Recommendations for Standardizing Glucose Reporting Decision Making in Diabetes: The Ambulatory Glucose I

Journal of Diabetes Science and Technology 7, 562-578

DOI: 10.1177/193229681300700234

Citation Report

#	Article	IF	Citations
1	Technology to Optimize Pediatric Diabetes Management and Outcomes. Current Diabetes Reports, 2013, 13, 877-885.	1.7	31
2	A Consensus Perceived Glycemic Variability Metric. Journal of Diabetes Science and Technology, 2013, 7, 871-879.	1.3	25
3	Poincaré Plot Quantification for Assessing Glucose Variability from Continuous Glucose Monitoring Systems and a New Risk Marker for Hypoglycemia: Application to Type 1 Diabetes Patients Switching to Continuous Subcutaneous Insulin Infusion. Diabetes Technology and Therapeutics, 2014, 16, 247-254.	2.4	20
4	Approaches to Display of Multiple-Point Glucose Profiles. Journal of Diabetes Science and Technology, 2014, 8, 1233-1238.	1.3	O
6	Multiplicative Standard Deviation for Blood Glucose. Diabetes Technology and Therapeutics, 2014, 16, 195-197.	2.4	3
7	Escaping the Hemoglobin A1c-Centric World in Evaluating Diabetes Mellitus Interventions. Journal of Diabetes Science and Technology, 2015, 9, 1148-1151.	1.3	22
8	Evaluating Quality of Glycemic Control. Journal of Diabetes Science and Technology, 2015, 9, 56-62.	1.3	40
9	Clinical Utility of SMBG: Recommendations on the Use and Reporting of SMBG in Clinical Research. Diabetes Care, 2015, 38, 1627-1633.	4.3	28
10	The Future of Glucose Monitoring. Diabetes Technology and Therapeutics, 2016, 18, S2-iv-S2-2.	2.4	4
11	Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report. Diabetes Care, 2016, 39, 1175-1179.	4.3	195
12	Continuous Glucose Monitoring: A Consensus Conference of the American Association of Clinical Endocrinologists and American College of Endocrinology. Endocrine Practice, 2016, 22, 1008-1021.	1.1	151
13	Impact of errors in paper-based and computerized diabetes management with decision support for hospitalized patients with type 2 diabetes. A post-hoc analysis of a before and after study. International Journal of Medical Informatics, 2016, 90, 58-67.	1.6	27
14	Interferences and Limitations in Blood Glucose Self-Testing. Journal of Diabetes Science and Technology, 2016, 10, 1161-1168.	1.3	69
15	Update on Clinical Utility of Continuous Glucose Monitoring in Type 1 Diabetes. Current Diabetes Reports, 2016, 16, 115.	1.7	24
16	Glucose: archetypal biomarker in diabetes diagnosis, clinical management and research. Biomarkers in Medicine, 2016, 10, 1153-1166.	0.6	10
17	A Context-Aware, Interactive M-Health System for Diabetics. IT Professional, 2016, 18, 14-22.	1.4	86
18	Pilot Study of a Novel Application for Data Visualization in Type 1 Diabetes. Journal of Diabetes Science and Technology, 2017, 11, 800-807.	1.3	18
19	Assessment of glycemic control in nursing home residents with diabetes. Journal of Nutrition, Health and Aging, 2017, 21, 457-463.	1.5	11

#	Article	IF	CITATIONS
20	A Simple Composite Metric for the Assessment of Glycemic Status from Continuous Glucose Monitoring Data: Implications for Clinical Practice and the Artificial Pancreas. Diabetes Technology and Therapeutics, 2017, 19, S-38-S-48.	2.4	32
21	Glycemic Variability and Its Association With Demographics and Lifestyles in a General Adult Population. Journal of Diabetes Science and Technology, 2017, 11, 780-790.	1.3	32
22	Glucose Exposure and Variability with Empagliflozin as Adjunct to Insulin in Patients with Type 1 Diabetes: Continuous Glucose Monitoring Data from a 4-Week, Randomized, Placebo-Controlled Trial (EASE-1). Diabetes Technology and Therapeutics, 2017, 19, 49-60.	2.4	49
23	A Mobile Computerized Decision Support System to Prevent Hypoglycemia in Hospitalized Patients With Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 2017, 11, 20-28.	1.3	17
24	Exenatide once weekly improved 24â€hour glucose control and reduced glycaemic variability in metforminâ€treated participants with type 2 diabetes: a randomized, placeboâ€controlled trial. Diabetes, Obesity and Metabolism, 2017, 19, 40-48.	2.2	25
25	A Multicenter Evaluation of the Performance and Usability of a Novel Glucose Monitoring System in Chinese Adults With Diabetes. Journal of Diabetes Science and Technology, 2017, 11, 290-295.	1.3	51
26	Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 2018, 12, 1007-1015.	1.3	28
27	A randomized controlled trial to compare the effects of sulphonylurea gliclazide MR (modified) Tj ETQq1 1 0.784 continuous glucose monitoring (CGM) in Brazilian women with type 2 diabetes. Diabetes Research and	314 rgBT 1.1	/Overlock 10 12
28	Clinical Practice. 2018. 139. 357-365. The new FreeStyle libre flash glucose monitoring system improves the glycaemic control in a cohort of people with type 1 diabetes followed in realâ€life conditions over a period of one year. Endocrinology, Diabetes and Metabolism, 2018, 1, e00023.	1.0	61
29	A Pilot Study of Use of a Software Platform for the Collection, Integration, and Visualization of Diabetes Device Data by Health Care Providers in a Multidisciplinary Pediatric Setting. Diabetes Technology and Therapeutics, 2018, 20, 806-816.	2.4	20
30	Continuous glucose monitoring: data management and evaluation by patients and health care professionals $\hat{a} \in \text{``current situation and developments. Laboratoriums Medizin, 2018, 42, 225-233.}$	0.1	3
32	Commentary On Measurements of Glycemic Control. Endocrine Practice, 2018, 24, 121-123.	1.1	1
33	A New Era in Continuous Glucose Monitoring: Food and Drug Administration Creates a New Category of Factory-Calibrated Nonadjunctive, Interoperable Class II Medical Devices. Diabetes Technology and Therapeutics, 2018, 20, 391-394.	2.4	30
34	Real-World Data from the First U.S. Commercial Users of an Implantable Continuous Glucose Sensor. Diabetes Technology and Therapeutics, 2019, 21, 677-681.	2.4	31
35	The road from intermittently scanned glucose monitoring to hybrid closed-loop systems: Part A. Keys to success: subject profiles, choice of systems, education. Therapeutic Advances in Endocrinology and Metabolism, 2019, 10, 204201881986539.	1.4	15
37	Advanced Technology in the Management of Diabetes: Which Comes Firstâ€"Continuous Glucose Monitor or Insulin Pump?. Current Diabetes Reports, 2019, 19, 50.	1.7	19
38	Accuracy, Utilization, and Effectiveness Comparisons of Different Continuous Glucose Monitoring Systems. Diabetes Technology and Therapeutics, 2019, 21, 128-132.	2.4	55
39	How Knowledge Emerges From Artificial Intelligence Algorithm and Data Visualization for Diabetes Management. Journal of Diabetes Science and Technology, 2019, 13, 698-707.	1.3	5

#	Article	IF	CITATIONS
40	Evaluation of Insulin Glargine and Exenatide Alone and in Combination: a Randomized Clinical Trial with Continuous Glucose Monitoring and Ambulatory Glucose Profile Analysis. Endocrine Practice, 2019, 25, 306-314.	1.1	5
41	The use of real time continuous glucose monitoring or flash glucose monitoring in the management of diabetes: A consensus view of Italian diabetes experts using the Delphi method. Nutrition, Metabolism and Cardiovascular Diseases, 2019, 29, 421-431.	1.1	52
42	Connecting the Dots: Validation of Time in Range Metrics With Microvascular Outcomes. Diabetes Care, 2019, 42, 345-348.	4.3	36
43	Improving patient self-care using diabetes technologies. Therapeutic Advances in Endocrinology and Metabolism, 2019, 10, 204201881882421.	1.4	37
44	A Pilot Study to Assess Clinical Utility and User Experience of Professional Continuous Glucose Monitoring Among People With Type 2 Diabetes. Clinical Diabetes, 2019, 37, 57-64.	1,2	3
46	Objectively Measured Adherence in Adolescents With Type 1 Diabetes on Multiple Daily Injections and Insulin Pump Therapy. Journal of Pediatric Psychology, 2019, 44, 21-31.	1.1	22
47	GlucoTabâ€guided insulin therapy using insulin glargine U300 enables glycaemic control with low risk of hypoglycaemia in hospitalized patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2019, 21, 584-591.	2.2	16
48	Clinical Approach to Flash Glucose Monitoring: An Expert Recommendation. Journal of Diabetes Science and Technology, 2020, 14, 155-164.	1.3	19
49	Time in range and HbA _{1C} after 6 months with a multidisciplinary program for children and adolescents with diabetes mellitus, real world data from Mexico City. Pediatric Diabetes, 2020, 21, 61-68.	1.2	6
50	Glycemic variability indices can be used to diagnose islet transplantation success in type 1 diabetic patients. Acta Diabetologica, 2020, 57, 335-345.	1.2	4
51	Clinical Recommendations for the Use of the Ambulatory Glucose Profile in Diabetes Care. Journal of Diabetes Science and Technology, 2020, 14, 586-594.	1.3	31
52	Longitudinal Analysis of Real-World Performance of an Implantable Continuous Glucose Sensor over Multiple Sensor Insertion and Removal Cycles. Diabetes Technology and Therapeutics, 2020, 22, 422-427.	2.4	7
53	Improved glycaemic variability and time in range with dapagliflozin versus gliclazide modified release among adults with type 2 diabetes, evaluated by continuous glucose monitoring: A 12â€week randomized controlled trial. Diabetes, Obesity and Metabolism, 2020, 22, 501-511.	2.2	8
54	HbA1c. Endocrinology and Metabolism Clinics of North America, 2020, 49, 95-107.	1.2	23
55	Relationship between interstitial glucose variability in ambulatory glucose profile and standardized continuous glucose monitoring metrics; a pilot study. Diabetology and Metabolic Syndrome, 2020, 12, 70.	1,2	4
56	Implementation of Continuous Glucose Monitoring in the Hospital: Emergent Considerations for Remote Glucose Monitoring During the COVID-19 Pandemic. Journal of Diabetes Science and Technology, 2020, 14, 822-832.	1.3	86
57	Introduction to SMBG., 2020, , 3-31.		0
58	Comparison of Glycemic Variability Indices: Blood Glucose, Risk Index, and Coefficient of Variation in Predicting Adverse Outcomes for Patients Undergoing Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 2020, 34, 1794-1802.	0.6	8

#	Article	IF	Citations
59	Benefits and limitations of continuous glucose monitoring in type 1 diabetes. Expert Review of Endocrinology and Metabolism, 2020, 15 , $41-49$.	1.2	14
60	Pediatric type 1 diabetes., 2020,, 47-83.		O
61	Timeâ€Restricted Eating Effects on Body Composition and Metabolic Measures in Humans who are Overweight: A Feasibility Study. Obesity, 2020, 28, 860-869.	1.5	190
62	Time in range: A best practice guide for UK diabetes healthcare professionals in the context of the COVIDâ€19 global pandemic. Diabetic Medicine, 2021, 38, e14433.	1.2	34
63	Psychometric Properties of the Hypoglycemia Fear Survey in a Clinical Sample of Adolescents with Type 1 Diabetes and Their Caregivers. Journal of Pediatric Psychology, 2022, 47, 195-205.	1.1	7
64	Assessment of FreeStyle Libre Flash Glucose Monitoring System Implementation in Real Life Clinical Setting: A Prospective Observational Study. Diagnostics, 2021, 11, 305.	1.3	7
65	Sustainable Use of a Real-Time Continuous Glucose Monitoring System from 2018 to 2020. Diabetes Technology and Therapeutics, 2021, 23, 508-511.	2.4	11
66	Use of ambulatory glucose monitoring and analysis of ambulatory glucose profile in clinical practice for diabetes management; a position statement of the Arab Society of Paediatric Endocrinology and diabetes. Diabetes Research and Clinical Practice, 2021, 173, 108671.	1.1	4
67	Pump It Up! A randomized clinical trial to optimize insulin pump self-management behaviors in adolescents with type 1 diabetes. Contemporary Clinical Trials, 2021, 102, 106279.	0.8	4
68	The Association Between Continuous Glucose Monitoring-Derived Metrics and Cardiovascular Autonomic Neuropathy in Outpatients with Type 2 Diabetes. Diabetes Technology and Therapeutics, 2021, 23, 434-442.	2.4	18
69	Pharmacodynamics and pharmacokinetics of extendedâ€release metformin in patients with type <scp>2</scp> diabetes and chronic kidney disease stage <scp>3B</scp> . Diabetes, Obesity and Metabolism, 2022, 24, 166-170.	2.2	1
70	Comparison of cgmanalysis, a free, open-source continuous glucose monitoring (CGM) data management and analysis software to commercially available CGM platforms: Data standardization for diabetes technology research. Diabetes Technology and Therapeutics, 2021, , .	2.4	5
71	Relationship between blood glucose variability in ambulatory glucose profile and standardized continuous glucose monitoring metrics: Subanalysis of a prospective cohort study. Diabetes, Obesity and Metabolism, 2022, 24, 82-93.	2.2	3
73	Current methods of assessing blood glucose control in diabetes. British Journal of Diabetes, 0, 16, 7.	0.1	5
74	Cost Calculation for a Flash Glucose Monitoring System for Adults With Type 2 Diabetes Mellitus Using Intensive Insulin – a UK Perspective. European Endocrinology, 2018, 14, 86.	0.8	13
75	Examining the Impact of a Novel Blood Glucose Monitor With Color Range Indicator on Decision-Making in Patients With Type 1 and Type 2 Diabetes and its Association With Patient Numeracy Level. JMIR Diabetes, 2017, 2, e24.	0.9	11
76	Time in Range: Ein neuer Parameter – komplementäzum HbA 1c. , 0, , .		5
77	Therapy of Type 1 Diabetes Mellitus. , 2016, , 1-24.		0

#	Article	IF	Citations
78	Therapy of Type 1 Diabetes Mellitus., 2017,, 881-904.		0
79	Therapy of Type 1 Diabetes Mellitus. , 2017, , 1-24.		0
80	Modern technology in diabetes treatment - what is new?. Interni Medicina Pro Praxi, 2017, 19, 23-27.	0.0	0
81	Flash Continuous Home Glucose Monitoring to Improve Adherence to Self-Monitoring of Blood Glucose and Self-Efficacy in Adolescents With Type 1 Diabetes. Clinical Diabetes, 2020, 38, 152-158.	1.2	0
82	More Green, Less Red: How Color Standardization May Facilitate Effective Use of CGM Data. Journal of Diabetes Science and Technology, 2022, 16, 3-6.	1.3	8
83	Designing Decision-Support Technologies for Patient-Generated Data in Type 1 Diabetes. AMIA Annual Symposium proceedings, 2017, 2017, 1645-1654.	0.2	2
84	Expert Panel Recommendations for Use of Standardized Glucose Reporting System Based on Standardized Glucometrics Plus Visual Ambulatory Glucose Profile (AGP) Data in Clinical Practice. Frontiers in Endocrinology, 2021, 12, 663222.	1.5	1
85	Understanding the clinical implications of differences between glucose management indicator and glycated haemoglobin. Diabetes, Obesity and Metabolism, 2022, 24, 599-608.	2.2	39
86	Sensor-Based Technology: Bringing Value to People with Diabetes and the Healthcare System in an Evolving World. ClinicoEconomics and Outcomes Research, 2022, Volume 14, 75-90.	0.7	3
87	A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings. Journal of Diabetes Science and Technology, 2023, 17, 1226-1242.	1.3	69
88	Use of continuous glucose monitoring trend arrows in the younger population with type 1 diabetes. Diabetes and Vascular Disease Research, 2021, 18, 147916412110621.	0.9	6
89	Bring Blood Glucose Down! An intervention to reduce fear of hypoglycemia in caregivers of adolescents with type 1 diabetes: Study design and participant characteristics. Contemporary Clinical Trials, 2022, 118, 106792.	0.8	1
90	Remedy to Diabetes Distress (R2D2): Development protocol for a scalable screen-to-treat program for families of school-age children. Contemporary Clinical Trials, 2022, 119, 106829.	0.8	1
91	Utilizing the New Glucometrics: A Practical Guide to Ambulatory Glucose Profile Interpretation. , 2022, 18, 20.		1
92	Continuous Glucose Profiles in Healthy People With Fixed Meal Times and Under Everyday Life Conditions. Journal of Diabetes Science and Technology, 2024, 18, 407-413.	1.3	4
93	Extending sleep to improve glycemia: The Family Routines Enhancing Adolescent Diabetes by Optimizing Management (FREADOM) randomized clinical trial protocol. Contemporary Clinical Trials, 2023, 124, 106929.	0.8	2
95	Short-term Glycemic Variability and Its Association With Macrovascular and Microvascular Complications in Patients With Diabetes. Journal of Diabetes Science and Technology, 0, , 193229682211468.	1.3	3
96	Continuous Glucose Monitoring in Dogs and Cats. Veterinary Clinics of North America - Small Animal Practice, 2023, 53, 591-613.	0.5	1

ARTICLE IF CITATIONS

97 Glycemic control metrics for in silico testing of artificial pancreas systems. , 2022, , . 1