica Acta, 2020, 510, 298-310.	0.5	53
47	Contribution of Predictive and Prognostic Biomarkers to Clinical Research on Chronic Kidney Disease. International Journal of Molecular Sciences, 2020, 21, 5846.	1.8	29
48	The power of proteomics to monitor senescence-associated secretory phenotypes and beyond: toward clinical applications. Expert Review of Proteomics, 2020, 17, 297-308.	1.3	40
49	Plasma levels of growth differentiation factor 15 are associated with future risk of venous thromboembolism. Blood, 2020, 136, 1863-1870.	0.6	11
50	Growth Differentiation Factor 15 in Children with Chronic Kidney Disease and after Renal Transplantation. Disease Markers, 2020, 2020, 1-8.	0.6	15
51	A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biology, 2020, 18, e3000599.	2.6	694
52	GDF15: A Hormone Conveying Somatic Distress to the Brain. Endocrine Reviews, 2020, 41, .	8.9	109
53	Soluble ST2 and Galectin-3 as Predictors of Chronic Kidney Disease Progression and Outcomes. American Journal of Nephrology, 2021, 52, 119-130.	1.4	14
54	Longitudinal course of GDF15 levels before acute hospitalization and death in the general population. GeroScience, 2021, 43, 1835-1849.	2.1	7

#	Article	IF	CITATIONS
55	Elevated levels of soluble ST2 but not galectin-3 are associated with increased risk of mortality in hemodialysis patients. Kidney Research and Clinical Practice, 2021, 40, 109-119.	0.9	2
56	Relationship between plasma growth differentiation factor-15 level and estimated glomerular filtration rate in type 2 diabetes patients with and without albuminuria. Journal of Diabetes and Its Complications, 2021, 35, 107849.	1.2	3
57	Preoperative Serum GDF-15, Endothelin-1 Levels, and Intraoperative Factors as Short-Term Operative Risks for Patients Undergoing Cardiovascular Surgery. Journal of Clinical Medicine, 2021, 10, 1960.	1.0	1
58	Interleukin 6 (rs1800795) and pentraxin 3 (rs2305619) polymorphisms-association with inflammation and all-cause mortality in end-stage-renal disease patients on dialysis. Scientific Reports, 2021, 11, 14768.	1.6	13
59	Pericardial NT-Pro-BNP and GDF-15 as Biomarkers of Atrial Fibrillation and Atrial Matrix Remodeling in Aortic Stenosis. Diagnostics, 2021, 11, 1422.	1.3	6
60	GDF-15 Predicts In-Hospital Mortality of Critically Ill Patients with Acute Kidney Injury Requiring Continuous Renal Replacement Therapy: A Multicenter Prospective Study. Journal of Clinical Medicine, 2021, 10, 3660.	1.0	3
61	Role of GDF-15, YKL-40 and MMP 9 in patients with end-stage kidney disease: focus on sex-specific associations with vascular outcomes and all-cause mortality. Biology of Sex Differences, 2021, 12, 50.	1.8	11
63	Growth Differentiation Factor-15 (GDF-15) Levels Are Associated with Cardiac and Renal Injury in Patients Undergoing Coronary Artery Bypass Grafting with Cardiopulmonary Bypass. PLoS ONE, 2014, 9, e105759.	1.1	56
64	New Potential Biomarkers for Chronic Kidney Disease Managementâ€"A Review of the Literature. International Journal of Molecular Sciences, 2021, 22, 43.	1.8	38
65	Prognostic Value of Growth Differentiation Factor 15 in Kidney Donors and Recipients. Journal of Clinical Medicine, 2020, 9, 1333.	1.0	8
66	The cytokine GDF15 signals through a population of brainstem cholecystokinin neurons to mediate anorectic signalling. ELife, 2020, 9, .	2.8	46
67	Plasma proteomic biomarker signature of age predicts health and life span. ELife, 2020, 9, .	2.8	78
68	Biomarkers Utility: At the Borderline between Cardiology and Neurology. Journal of Cardiovascular Development and Disease, 2021, 8, 139.	0.8	7
69	Association between thyroid-stimulating hormone (TSH) and proteinuria in relation to thyroid cyst in a euthyroid general population. Journal of Physiological Anthropology, 2021, 40, 15.	1.0	2
70	A Proteomic Atlas of Senescence-Associated Secretomes for Aging Biomarker Development. SSRN Electronic Journal, 0, , .	0.4	5
71	Growth differentiation factor-15 and incident chronic kidney disease: a population-based cohort study. BMC Nephrology, 2021, 22, 351.	0.8	9
72	Growth Differentiation Factor 15 in Patients with Acute Coronary Syndrome and Its Relation to Type 2 Diabetes Mellitus. The Egyptian Journal of Hospital Medicine, 2020, 81, 1546-1551.	0.0	0
73	Interleukin-33/ Suppression of Tumorigenicity 2 in Renal Fibrosis: Emerging Roles in Prognosis and Treatment. Frontiers in Physiology, 2021, 12, 792897.	1.3	6

#	Article	IF	CITATIONS
74	Serum VEGF-D level is correlated with renal dysfunction and proteinuria in patients with diabetic chronic kidney disease. Medicine (United States), 2022, 101, e28804.	0.4	5
75	Inflammation in the early phase after kidney transplantation is associated with increased long-term all-cause mortality. American Journal of Transplantation, 2022, 22, 2016-2027.	2.6	8
76	Advances in the Progression and Prognosis Biomarkers of Chronic Kidney Disease. Frontiers in Pharmacology, 2021, 12, 785375.	1.6	11
78	Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. International Journal of Molecular Sciences, 2022, 23, 5680.	1.8	20
79	A Golden Age of Aging Biomarker Discovery. Journal of Nutrition, Health and Aging, 2022, 26, 543-544.	1.5	1
80	Growth differentiation factor 15 and cardiovascular risk: individual patient meta-analysis. European Heart Journal, 2023, 44, 293-300.	1.0	23
81	Myokines: Novel therapeutic targets for diabetic nephropathy. Frontiers in Endocrinology, 0, 13 , .	1.5	3
82	Implication of serum growth differentiation factor-15 level in patients with renal diseases. International Urology and Nephrology, 0, , .	0.6	1
83	Growth differentiation factor 15 (GDF-15) in kidney diseases. Advances in Clinical Chemistry, 2023, , $1-46$.	1.8	1
85	Cardiac markers and cardiovascular disease in chronic kidney disease. Advances in Clinical Chemistry, 2023, , 63-80.	1.8	2