THE ROLE OF CORE MASS IN CONTROLLING EVAPOR AND THE KEPLER-36 DENSITY DICHOTOMY

Astrophysical Journal 776, 2 DOI: 10.1088/0004-637x/776/1/2

Citation Report

#	Article	IF	CITATIONS
1	EIGHT PLANETS IN FOUR MULTI-PLANET SYSTEMS VIA TRANSIT TIMING VARIATIONS IN 1350 DAYS. Astrophysical Journal, 2013, 778, 110.	1.6	25
2	Heating efficiency in hydrogen-dominated upper atmospheres. Astronomy and Astrophysics, 2014, 571, A94.	2.1	91
3	Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12655-12660.	3.3	77
4	ON THE FREQUENCY OF POTENTIAL VENUS ANALOGS FROM <i>KEPLER</i> DATA. Astrophysical Journal Letters, 2014, 794, L5.	3.0	69
5	MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND. Astrophysical Journal, 2014, 797, 95.	1.6	208
6	PLANET TRAPS AND PLANETARY CORES: ORIGINS OF THE PLANET-METALLICITY CORRELATION. Astrophysical Journal, 2014, 794, 25.	1.6	42
7	THE HUNT FOR EXOMOONS WITH <i>KEPLER</i> (HEK). IV. A SEARCH FOR MOONS AROUND EIGHT M DWARFS. Astrophysical Journal, 2014, 784, 28.	1.6	79
8	PLANETARY POPULATION SYNTHESIS COUPLED WITH ATMOSPHERIC ESCAPE: A STATISTICAL VIEW OF EVAPORATION. Astrophysical Journal, 2014, 795, 65.	1.6	254
9	THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET. Astrophysical Journal, 2014, 789, 154.	1.6	164
10	PHASE CURVES OF THE KEPLER-11 MULTI-PLANET SYSTEM. Astrophysical Journal, 2014, 787, 105.	1.6	28
11	MASS-LOSS EVOLUTION OF CLOSE-IN EXOPLANETS: EVAPORATION OF HOT JUPITERS AND THE EFFECT ON POPULATION. Astrophysical Journal, 2014, 783, 54.	1.6	66
12	UNDERSTANDING THE MASS-RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION. Astrophysical Journal, 2014, 792, 1.	1.6	520
13	MASSES, RADII, AND ORBITS OF SMALL <i>KEPLER</i> PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS. Astrophysical Journal, Supplement Series, 2014, 210, 20.	3.0	418
14	<i>HUBBLE SPACE TELESCOPE</i> NEAR-IR TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH HD 97658B. Astrophysical Journal, 2014, 794, 155.	1.6	164
15	KEPLER-79'S LOW DENSITY PLANETS. Astrophysical Journal, 2014, 785, 15.	1.6	120
16	THE RADIUS DISTRIBUTION OF PLANETS AROUND COOL STARS. Astrophysical Journal, 2014, 791, 10.	1.6	132
17	FROM HOT JUPITERS TO SUPER-EARTHS VIA ROCHE LOBE OVERFLOW. Astrophysical Journal Letters, 2014, 793, L3.	3.0	76
18	A STUDY OF THE SHORTEST-PERIOD PLANETS FOUND WITH <i>KEPLER </i> . Astrophysical Journal, 2014, 787, 47.	1.6	189

ARTICLE IF CITATIONS # WHY IS THERE A DEARTH OF CLOSE-IN PLANETS AROUND FAST-ROTATING STARS?. Astrophysical Journal, 19 1.6 69 2014, 786, 139. Advances in exoplanet science from Kepler. Nature, 2014, 513, 336-344. 13.7 84 Impact of photo-evaporative mass loss on masses and radii of water-rich sub/super-Earths. Astronomy 21 2.1 23 and Astrophysics, 2014, 562, A80. Ages and fundamental properties of<i>Kepler</i>exoplanet host stars from asteroseismology. 283 Monthly Notices of the Royal Astronomical Society, 2015, 452, 2127-2148. TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA. Astrophysical Journal, 2015, 813, 23 1.6 78 101. TO COOL IS TO ACCRETE: ANALYTIC SCALINGS FOR NEBULAR ACCRETION OF PLANETARY ATMOSPHERES. 1.6 166 Astrophysical Journal, 2015, 811, 41. The Diversity of Low-mass Exoplanets Characterized via Transit Timing. Proceedings of the 25 0.0 2 International Astronomical Union, 2015, 11, 40-50. Hydrogen-dominated upper atmosphere of an exoplanet: Heating by stellar radiation from soft X-rays 0.3 26 36 to extreme ultraviolet. Solar System Research, 2015, 49, 339-345. THERMAL EMISSION AND REFLECTED LIGHT SPECTRA OF SUPER EARTHS WITH FLAT TRANSMISSION SPECTRA. 27 1.6 196 Astrophysical Journal, 2015, 815, 110. FAR-UV SPECTROSCOPY OF THE PLANET-HOSTING STAR WASP-13: HIGH-ENERGY IRRADIANCE. DISTANCE, AGE, 1.6 PLANETARY MASS-LOSS RATE, AND CIRCUMSTELLAR ENVIRONMENT. Astrophysical Journal, 2015, 815, 118. A metallicity recipe for rocky planets. Monthly Notices of the Royal Astronomical Society, 2015, 453, 29 1.6 82 1471-1483. Stellar magnetic activity – Star-Planet Interactions. EPJ Web of Conferences, 2015, 101, 05002. 0.1 30 Radiative braking in the extended exosphere of GJ 436 b. Astronomy and Astrophysics, 2015, 582, A65. $\mathbf{31}$ 2.1 61 <i>MOST</i>1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY. Astrophysical Journal, 2015, 801, 41. 1.6 GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS. Astrophysical 33 59 1.6 Journal, 2015, 812, 164. Water contents of Earth-mass planets around MÂdwarfs. Nature Geoscience, 2015, 8, 177-180. 34 128 Habitable Evaporated Cores: Transforming Mini-Neptunes into Super-Earths in the Habitable Zones of 35 1.5116 M Dwarfs. Astrobiology, 2015, 15, 57-88. Global models of planet formation and evolution. International Journal of Astrobiology, 2015, 14, 201-232.

#	Article	IF	CITATIONS
37	EVOLUTIONARY MODELS OF SUPER-EARTHS AND MINI-NEPTUNES INCORPORATING COOLING AND MASS LOSS. Astrophysical Journal, 2015, 808, 150.	1.6	68
38	Torque on an exoplanet from an anisotropic evaporative wind. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1743-1753.	1.6	30
39	The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature, 2015, 522, 321-323.	13.7	103
40	Atmospheric Escape from Solar System Terrestrial Planets and Exoplanets. Annual Review of Earth and Planetary Sciences, 2015, 43, 459-476.	4.6	74
41	HOW ROCKY ARE THEY? THE COMPOSITION DISTRIBUTION OF <i>KEPLER</i> 'S SUB-NEPTUNE PLANET CANDIDATES WITHIN 0.15 AU. Astrophysical Journal, 2015, 806, 183.	1.6	162
42	SIMULATED PHOTOEVAPORATIVE MASS LOSS FROM HOT JUPITERS IN 3D. Astrophysical Journal, 2015, 808, 173.	1.6	73
43	ULTRA-SHORT-PERIOD PLANETS IN K2 SUPERPIG RESULTS FOR CAMPAIGNS 0–5. Astronomical Journal, 2016, 152, 47.	1.9	62
44	An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b. Astronomy and Astrophysics, 2016, 591, A121.	2.1	119
45	Formation, Orbital and Internal Evolutions of Young Planetary Systems. Space Science Reviews, 2016, 205, 77-124.	3.7	74
46	KEPLER-21b: A ROCKY PLANET AROUND A VÂ=Â8.25 mag STAR*. Astronomical Journal, 2016, 152, 204.	1.9	80
47	THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS. Astrophysical Journal, 2016, 832, 41.	1.6	241
48	A 1.9 EARTH RADIUS ROCKY PLANET AND THE DISCOVERY OF A NON-TRANSITING PLANET IN THE KEPLER-20 SYSTEM*. Astronomical Journal, 2016, 152, 160.	1.9	85
49	VARIATION IN THE PRE-TRANSIT BALMER LINE SIGNAL AROUND THE HOT JUPITER HD 189733B. Astronomical Journal, 2016, 152, 20.	1.9	56
50	Habitability of terrestrial-mass planets in the HZ of M Dwarfs – I. H/He-dominated atmospheres. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4088-4108.	1.6	98
51	Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability. Space Science Reviews, 2016, 205, 285-348.	3.7	172
52	SECURE MASS MEASUREMENTS FROM TRANSIT TIMING: 10 KEPLER EXOPLANETS BETWEEN 3 AND 8 M _⊕ WITH DIVERSE DENSITIES AND INCIDENT FLUXES. Astrophysical Journal, 2016, 820, 39.	1.6	147
53	A TRANSITING JUPITER ANALOG. Astrophysical Journal, 2016, 820, 112.	1.6	40
54	A Population of planetary systems characterized by short-period, Earth-sized planets. Proceedings of the United States of America, 2016, 113, 12023-12028.	3.3	45

	CHATON R	EPUKI	
#	Article	IF	CITATIONS
55	Formation and Evolution of Protoatmospheres. Space Science Reviews, 2016, 205, 153-211.	3.7	68
56	PREDICTIONS OF THE ATMOSPHERIC COMPOSITION OF GJ 1132b. Astrophysical Journal, 2016, 829, 63.	1.6	130
57	SOLUBILITY OF ROCK IN STEAM ATMOSPHERES OF PLANETS. Astrophysical Journal, 2016, 824, 103.	1.6	42
58	Tidal decay and stable Roche-lobe overflow of short-period gaseous exoplanets. Celestial Mechanics and Dynamical Astronomy, 2016, 126, 227-248.	0.5	57
59	SUPER-EARTHS AS FAILED CORES IN ORBITAL MIGRATION TRAPS. Astrophysical Journal, 2016, 832, 83.	1.6	13
60	EVOLUTIONARY ANALYSIS OF GASEOUS SUB-NEPTUNE-MASS PLANETS WITH MESA. Astrophysical Journal, 2016, 831, 180.	1.6	134
61	Hot super-Earths stripped by their host stars. Nature Communications, 2016, 7, 11201.	5.8	172
62	Tidal effects on stellar activity. Proceedings of the International Astronomical Union, 2016, 12, 308-314.	0.0	0
63	Constraining the volatile fraction of planets from transit observations. Astronomy and Astrophysics, 2016, 591, A79.	2.1	6
64	EUV-driven mass-loss of protoplanetary cores with hydrogen-dominated atmospheres: the influences of ionization and orbital distance. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1300-1309.	1.6	78
65	SUPER-EARTH ATMOSPHERES: SELF-CONSISTENT GAS ACCRETION AND RETENTION. Astrophysical Journal, 2016, 825, 29.	1.6	210
66	STEALING THE CAS: GIANT IMPACTS AND THE LARGE DIVERSITY IN EXOPLANET DENSITIES. Astrophysical Journal Letters, 2016, 817, L13.	3.0	104
67	ATMOSPHERES OF LOW-MASS PLANETS: THE "BOIL-OFF― Astrophysical Journal, 2016, 817, 107.	1.6	160
68	BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS. Astrophysical Journal, 2016, 817, 90.	1.6	219
69	TWO TRANSITING LOW DENSITY SUB-SATURNS FROM K2. Astrophysical Journal, 2016, 818, 36.	1.6	50
70	RE-INFLATED WARM JUPITERS AROUND RED GIANTS. Astrophysical Journal, 2016, 818, 4.	1.6	77
71	THE INITIAL PHYSICAL CONDITIONS OF KEPLER-36 b AND c. Astrophysical Journal Letters, 2016, 819, L10.	3.0	51
72	UV DRIVEN EVAPORATION OF CLOSE-IN PLANETS: ENERGY-LIMITED, RECOMBINATION-LIMITED, AND PHOTON-LIMITED FLOWS. Astrophysical Journal, 2016, 816, 34.	1.6	90

#	Article	IF	Citations
73	HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance. Science, 2017, 356, 628-631.	6.0	175
74	Bayesian analysis of interiors of HD 219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55 Cnc e, and HD 97658b using stellar abundance proxies. Astronomy and Astrophysics, 2017, 597, A38.	2.1	54
75	Tidal heating of young super-Earth atmospheres. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3937-3944.	1.6	37
76	The Influence of Coronal Mass Ejections on the Mass-loss Rates of Hot-Jupiters. Astrophysical Journal, 2017, 846, 31.	1.6	60
77	Rocky Worlds Limited to â^¼1.8 Earth Radii by Atmospheric Escape during a Star's Extreme UV Saturation. Astrophysical Journal, 2017, 845, 130.	1.6	32
78	The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets*. Astronomical Journal, 2017, 154, 109.	1.9	889
79	On the formation and chemical composition of super Earths. Monthly Notices of the Royal Astronomical Society, 2017, 464, 428-452.	1.6	52
80	Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. II. Planetary Systems Observed During Campaigns 1–7. Astronomical Journal, 2017, 154, 207.	1.9	95
81	K2-66b and K2-106b: Two Extremely Hot Sub-Neptune-size Planets with High Densities. Astronomical Journal, 2017, 153, 271.	1.9	60
82	Born dry in the photoevaporation desert: Kepler's ultra-short-period planets formed water-poor. Monthly Notices of the Royal Astronomical Society, 2017, 472, 245-253.	1.6	103
83	The Evaporation Valley in the Kepler Planets. Astrophysical Journal, 2017, 847, 29.	1.6	530
84	Hydrodynamics of embedded planets' first atmospheres – III. The role of radiation transport for super-Earth planets. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4662-4676.	1.6	79
85	<i>N</i> -body simulations of planet formation via pebble accretion. Astronomy and Astrophysics, 2017, 607, A67.	2.1	31
86	Characterization of exoplanets from their formation. Astronomy and Astrophysics, 2017, 608, A72.	2.1	82
87	Hot-Jupiter core mass from Roche lobe overflow. Monthly Notices of the Royal Astronomical Society, 2017, 469, 278-285.	1.6	35
88	Habitable Evaporated Cores and the Occurrence of Panspermia Near the Galactic Center. Astrophysical Journal Letters, 2018, 855, L1.	3.0	23
89	A hardcore model for constraining an exoplanet's core size. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2613-2620.	1.6	13
90	Effects of Planetesimal Accretion on the Thermal and Structural Evolution of Sub-Neptunes. Astrophysical Journal, 2018, 852, 58.	1.6	7

#	Article	IF	CITATIONS
91	Core-powered mass-loss and the radius distribution of small exoplanets. Monthly Notices of the Royal Astronomical Society, 2018, 476, 759-765.	1.6	284
92	Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances. Astronomical Journal, 2018, 155, 68.	1.9	58
93	On the Role of Dissolved Gases in the Atmosphere Retention of Low-mass Low-density Planets. Astrophysical Journal, 2018, 854, 21.	1.6	38
94	Three Small Planets Transiting the Bright Young Field Star K2-233. Astronomical Journal, 2018, 155, 222.	1.9	21
95	Formation of Super-Earths. , 2018, , 1-20.		2
96	Characterizing Evaporating Atmospheres of Exoplanets. , 2018, , 1-18.		0
97	The California-Kepler Survey. IV. Metal-rich Stars Host a Greater Diversity of Planets. Astronomical Journal, 2018, 155, 89.	1.9	249
98	Outcomes of Grazing Impacts between Sub-Neptunes in Kepler Multis. Astrophysical Journal, 2018, 852, 41.	1.6	32
99	Compositional Imprints in Density–Distance–Time: A Rocky Composition for Close-in Low-mass Exoplanets from the Location of the Valley of Evaporation. Astrophysical Journal, 2018, 853, 163.	1.6	187
100	New Formation Models for the Kepler-36 System. Astrophysical Journal, 2018, 868, 138.	1.6	43
101	Survival of a planet in short-period Neptunian desert under effect of photoevaporation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5639-5644.	1.6	36
102	Spectral Properties of Cool Stars: Extended Abundance Analysis of Kepler Objects of Interest. Astrophysical Journal, Supplement Series, 2018, 237, 38.	3.0	44
103	How formation time-scales affect the period dependence of the transition between rocky super-Earths and gaseous sub-Neptunesand implications for ŀ⊕. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5303-5311.	1.6	83
104	Discovery and characterization of Kepler-36b. New Astronomy Reviews, 2018, 83, 18-27.	5.2	2
105	Far-ultraviolet Activity Levels of F, G, K, and M Dwarf Exoplanet Host Stars. Astrophysical Journal, Supplement Series, 2018, 239, 16.	3.0	63
106	The California-Kepler Survey. VII. Precise Planet Radii Leveraging Gaia DR2 Reveal the Stellar Mass Dependence of the Planet Radius Gap. Astronomical Journal, 2018, 156, 264.	1.9	358
107	Characterizing Evaporating Atmospheres of Exoplanets. , 2018, , 1509-1526.		2
108	Disintegrating Rocky Exoplanets. , 2018, , 1527-1544.		7

#	Article	IF	Citations
109	Characterizing Host Stars Using Asteroseismology. , 2018, , 1655-1678.		4
110	Planetary Evaporation Through Evolution. , 2018, , 1913-1929.		0
111	Formation of Super-Earths. , 2018, , 2345-2364.		5
112	Planetary Population Synthesis. , 2018, , 2425-2474.		46
113	Planet Occurrence: Doppler and Transit Surveys. , 2018, , 1949-1966.		8
114	Single site observations of TESS single transit detections. Astronomy and Astrophysics, 2018, 619, A175.	2.1	29
115	K2-265 b: a transiting rocky super-Earth. Astronomy and Astrophysics, 2018, 620, A77.	2.1	17
116	The Effects of Stellar Companions on the Observed Transiting Exoplanet Radius Distribution. Astronomical Journal, 2018, 156, 292.	1.9	21
117	<i>Hubble</i> PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astronomy and Astrophysics, 2018, 620, A147.	2.1	128
118	TESS's first planet. Astronomy and Astrophysics, 2018, 619, L10.	2.1	86
119	Grid of upper atmosphere models for 1–40 <i>M</i> _⊕ planets: application to CoRoT-7 b and HD 219134 b,c. Astronomy and Astrophysics, 2018, 619, A151.	2.1	89
120	Young planets under extreme UV irradiation. Astronomy and Astrophysics, 2018, 612, A25.	2.1	29
121	Discovery of a Transiting Adolescent Sub-Neptune Exoplanet with K2. Astronomical Journal, 2018, 156, 302.	1.9	23
122	Detection of Helium in the Atmosphere of the Exo-Neptune HAT-P-11b. Astrophysical Journal Letters, 2018, 868, L34.	3.0	73
123	Origins of Hot Jupiters. Annual Review of Astronomy and Astrophysics, 2018, 56, 175-221.	8.1	313
124	Metallicity-dependent signatures in the Kepler planets. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2206-2216.	1.6	50
125	Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. III. A High Mass and Low Envelope Fraction for the Warm Neptune K2-55b*. Astronomical Journal, 2018, 156, 70.	1.9	8
126	Three small transiting planets around the M-dwarf host star LP 358-499. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L131-L135.	1.2	27

ARTICLE IF CITATIONS # Super-Earth of 8<i>M</i>_⊕in a 2.2-day orbit around the K5V star K2-216. Astronomy and 127 2.1 29 Astrophysics, 2018, 618, A33. Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2. Astrophysical Journal, 2018, 866, 99. 1.6 221 Evaporation of Low-mass Planet Atmospheres: Multidimensional Hydrodynamics with Consistent 129 1.6 28 Thermochemistry. Astrophysical Journal, 2018, 860, 175. High-energy environment of super-Earth 55 Cancri e. Astronomy and Astrophysics, 2018, 615, A117. 130 Characterizing Host Stars using Asteroseismology., 2018, , 1-24. 131 2 Planet Occurrence: Doppler and Transit Surveys., 2018, , 1-18. The architecture and formation of the Kepler-30 planetary system. Monthly Notices of the Royal 133 1.6 32 Astronomical Society, 2018, 478, 2480-2494. Biases in Planet Occurrence Caused by Unresolved Binaries in Transit Surveys. Astronomical Journal, 134 1.9 26 2018, 155, 244. 135 Secondary Atmospheres on HD 219134 b and c. Astrophysical Journal, 2018, 853, 64. 1.6 18 Identifying Young Kepler Planet Host Stars from Keckâ€"HIRES Spectra of Lithium^{*}. 1.6 Astrophysical Journal, 2018, 855, 115. Planetary Population Synthesis., 2018, , 1-50. 137 7 An asteroseismic view of the radius valley: stripped cores, not born rocky. Monthly Notices of the 138 1.6 315 Royal Astronomical Society, 2018, 479, 4786-4795. Photoevaporation and high-eccentricity migration created the sub-Jovian desert. Monthly Notices of 139 1.6 136 the Royal Astronomical Society, 2018, 479, 5012-5021. Migration-driven diversity of super-Earth compositions. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L81-L85. 140 1.2 141 The Super Earth–Cold Jupiter Relations. Astronomical Journal, 2018, 156, 92. 1.9 110 Ground-based Optical Transmission Spectroscopy of the Small, Rocky Exoplanet GJ 1132b. Astronomical 142 Journal, 2018, 156, 42. Planetary Candidates Observed by <i>Kepler</i> . VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25. Astrophysical Journal, Supplement Series, 2018, 143 3.0316 235, 38. 144 Two Terrestrial Planet Families with Different Origins. Astrophysical Journal, 2019, 881, 117. 1.6

#	Article	IF	CITATIONS
145	Close-in Sub-Neptunes Reveal the Past Rotation History of Their Host Stars: Atmospheric Evolution of Planets in the HD 3167 and K2-32 Planetary Systems. Astrophysical Journal, 2019, 879, 26.	1.6	33
146	Effects of magnetic fields on the location of the evaporation valley for low-mass exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 490, 15-20.	1.6	18
147	A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau. Astronomical Journal, 2019, 158, 79.	1.9	61
148	The Impact of Stripped Cores on the Frequency of Earth-size Planets in the Habitable Zone. Astrophysical Journal Letters, 2019, 883, L15.	3.0	22
149	TESS Discovery of an Ultra-short-period Planet around the Nearby M Dwarf LHS 3844. Astrophysical Journal Letters, 2019, 871, L24.	3.0	108
150	Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Monthly Notices of the Royal Astronomical Society, 2019, 487, 24-33.	1.6	219
151	The Compositional Diversity of Low-Mass Exoplanets. Annual Review of Earth and Planetary Sciences, 2019, 47, 141-171.	4.6	37
152	Validation of a temperate fourth planet in the K2-133 multiplanet system. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1865-1873.	1.6	1
153	Two Super-Earths in the 3:2 MMR around KOI-1599. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4601-4616.	1.6	14
154	The sub-Jupiter/Neptune desert of exoplanets: parameter dependent boundaries and implications on planet formation. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L116-L120.	1.2	10
155	Atmospheric mass-loss from high-velocity giant impacts. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2780-2789.	1.6	11
156	Atmospheric mass-loss due to giant impacts: the importance of the thermal component for hydrogen–helium envelopes. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4454-4463.	1.6	40
157	K2-291b: A Rocky Super-Earth in a 2.2 day Orbit [*] â€. Astronomical Journal, 2019, 157, 116.	1.9	13
158	Close-in Super-Earths: The first and the last stages of planet formation in an MRI-accreting disc. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2296-2308.	1.6	15
159	Detection and characterization of an ultra-dense sub-Neptunian planet orbiting the Sun-like star K2-292. Astronomy and Astrophysics, 2019, 623, A114.	2.1	11
160	Long-period Giant Companions to Three Compact, Multiplanet Systems. Astronomical Journal, 2019, 157, 145.	1.9	33
161	Morphology of Hydrodynamic Winds: A Study of Planetary Winds in Stellar Environments. Astrophysical Journal, 2019, 873, 89.	1.6	48
162	Masses and radii for the three super-Earths orbiting GJ 9827, and implications for the composition of small exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3731-3745.	1.6	38

#	Article	IF	CITATIONS
163	Gas flow around a planet embedded in a protoplanetary disc. Astronomy and Astrophysics, 2019, 623, A179.	2.1	22
164	Hot, rocky and warm, puffy super-Earths orbiting TOI-402 (HD 15337). Astronomy and Astrophysics, 2019, 627, A43.	2.1	30
165	Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b. Astrophysical Journal Letters, 2019, 887, L14.	3.0	183
166	The Sub-Neptune Desert and Its Dependence on Stellar Type: Controlled by Lifetime X-Ray Irradiation. Astrophysical Journal, 2019, 876, 22.	1.6	41
167	Tidally Induced Radius Inflation of Sub-Neptunes. Astrophysical Journal, 2019, 886, 72.	1.6	37
168	Photo-evaporation of close-in gas giants orbiting around G and M stars. Astronomy and Astrophysics, 2019, 624, A101.	2.1	16
169	So close, so different: characterization of the K2-36 planetary system with HARPS-N. Astronomy and Astrophysics, 2019, 624, A38.	2.1	13
170	Identifying Atmospheres on Rocky Exoplanets through Inferred High Albedo. Astrophysical Journal, 2019, 886, 141.	1.6	37
171	The Kepler-11 system: evolution of the stellar high-energy emission and initial planetary atmospheric mass fractions. Astronomy and Astrophysics, 2019, 632, A65.	2.1	28
172	Atmospheric Escape and the Evolution of Close-In Exoplanets. Annual Review of Earth and Planetary Sciences, 2019, 47, 67-90.	4.6	160
173	K2-140b and K2-180b – Characterization of a hot Jupiter and a mini-Neptune from the <i>K2</i> mission. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1807-1823.	1.6	16
174	Impact of space weather on climate and habitability of terrestrial-type exoplanets. International Journal of Astrobiology, 2020, 19, 136-194.	0.9	125
175	VPLanet: The Virtual Planet Simulator. Publications of the Astronomical Society of the Pacific, 2020, 132, 024502.	1.0	28
176	Testing exoplanet evaporation with multitransiting systems. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5287-5297.	1.6	50
177	Atmosphere loss in planet–planet collisions. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1166-1181.	1.6	19
178	Constraining the entropy of formation from young transiting planet. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5030-5040.	1.6	22
179	Chemical diversity of super-Earths as a consequence of formation. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4910-4924.	1.6	32
180	A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266. Astronomy and Astrophysics, 2020, 642, A49.	2.1	49

#	Article	IF	CITATIONS
181	Coupling thermal evolution of planets and hydrodynamic atmospheric escape in mesa. Monthly Notices of the Royal Astronomical Society, 2020, 499, 77-88.	1.6	26
182	Hydrogen Dominated Atmospheres on Terrestrial Mass Planets: Evidence, Origin and Evolution. Space Science Reviews, 2020, 216, 1.	3.7	37
183	Precise mass and radius of a transiting super-Earth planet orbiting the M dwarf TOI-1235: a planet in the radius gap?. Astronomy and Astrophysics, 2020, 639, A132.	2.1	33
184	Formation of planetary populations – III. Core composition and atmospheric evaporation. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4814-4833.	1.6	8
185	Atmospheric regimes and trends on exoplanets and brown dwarfs. Research in Astronomy and Astrophysics, 2020, 20, 099.	0.7	55
186	A PSF-based Approach to <i>TESS</i> High quality data Of Stellar clusters (PATHOS) – III. Exploring the properties of young associations through their variables, <i>dippers</i> , and candidate exoplanets. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5972-5989.	1.6	20
187	Searching the Entirety of Kepler Data. II. Occurrence Rate Estimates for FGK Stars. Astronomical Journal, 2020, 159, 248.	1.9	67
188	Diffuser-assisted Infrared Transit Photometry for Four Dynamically Interacting Kepler Systems. Astronomical Journal, 2020, 159, 108.	1.9	40
189	Breaking Resonant Chains: Destabilization of Resonant Planets Due to Long-term Mass Evolution. Astrophysical Journal, 2020, 893, 43.	1.6	21
190	TOI-1235 b: A Keystone Super-Earth for Testing Radius Valley Emergence Models around Early M Dwarfs. Astronomical Journal, 2020, 160, 22.	1.9	33
191	Constraints on Metastable Helium in the Atmospheres of WASP-69b and WASP-52b with Ultranarrowband Photometry. Astronomical Journal, 2020, 159, 278.	1.9	34
192	A Joint Mass–Radius–Period Distribution of Exoplanets. Astrophysical Journal, 2020, 891, 12.	1.6	40
193	Coupled Thermal and Compositional Evolution of Photoevaporating Planet Envelopes. Astrophysical Journal, 2020, 896, 48.	1.6	24
194	Revisited mass-radius relations for exoplanets below 120 <i>M</i> _⊕ . Astronomy and Astrophysics, 2020, 634, A43.	2.1	126
195	Current Population Statistics Do Not Favor Photoevaporation over Core-powered Mass Loss as the Dominant Cause of the Exoplanet Radius Gap. Astrophysical Journal, 2020, 890, 23.	1.6	34
196	Is π Men c's Atmosphere Hydrogen-dominated? Insights from a Non-detection of H i Lyα Absorption. Astrophysical Journal Letters, 2020, 888, L21.	3.0	37
197	Estimating Planetary Mass with Deep Learning. Astronomical Journal, 2020, 159, 41.	1.9	7
198	Atmospheric compositions and observability of nitrogen-dominated ultra-short-period super-Earths. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1490-1506.	1.6	25

#	Article	IF	Citations
199	How planets grow by pebble accretion. Astronomy and Astrophysics, 2020, 634, A15.	2.1	34
200	TOI-132 b: A short-period planet in the Neptune desert transiting a <i>V</i> Â= 11.3ÂG-type starâ~ Monthly Notices of the Royal Astronomical Society, 2020, 493, 973-985.	1.6	19
201	MOVES III. Simultaneous X-ray and ultraviolet observations unveiling the variable environment of the hot Jupiter HD 189733b. Monthly Notices of the Royal Astronomical Society, 2020, 493, 559-579.	1.6	20
202	Signatures of the core-powered mass-loss mechanism in the exoplanet population: dependence on stellar properties and observational predictions. Monthly Notices of the Royal Astronomical Society, 2020, 493, 792-806.	1.6	116
203	HAZMAT. VII. The Evolution of Ultraviolet Emission with Age and Rotation for Early M Dwarf Stars. Astrophysical Journal, 2021, 907, 91.	1.6	14
204	Relative occurrence rates of terrestrial planets orbiting FGK stars. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5302-5312.	1.6	3
205	Unveiling the planet population at birth. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1526-1542.	1.6	85
206	Primordial Radius Gap and Potentially Broad Core Mass Distributions of Super-Earths and Sub-Neptunes. Astrophysical Journal, 2021, 908, 32.	1.6	45
207	No Escaping Helium from 55 Cnc e*. Astronomical Journal, 2021, 161, 181.	1.9	36
208	Modelling the He I triplet absorption at 10 830 â,,« in the atmospheres of HD 189733 b and GJ 3470 b. Astronomy and Astrophysics, 2021, 647, A129.	2.1	27
209	Metastable Helium Reveals an Extended Atmosphere for the Gas Giant HAT-P-18b. Astrophysical Journal Letters, 2021, 909, L10.	3.0	32
210	Rapid formation of super-Earths around low-mass stars. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1390-1406.	1.6	9
211	The JADE code: Coupling secular exoplanetary dynamics and photo-evaporation. Astronomy and Astrophysics, 2021, 647, A40.	2.1	21
212	TESS Hunt for Young and Maturing Exoplanets (THYME). V. A Sub-Neptune Transiting a Young Star in a Newly Discovered 250 Myr Association. Astronomical Journal, 2021, 161, 171.	1.9	35
213	Evidence of energy-, recombination-, and photon-limited escape regimes in giant planet H/He atmospheres. Astronomy and Astrophysics, 2021, 648, L7.	2.1	19
214	Caught in the act: core-powered mass-loss predictions for observing atmospheric escape. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4634-4648.	1.6	23
215	The Influence of Age on the Relative Frequency of Super-Earths and Sub-Neptunes. Astrophysical Journal, 2021, 911, 117.	1.6	16
216	The New Generation Planetary Population Synthesis (NGPPS). Astronomy and Astrophysics, 2021, 656, A73.	2.1	28

#	Article	IF	CITATIONS
217	Chemical variation with altitude and longitude on exo-Neptunes: Predictions for Ariel phase-curve observations. Experimental Astronomy, 2022, 53, 279-322.	1.6	25
218	Hot planets around cool stars – two short-period mini-Neptunes transiting the late K-dwarf TOI-1260. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4684-4701.	1.6	9
219	Evolution of the Exoplanet Size Distribution: Forming Large Super-Earths Over Billions of Years. Astronomical Journal, 2021, 161, 265.	1.9	29
220	A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS) – IV. Candidate exoplanets around stars in open clusters: frequency and age–planetary radius distribution. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3767-3784.	1.6	18
221	The New Generation Planetary Population Synthesis (NGPPS). Astronomy and Astrophysics, 2021, 656, A72.	2.1	82
222	The High-energy Spectrum of the Nearby Planet-hosting Inactive Mid-M Dwarf LHS 3844. Astronomical Journal, 2021, 162, 10.	1.9	10
223	The <i>Hubble</i> PanCET program: long-term chromospheric evolution and flaring activity of the M dwarf host GJ 3470. Astronomy and Astrophysics, 2021, 650, A73.	2.1	8
224	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2021, 650, A152.	2.1	85
225	Mass–Radius Relationships for Irradiated Ocean Planets. Astrophysical Journal, 2021, 914, 84.	1.6	40
226	An ultra-short-period transiting super-Earth orbiting the M3 dwarf TOI-1685. Astronomy and Astrophysics, 2021, 650, A78.	2.1	27
227	How to Identify Exoplanet Surfaces Using Atmospheric Trace Species in Hydrogen-dominated Atmospheres. Astrophysical Journal, 2021, 914, 38.	1.6	30
228	Star-planet interactions. Astronomy and Astrophysics, 2021, 651, A50.	2.1	5
229	The New Generation Planetary Population Synthesis (NGPPS). Astronomy and Astrophysics, 2021, 656, A69.	2.1	74
230	TOI-2076 and TOI-1807: Two Young, Comoving Planetary Systems within 50 pc Identified by TESS that are Ideal Candidates for Further Follow Up. Astronomical Journal, 2021, 162, 54.	1.9	25
231	Super-Earths and Sub-Neptunes Are Insensitive to Stellar Metallicity. Astronomical Journal, 2021, 162, 69.	1.9	5
232	A Lyα Transit Left Undetected: the Environment and Atmospheric Behavior of K2-25b. Astronomical Journal, 2021, 162, 116.	1.9	9
233	TOI-674b: An oasis in the desert of exo-Neptunes transiting a nearby M dwarf. Astronomy and Astrophysics, 2021, 653, A60.	2.1	23
234	Exoplanet Statistics and Theoretical Implications. Annual Review of Astronomy and Astrophysics, 2021, 59, 291-336.	8.1	89

#	Article	IF	CITATIONS
235	The Magellan-TESS Survey. I. Survey Description and Midsurvey Results* â€. Astrophysical Journal, Supplement Series, 2021, 256, 33.	3.0	19
236	The Nature and Origins of Subâ€Neptune Size Planets. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006639.	1.5	65
237	Disintegrating Rocky Exoplanets. , 2018, , 1-19.		2
238	Planetary Evaporation Through Evolution. , 2017, , 1-17.		1
239	A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system. Nature Astronomy, 2019, 3, 416-423.	4.2	64
240	Neutron star planets: Atmospheric processes and irradiation. Astronomy and Astrophysics, 2017, 608, A147.	2.1	7
241	Planetary evolution with atmospheric photoevaporation. Astronomy and Astrophysics, 2020, 638, A52.	2.1	66
242	An ultra-short period rocky super-Earth orbiting the G2-star HD 80653. Astronomy and Astrophysics, 2020, 633, A133.	2.1	24
243	Characterization of the K2-38 planetary system. Astronomy and Astrophysics, 2020, 641, A92.	2.1	17
244	A tale of planet formation: from dust to planets. Research in Astronomy and Astrophysics, 2020, 20, 164.	0.7	37
245	Investigating the young AUÂMic system with SPIRou: large-scale stellar magnetic field and close-in planet mass. Monthly Notices of the Royal Astronomical Society, 2021, 502, 188-205.	1.6	57
246	Stability constrained characterization of multiplanet systems. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4798-4811.	1.6	13
247	EUV irradiation of exoplanet atmospheres occurs on Gyr time-scales. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 501, L28-L32.	1.2	35
248	Simultaneous Optical Transmission Spectroscopy of a Terrestrial, Habitable-zone Exoplanet with Two Ground-based Multiobject Spectrographs. Astronomical Journal, 2020, 160, 27.	1.9	16
249	Two Views of the Radius Gap and the Role of Light Curve Fitting. Astronomical Journal, 2020, 160, 89.	1.9	37
250	Scaling K2. III. Comparable Planet Occurrence in the FGK Samples of Campaign 5 and Kepler. Astronomical Journal, 2020, 160, 94.	1.9	13
251	The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System. Astronomical Journal, 2020, 160, 116.	1.9	67
252	Transits of Known Planets Orbiting a Naked-eye Star. Astronomical Journal, 2020, 160, 129.	1.9	22

#	ARTICLE	IF	CITATIONS
253	TOI-824 b: A New Planet on the Lower Edge of the Hot Neptune Desert. Astronomical Journal, 2020, 160, 153.	1.9	27
254	TESS Hunt for Young and Maturing Exoplanets (THYME). III. A Two-planet System in the 400 Myr Ursa Major Group. Astronomical Journal, 2020, 160, 179.	1.9	68
255	Optical Transmission Spectroscopy of the Terrestrial Exoplanet LHS 3844b from 13 Ground-based Transit Observations. Astronomical Journal, 2020, 160, 188.	1.9	18
256	A Featureless Infrared Transmission Spectrum for the Super-puff Planet Kepler-79d. Astronomical Journal, 2020, 160, 201.	1.9	24
257	TOI 540 b: A Planet Smaller than Earth Orbiting a Nearby Rapidly Rotating Low-mass Star. Astronomical Journal, 2021, 161, 23.	1.9	16
258	A Mini-Neptune and a Radius Valley Planet Orbiting the Nearby M2 Dwarf TOI-1266 in Its Venus Zone: Validation with the Habitable-zone Planet Finder. Astronomical Journal, 2020, 160, 259.	1.9	16
259	Vetting of 384 TESS Objects of Interest with TRICERATOPS and Statistical Validation of 12 Planet Candidates. Astronomical Journal, 2021, 161, 24.	1.9	64
260	Transmission Spectroscopy for the Warm Sub-Neptune HD 3167c: Evidence for Molecular Absorption and a Possible High-metallicity Atmosphere. Astronomical Journal, 2021, 161, 18.	1.9	25
261	Deflating Super-puffs: Impact of Photochemical Hazes on the Observed Mass–Radius Relationship of Low-mass Planets. Astrophysical Journal, 2020, 890, 93.	1.6	44
262	The Evolutionary Track of H/He Envelopes of the Observed Population of Sub-Neptunes and Super-Earths. Astrophysical Journal, 2020, 898, 104.	1.6	7
263	Four Newborn Planets Transiting the Young Solar Analog V1298 Tau. Astrophysical Journal Letters, 2019, 885, L12.	3.0	97
264	Bridging the Planet Radius Valley: Stellar Clustering as a Key Driver for Turning Sub-Neptunes into Super-Earths. Astrophysical Journal Letters, 2020, 905, L18.	3.0	19
265	TOI-2285b: A 1.7 Earth-radius planet near the habitable zone around a nearby M dwarf. Publication of the Astronomical Society of Japan, 2022, 74, L1-L8.	1.0	5
266	Grain Growth in Escaping Atmospheres: Implications for the Radius Inflation of Super-Puffs. Astrophysical Journal, 2021, 920, 124.	1.6	17
267	Photoevaporation versus core-powered mass-loss: model comparison with the 3D radius gap. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5886-5902.	1.6	46
268	The Occurrence-weighted Median Planets Discovered by Transit Surveys Orbiting Solar-type Stars and Their Implications for Planet Formation and Evolution. Astrophysical Journal, 2021, 921, 24.	1.6	1
269	Formation, Orbital and Internal Evolutions of Young Planetary Systems. Space Sciences Series of ISSI, 2016, , 117-164.	0.0	0
270	Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability. Space Sciences Series of ISSI, 2016, , 327-390.	0.0	0

		CITATION REPORT		
#	Article		IF	CITATIONS
271	Formation and Evolution of Protoatmospheres. Space Sciences Series of ISSI, 2016, , 193-2	251.	0.0	0
273	Orbital Refinement and Stellar Properties for the HD 9446, HD 43691, and HD 179079 Pla Astronomical Journal, 2020, 159, 197.	netary Systems.	1.9	2
274	A Search for Planetary Metastable Helium Absorption in the V1298 Tau System. Astronom 2021, 162, 222.	ical Journal,	1.9	19
275	The New Generation Planetary Population Synthesis (NGPPS). Astronomy and Astrophysics A70.	s, 2021, 656,	2.1	59
276	Exploring the origin and evolution of the Kepler 36 system. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4255-4265.		1.6	1
277	Ca‬II H&K stellar activity parameter: a proxy for extreme ultraviolet stellar fluxes. As Astrophysics, 2020, 644, A67.	tronomy and	2.1	20
278	Split Peas in a Pod: Intra-system Uniformity of Super-Earths and Sub-Neptunes. Astrophysic Letters, 2021, 920, L34.	cal Journal	3.0	16
279	Revisiting the Architecture of the KOI-89 System. Astronomical Journal, 2020, 160, 224.		1.9	5
280	The Obliquity of HIP 67522 b: A 17 Myr Old Transiting Hot, Jupiter-sized Planet. Astrophysi Letters, 2021, 922, L1.	cal Journal	3.0	8
281	Inferring Shallow Surfaces on Sub-Neptune Exoplanets with JWST. Astrophysical Journal Le 922, L27.	tters, 2021,	3.0	24
282	Estimating photoevaporative mass loss of exoplanets with <scp>PLATYPOS</scp> . Astron Nachrichten, 2022, 343, .	omische	0.6	3
283	The Activity of Stars with Planetary Systems and Its Impact on the Loss of Atmosphere by I Exoplanets. Astrophysical Bulletin, 2021, 76, 450-471.	Hot	0.3	5
284	Validation of 13 Hot and Potentially Terrestrial TESS Planets. Astronomical Journal, 2022, 1	63, 99.	1.9	8
285	H ₂ -dominated Atmosphere as an Indicator of Second-generation Rocky White Exoplanets. Astrophysical Journal Letters, 2022, 925, L10.	e Dwarf	3.0	7
286	Detection of Ongoing Mass Loss from HD 63433c, a Young Mini-Neptune. Astronomical Jc 163, 68.	ournal, 2022,	1.9	31
287	V1298 Tau with TESS: Updated Ephemerides, Radii, and Period Constraints from a Second V1298 Tau e. Astrophysical Journal Letters, 2022, 925, L2.	Transit of	3.0	12
288	Effects of Self-gravity on Mass-loss of the Post-impact Super-Earths. Research in Astronom Astrophysics, 2022, 22, 045004.	y and	0.7	0
289	The Demographics of Close-In Planets. Astrophysics and Space Science Library, 2022, , 143	3-234.	1.0	2

#	Article	IF	CITATIONS
290	The GAPS Programme at TNG. Astronomy and Astrophysics, 2022, 658, A136.	2.1	20
291	TOI-1759 b: A transiting sub-Neptune around a low mass star characterized with SPIRou and TESS. Astronomy and Astrophysics, 2022, 660, A86.	2.1	15
292	The strongly irradiated planets in Praesepe. Monthly Notices of the Royal Astronomical Society, 2022, 512, 41-55.	1.6	1
293	Stellar Wind Confinement of Evaporating Exoplanet Atmospheres and Its Signatures in 1083 nm Observations. Astrophysical Journal, 2022, 926, 226.	1.6	19
294	One year of AU Mic with HARPS – I. Measuring the masses of the two transiting planets. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3060-3078.	1.6	29
295	TESS Hunt for Young and Maturing Exoplanets (THYME). VI. An 11 Myr Giant Planet Transiting a Very-low-mass Star in Lower Centaurus Crux. Astronomical Journal, 2022, 163, 156.	1.9	34
296	The California-Kepler Survey. X. The Radius Gap as a Function of Stellar Mass, Metallicity, and Age. Astronomical Journal, 2022, 163, 179.	1.9	51
297	Atmospheric Dynamics of Temperate Sub-Neptunes. I. Dry Dynamics. Astrophysical Journal, 2022, 927, 38.	1.6	8
298	The Maximum Mass-loss Efficiency for a Photoionization-driven Isothermal Parker Wind. Astrophysical Journal, 2022, 927, 96.	1.6	8
299	Irradiation-driven escape of primordial planetary atmospheres. Astronomy and Astrophysics, 2022, 663, A122.	2.1	16
300	Two Massive Jupiters in Eccentric Orbits from the TESS Full-frame Images. Astronomical Journal, 2022, 163, 9.	1.9	5
301	Size Evolution of Close-in Super-Earths through Giant Impacts and Photoevaporation. Astrophysical Journal, 2021, 923, 81.	1.6	4
303	The Posttransit Tail of WASP-107b Observed at 10830 Ã Astronomical Journal, 2021, 162, 284.	1.9	24
304	Atmospheric dynamics of a near tidally locked Earth-sized planet. Nature Astronomy, 2022, 6, 420-427.	4.2	6
305	Atmospheres of Rocky Exoplanets. Annual Review of Astronomy and Astrophysics, 2022, 60, 159-201.	8.1	29
306	A Search for Exoplanets in Open Clusters and Young Associations based on TESS Objects of Interest. Research in Astronomy and Astrophysics, 2022, 22, 075008.	0.7	4
307	A Multiplanet System's Sole Super-puff: Exploring Allowable Physical Parameters for the Cold Super-puff HIP 41378 f. Astronomical Journal, 2022, 163, 277.	1.9	7
308	A Mini-Neptune from TESS and CHEOPS Around the 120 Myr Old AB Dor Member HIP 94235. Astronomical Journal, 2022, 163, 289.	1.9	11

#	Article	IF	CITATIONS
309	On the Stability of Low-mass Planets with Supercritical Hydrospheres. Astrophysical Journal, 2022, 931, 143.	1.6	0
310	The GAPS Programme at TNG. Astronomy and Astrophysics, 2022, 664, A163.	2.1	16
311	Combined effects of disc windsÂand turbulence-driven accretion on planet populations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2548-2577.	1.6	3
312	Keck/NIRSPEC Studies of He i in the Atmospheres of Two Inflated Hot Gas Giants Orbiting K Dwarfs: WASP-52b and WASP-177b. Astronomical Journal, 2022, 164, 24.	1.9	18
313	The Featureless HST/WFC3 Transmission Spectrum of the Rocky Exoplanet GJ 1132b: No Evidence for a Cloud-free Primordial Atmosphere and Constraints on Starspot Contamination. Astronomical Journal, 2022, 164, 59.	1.9	26
314	Forming iron-rich planets with giant impacts. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3132-3143.	1.6	7
315	The TESS–Keck Survey. XIII. An Eccentric Hot Neptune with a Similar-mass Outer Companion around TOI-1272. Astronomical Journal, 2022, 164, 97.	1.9	1
316	HD 56414 b: A Warm Neptune Transiting an A-type Star. Astrophysical Journal Letters, 2022, 935, L10.	3.0	3
317	TOI-1468: A system of two transiting planets, a super-Earth and a mini-Neptune, on opposite sides of the radius valley. Astronomy and Astrophysics, 2022, 666, A155.	2.1	6
318	TOI-2196 b: Rare planet in the hot Neptune desert transiting a G-type star. Astronomy and Astrophysics, 2022, 666, A184.	2.1	7
319	AU Microscopii in the Far-UV: Observations in Quiescence, during Flares, and Implications for AU Mic b and c. Astronomical Journal, 2022, 164, 110.	1.9	12
320	Signatures of Impact-driven Atmospheric Loss in Large Ensembles of Exoplanets. Astrophysical Journal, 2022, 937, 39.	1.6	1
321	Trapping (sub-)Neptunes similar to TOI-216b at the inner disk rim. Astronomy and Astrophysics, 2022, 666, A63.	2.1	7
322	The influence of host star activity evolution on the population of super-Earths and mini-Neptunes. Monthly Notices of the Royal Astronomical Society, 2022, 518, 1683-1706.	1.6	8
323	Properties of the radius valley around low mass stars: predictions from the core-powered mass-loss mechanism. Monthly Notices of the Royal Astronomical Society, 2022, 516, 4585-4593.	1.6	9
324	Cleaning Our Hazy Lens: Exploring Trends in Transmission Spectra of Warm Exoplanets. Astrophysical Journal, 2022, 937, 90.	1.6	13
325	Tentative Evidence for Water Vapor in the Atmosphere of the Neptune-sized Exoplanet HD 106315c. Astronomical Journal, 2022, 164, 124.	1.9	5
326	The K2-3 System Revisited: Testing Photoevaporation and Core-powered Mass Loss with Three Small Planets Spanning the Radius Valley. Astronomical Journal, 2022, 164, 172.	1.9	13

#	Article	IF	CITATIONS
327	The Demographics of Kepler's Earths and Super-Earths into the Habitable Zone. Astronomical Journal, 2022, 164, 190.	1.9	6
328	Non-detection of He I in the Atmosphere of GJ 1214b with Keck/NIRSPEC, at a Time of Minimal Telluric Contamination. Astrophysical Journal Letters, 2022, 939, L11.	3.0	12
329	The Exoplanet Radius Valley from Gas-driven Planet Migration and Breaking of Resonant Chains. Astrophysical Journal Letters, 2022, 939, L19.	3.0	14
330	The fundamentals of Lyman α exoplanet transits. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4357-4371.	1.6	13
331	Evidence for the volatile-rich composition of a 1.5-Earth-radius planet. Nature Astronomy, O, , .	4.2	23
332	Impact of Mg <scp>ii</scp> interstellar medium absorption on near-ultraviolet exoplanet transit measurements. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2101-2118.	1.6	1
333	A deep radius valley revealed by <i>Kepler</i> short cadence observations. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4056-4073.	1.6	12
334	DREAM. Astronomy and Astrophysics, 2023, 669, A63.	2.1	10
335	Exoplanet atmosphere evolution: emulation with neural networks. Monthly Notices of the Royal Astronomical Society, 2023, 519, 6028-6043.	1.6	7
336	A Catalog of Habitable Zone Exoplanets. Astronomical Journal, 2023, 165, 34.	1.9	19
337	The Rate of Atmospheric Mass Loss by the Hot Neptune GJ 436b. Astronomy Reports, 2022, 66, 1318-1324.	0.2	7
338	Possible origin of the non-detection of metastable He†I in the upper atmosphere of the hot Jupiter WASP-80b. Astronomy and Astrophysics, 2023, 673, A37.	2.1	3
339	A super-Earth and a mini-Neptune near the 2:1 MMR straddling the radius valley around the nearby mid-M dwarf TOI-2096. Astronomy and Astrophysics, 2023, 672, A70.	2.1	7
340	VaTEST I: validation of sub-Saturn exoplanet TOI-181b in narrow orbit from its host star. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1066-1078.	1.6	2
341	The Dynamical Consequences of a Super-Earth in the Solar System. Planetary Science Journal, 2023, 4, 38.	1.5	3
342	The young mini-Neptune HD 207496b that is either a naked core or on the verge of becoming one. Astronomy and Astrophysics, 2023, 673, A4.	2.1	2
343	Removal of Hot Saturns in Mass–Radius Plane by Runaway Mass Loss. Astrophysical Journal Letters, 2023, 945, L36.	3.0	4
344	Ground-based Optical Transmission Spectroscopy of the Nearby Terrestrial Exoplanet LTT 1445Ab. Astronomical Journal, 2023, 165, 169.	1.9	4

		CITATION R	CITATION REPORT	
#	Article		IF	CITATIONS
345	The Demographics of Terrestrial Planets in the Venus Zone. Astronomical Journal, 2023	, 165, 168.	1.9	7
346	Dynamical Evolution of Closely Packed Multiple Planetary Systems Subject to Atmosph Astronomical Journal, 2023, 165, 174.	eric Mass Loss.	1.9	1
347	Revealing the atmospheres of highly irradiated exoplanets: from ultra-hot Jupiters to ro Astrophysics and Space Science, 2023, 368, .	cky worlds.	0.5	0
348	A Spectroscopic Analysis of a Sample of K2 Planet-host Stars: Stellar Parameters, Metal Planetary Radii. Astrophysical Journal, 2023, 946, 61.	licities and	1.6	0
349	Characterisation of the upper atmospheres of HAT-P-32 b, WASP-69 b, GJ 1214 b, and V their He‬l triplet absorption. Astronomy and Astrophysics, 2023, 673, A140.	NASP-76 b through	2.1	4
350	Conclusive Evidence for a Population of Water Worlds around M Dwarfs Remains Elusiv Astrophysical Journal Letters, 2023, 947, L19.	ve.	3.0	22