Nrf2 is controlled by two distinct \hat{I}^2 -TrCP recognition methods which can be modulated by GSK-3 activity

Oncogene 32, 3765-3781

DOI: 10.1038/onc.2012.388

Citation Report

#	Article	IF	CITATIONS
1	The Role of Sulfhydryl Reactivity of Small Molecules for the Activation of the KEAP1/NRF2 Pathway and the Heat Shock Response. Scientifica, 2012, 2012, 1-19.	0.6	24
2	Selenium in the Redox Regulation of the Nrf2 and the Wnt Pathway. Methods in Enzymology, 2013, 527, 65-86.	0.4	50
3	The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biology, 2013, 1, 45-49.	3.9	1,063
4	USP15 Negatively Regulates Nrf2 through Deubiquitination of Keap1. Molecular Cell, 2013, 51, 68-79.	4.5	98
5	The emerging role of the Nrf2–Keap1 signaling pathway in cancer. Genes and Development, 2013, 27, 2179-2191.	2.7	1,044
6	<i>In Vitro</i> and <i>in Vivo</i> Characterization of a Tunable Dual-Reactivity Probe of the Nrf2-ARE Pathway. ACS Chemical Biology, 2013, 8, 1764-1774.	1.6	18
7	Toward clinical application of the Keap1–Nrf2 pathway. Trends in Pharmacological Sciences, 2013, 34, 340-346.	4.0	564
8	Trafficking of the Transcription Factor Nrf2 to Promyelocytic Leukemia-Nuclear Bodies. Journal of Biological Chemistry, 2013, 288, 14569-14583.	1.6	66
9	The C-Terminal Domain of Nrf1 Negatively Regulates the Full-Length CNC-bZIP Factor and Its Shorter Isoform LCR-F1/Nrf1β; Both Are Also Inhibited by the Small Dominant-Negative Nrf1γ/δ Isoforms that Down-Regulate ARE-Battery Gene Expression. PLoS ONE, 2014, 9, e109159.	1.1	21
10	Kaposi's Sarcoma-Associated Herpesvirus Induces Nrf2 during De Novo Infection of Endothelial Cells to Create a Microenvironment Conducive to Infection. PLoS Pathogens, 2014, 10, e1004460.	2.1	70
11	Unique Pattern of Component Gene Disruption in the NRF2 Inhibitor KEAP1/CUL3/RBX1 E3-Ubiquitin Ligase Complex in Serous Ovarian Cancer. BioMed Research International, 2014, 2014, 1-10.	0.9	28
12	A systems-wide screen identifies substrates of the SCF ^{βTrCP} ubiquitin ligase. Science Signaling, 2014, 7, rs8.	1.6	49
13	Cytoprotection & Cytopr	1.0	57
14	The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes and Development, 2014, 28, 548-560.	2.7	229
15	Nuclear Heme Oxygenase-1 (HO-1) Modulates Subcellular Distribution and Activation of Nrf2, Impacting Metabolic and Anti-oxidant Defenses. Journal of Biological Chemistry, 2014, 289, 26882-26894.	1.6	190
16	Oncogenic KRAS Confers Chemoresistance by Upregulating NRF2. Cancer Research, 2014, 74, 7430-7441.	0.4	237
17	Paradoxical Cellular Effects and Biological Role of the Multifaceted Compound Nordihydroguaiaretic Acid. Archiv Der Pharmazie, 2014, 347, 685-697.	2.1	31
18	Phosphoinositide 3-Kinases Upregulate System x _c ^{â^'} <i>via</i> Eukaryotic Initiation Factor 2î± and Activating Transcription Factor 4 – A Pathway Active in Glioblastomas and Epilepsy. Antioxidants and Redox Signaling, 2014, 20, 2907-2922.	2.5	58

#	ARTICLE	IF	CITATIONS
19	Nrf2 Enhances Cholangiocyte Expansion in Pten-Deficient Livers. Molecular and Cellular Biology, 2014, 34, 900-913.	1.1	85
20	Molecular and Chemical Regulation of the Keap1-Nrf2 Signaling Pathway. Molecules, 2014, 19, 10074-10089.	1.7	177
21	Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics. Free Radical Biology and Medicine, 2014, 71, 196-207.	1.3	207
22	Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes and Development, 2014, 28, 708-722.	2.7	262
23	Monitoring Keap1–Nrf2 interactions in single live cells. Biotechnology Advances, 2014, 32, 1133-1144.	6.0	122
24	Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biology, 2014, 2, 535-562.	3.9	688
25	Nrf2: bane or blessing in cancer?. Journal of Cancer Research and Clinical Oncology, 2014, 140, 1251-1259.	1.2	49
26	Nrf2 Amplifies Oxidative Stress via Induction of Klf9. Molecular Cell, 2014, 53, 916-928.	4.5	186
27	The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends in Biochemical Sciences, 2014, 39, 199-218.	3.7	1,591
28	Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance. Antioxidants and Redox Signaling, 2014, 21, 1766-1801.	2.5	261
29	Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling. Chemico-Biological Interactions, 2014, 209, 56-67.	1.7	191
30	NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology, 2014, 79, 298-306.	2.0	311
31	Nrf2, the master redox switch: The Achilles' heel of ovarian cancer?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 494-509.	3.3	36
32	Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells. Experimental Cell Research, 2014, 328, 351-360.	1.2	59
33	Role of the Keap1–Nrf2 Pathway in Cancer. Advances in Cancer Research, 2014, 122, 281-320.	1.9	134
34	Targeting Neddylation Pathways to Inactivate Cullin-RING Ligases for Anticancer Therapy. Antioxidants and Redox Signaling, 2014, 21, 2383-2400.	2.5	174
35	Baicalein modulates Nrf2/Keap1 system in both Keap1-dependent and Keap1-independent mechanisms. Archives of Biochemistry and Biophysics, 2014, 559, 53-61.	1.4	40
36	Modulation of NRF2 signaling pathway by nuclear receptors: Implications for cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1875-1885.	1.9	83

#	Article	IF	Citations
37	Inhibition of NRF2 by PIK-75 augments sensitivity of pancreatic cancer cells to gemcitabine. International Journal of Oncology, 2014, 44, 959-969.	1.4	51
38	HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Scientific Reports, 2014, 4, 7201.	1.6	48
39	Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochemical Society Transactions, 2015, 43, 680-686.	1.6	137
40	Sustained NRF2 activation in hereditary leiomyomatosis and renal cell cancer (HLRCC) and in hereditary tyrosinemia typeÂ1 (HT1). Biochemical Society Transactions, 2015, 43, 650-656.	1.6	19
41	Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions, 2015, 43, 621-626.	1.6	849
42	Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of \hat{l}^2 -TrCP and GSK-3. Biochemical Society Transactions, 2015, 43, 611-620.	1.6	143
43	Frequency modulated translocational oscillations of Nrf2, a transcription factor functioning like a wireless sensor. Biochemical Society Transactions, 2015, 43, 669-673.	1.6	15
44	Value of monitoring Nrf2 activity for the detection of chemical and oxidative stress. Biochemical Society Transactions, 2015, 43, 657-662.	1.6	40
45	The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression. Scientific Reports, 2015, 5, 12983.	1.6	48
46	Keap1–Nrf2 pathway: A promising target towards lung cancer prevention and therapeutics. Chronic Diseases and Translational Medicine, 2015, 1, 175-186.	0.9	36
47	Overview of Nrf2 as Therapeutic Target in Epilepsy. International Journal of Molecular Sciences, 2015, 16, 18348-18367.	1.8	47
48	WNT-3A Regulates an Axin1/NRF2 Complex That Regulates Antioxidant Metabolism in Hepatocytes. Antioxidants and Redox Signaling, 2015, 22, 555-571.	2.5	50
49	Erbin is a novel substrate of the Sag- $\hat{1}^2$ TrCP E3 ligase that regulates KrasG12D-induced skin tumorigenesis. Journal of Cell Biology, 2015, 209, 721-738.	2.3	31
50	Crosstalk between Nrf2 and Notch signaling. Free Radical Biology and Medicine, 2015, 88, 158-167.	1.3	89
51	Dysregulation of Nrf2 Signaling in Diabetes: An Opportunity for a Multitarget Approach. Journal of Diabetes & Metabolism, 2015, 06, .	0.2	4
52	The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Molecular Brain, 2015, 8, 64.	1.3	20
53	On the role of 4-hydroxynonenal in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 826-838.	1.8	189
54	TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway. Oncogene, 2015, 34, 600-610.	2.6	118

#	Article	IF	CITATIONS
55	Aripiprazole increases NAD(P)H–quinone oxidoreductase-1 and heme oxygenase-1 in PC12 cells. Journal of Neural Transmission, 2015, 122, 757-772.	1.4	4
56	Comparative analysis of NRF2-responsive gene expression in AcPC-1 pancreatic cancer cell line. Genes and Genomics, 2015, 37, 97-109.	0.5	19
57	Radiotherapy in the Era of Precision Medicine. Seminars in Radiation Oncology, 2015, 25, 227-236.	1.0	29
58	The complexity of the Nrf2 pathway: beyond the antioxidant response. Journal of Nutritional Biochemistry, 2015, 26, 1401-1413.	1.9	325
59	Keap1–Nrf2 signalling in pancreatic cancer. International Journal of Biochemistry and Cell Biology, 2015, 65, 288-299.	1.2	48
60	Functional polymorphisms in Nrf2: implications for human disease. Free Radical Biology and Medicine, 2015, 88, 362-372.	1.3	63
61	Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology, 2015, 6, 183-197.	3.9	859
62	Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radical Biology and Medicine, 2015, 88, 221-232.	1.3	116
63	Mechanisms and functions of Nrf2 signaling in Drosophila. Free Radical Biology and Medicine, 2015, 88, 302-313.	1.3	82
64	Molecular basis of the Keap1–Nrf2 system. Free Radical Biology and Medicine, 2015, 88, 93-100.	1.3	762
65	p62 links autophagy and Nrf2 signaling. Free Radical Biology and Medicine, 2015, 88, 199-204.	1.3	437
66	Bioinformatics analyses provide insight into distant homology of the Keap1–Nrf2 pathway. Free Radical Biology and Medicine, 2015, 88, 373-380.	1.3	18
67	Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biology and Medicine, 2015, 88, 108-146.	1.3	661
68	The role of Nrf2 in oxidative stress-induced endothelial injuries. Journal of Endocrinology, 2015, 225, R83-R99.	1.2	299
69	Non-electrophilic modulators of the canonical Keap1/Nrf2 pathway. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2261-2268.	1.0	67
70	The emerging role of Nrf2 in mitochondrial function. Free Radical Biology and Medicine, 2015, 88, 179-188.	1.3	696
71	Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase $3\hat{l}^2$ -TrCP. Free Radical Biology and Medicine, 2015, 88, 147-157.	1.3	196
72	Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Molecular Oncology, 2015, 9, 1259-1273.	2.1	17

#	Article	IF	CITATIONS
73	Autophagy Deficiency Diminishes Indomethacin-Induced Intestinal Epithelial Cell Damage through Activation of the ERK/Nrf2/HO-1 Pathway. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 353-361.	1.3	29
74	Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochemical Pharmacology, 2015, 97, 463-472.	2.0	228
75	Introduction to Special Issue on â€~Nrf2 Regulated Redox Signaling and Metabolism in Physiology and Medicine. Free Radical Biology and Medicine, 2015, 88, 91-92.	1.3	25
76	Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway. Free Radical Biology and Medicine, 2015, 89, 287-299.	1.3	73
77	Butylated hydroxyanisole induces distinct expression patterns of Nrf2 and detoxification enzymes in the liver and small intestine of C57BL/6 mice. Toxicology and Applied Pharmacology, 2015, 288, 339-348.	1.3	30
78	SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radical Biology and Medicine, 2015, 88, 290-301.	1.3	420
79	Cell signaling pathways involved in drug-mediated fetal hemoglobin induction: Strategies to treat sickle cell disease. Experimental Biology and Medicine, 2015, 240, 1050-1064.	1,1	19
80	Protein Modifications in Pathogenic Dysregulation of Signaling. , 2015, , .		0
81	Changing gears in Nrf1 research, from mechanisms of regulation to its role in disease and prevention. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1260-1276.	0.9	61
82	Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system – A review. Molecular and Cellular Endocrinology, 2015, 417, 1-9.	1.6	33
83	Structural basis of Keap1 interactions with Nrf2. Free Radical Biology and Medicine, 2015, 88, 101-107.	1.3	392
84	The Keap1–Nrf2 system and diabetes mellitus. Archives of Biochemistry and Biophysics, 2015, 566, 76-84.	1.4	182
85	The Keap 1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Molecular and Cellular Endocrinology, 2015, 401, 213-220.	1.6	195
86	Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends in Pharmacological Sciences, 2015, 36, 6-14.	4.0	108
87	Limb ischemic preconditioning protects against contrast-induced acute kidney injury in rats via phosphorylation of GSK- $3\hat{1}^2$. Free Radical Biology and Medicine, 2015, 81, 170-182.	1.3	43
88	Lysophosphatidate signaling stabilizes Nrf2 and increases the expression of genes involved in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB Journal, 2015, 29, 772-785.	0.2	83
89	Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells. Journal of Biotechnology, 2015, 202, 12-30.	1.9	34
90	The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-14.	1.9	223

#	Article	IF	CITATIONS
91	The Skp1 Homologs SKR-1/2 Are Required for the Caenorhabditis elegans SKN-1 Antioxidant/Detoxification Response Independently of p38 MAPK. PLoS Genetics, 2016, 12, e1006361.	1.5	55
92	The role of modulation of antioxidant enzyme systems in the treatment of neurodegenerative diseases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 194-204.	2.5	10
93	NRF2-targeted therapeutics: New targets and modes of NRF2 regulation. Current Opinion in Toxicology, 2016, 1 , 62-70.	2.6	45
94	Molecular and cellular basis for the unique functioning of Nrf1, an indispensable transcription factor for maintaining cell homoeostasis and organ integrity. Biochemical Journal, 2016, 473, 961-1000.	1.7	117
95	Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers. Cell Reports, 2016, 16, 2605-2617.	2.9	155
96	Dual NRF2 paralogs in Coho salmon and their antioxidant response element targets. Redox Biology, 2016, 9, 114-123.	3.9	16
97	Shadows of NRF2 in cancer: Resistance to chemotherapy. Current Opinion in Toxicology, 2016, 1, 20-28.	2.6	30
98	Development of Therapeutic Smallâ€Molecule Fluorophore for Cell Transplantation. Advanced Functional Materials, 2016, 26, 8397-8407.	7.8	20
99	Withaferin A induces Nrf2-dependent protection against liver injury: Role of Keap1-independent mechanisms. Free Radical Biology and Medicine, 2016, 101, 116-128.	1.3	74
100	Differentiation-inducing and anti-proliferative activities of isoliquiritigenin and all-trans-retinoic acid on B16F0 melanoma cells: Mechanisms profiling by RNA-seq. Gene, 2016, 592, 86-98.	1.0	19
101	Clinical implication of Keap1 and phosphorylated Nrf2 expression in hepatocellular carcinoma. Cancer Medicine, 2016, 5, 2678-2687.	1.3	30
102	Overview of redox regulation by Keap1–Nrf2 system in toxicology and cancer. Current Opinion in Toxicology, 2016, 1, 29-36.	2.6	39
103	The multifaceted role of Nrf2 in mitochondrial function. Current Opinion in Toxicology, 2016, 1, 80-91.	2.6	275
104	NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Science Translational Medicine, 2016, 8, 334ra51.	5.8	182
105	GSK- $3\hat{l}^2$ downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion. Scientific Reports, 2016, 6, 20196.	1.6	90
106	Regulation of the CNC-bZIP transcription factor Nrf2 by Keap1 and the axis between GSK-3 and \hat{l}^2 -TrCP. Current Opinion in Toxicology, 2016, 1, 92-103.	2.6	14
107	An overview of the mechanisms and novel roles of Nrf2 in cardiovascular diseases. Expert Opinion on Therapeutic Targets, 2016, 20, 1413-1424.	1.5	22
108	Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis. Molecular Cancer, 2016, 15, 81.	7.9	40

#	ARTICLE	IF	CITATIONS
109	NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming. Cell Reports, 2016, 14, 1883-1891.	2.9	132
110	Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metabolism Reviews, 2016, 48, 541-567.	1.5	125
111	Niacin and Selenium Attenuate Sepsis-Induced Lung Injury by Up-Regulating Nuclear Factor Erythroid 2–Related Factor 2 Signaling*. Critical Care Medicine, 2016, 44, e370-e382.	0.4	20
112	TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1. Antioxidants and Redox Signaling, 2016, 25, 953-964.	2.5	65
113	The MLN4924 inhibitor exerts a neuroprotective effect against oxidative stress injury via Nrf2 protein accumulation. Redox Biology, 2016, 8, 341-347.	3.9	25
114	Nrf2 activation in the treatment of neurodegenerative diseases: a focus on its role in mitochondrial bioenergetics and function. Biological Chemistry, 2016, 397, 383-400.	1.2	128
115	Genetic and Pharmacologic Targeting of Glycogen Synthase Kinase $3\hat{l}^2$ Reinforces the Nrf2 Antioxidant Defense against Podocytopathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 2289-2308.	3.0	68
116	Heme oxygenase-1-derived bilirubin counteracts HIV protease inhibitor-mediated endothelial cell dysfunction. Free Radical Biology and Medicine, 2016, 94, 218-229.	1.3	24
117	Role of Nrf2 and Autophagy in Acute Lung Injury. Current Pharmacology Reports, 2016, 2, 91-101.	1.5	77
118	Melatonin, bone regulation and the ubiquitin-proteasome connection: A review. Life Sciences, 2016, 145, 152-160.	2.0	62
119	The Mediator Subunit MED16 Transduces NRF2-Activating Signals into Antioxidant Gene Expression. Molecular and Cellular Biology, 2016, 36, 407-420.	1.1	64
120	Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. , 2016, 157, 84-104.		463
121	Extracellular Signal-Regulated Kinase/Nuclear Factor-Erythroid2-like2/Heme Oxygenase-1 Pathway-Mediated Mitophagy Alleviates Traumatic Brain Injury-Induced Intestinal Mucosa Damage and Epithelial Barrier Dysfunction. Journal of Neurotrauma, 2017, 34, 2119-2131.	1.7	55
122	Activation of anti-oxidant Nrf2 signaling by substituted trans stilbenes. Bioorganic and Medicinal Chemistry, 2017, 25, 1423-1430.	1.4	12
123	Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biology, 2017, 11, 543-553.	3.9	147
124	p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex. Molecular and Cellular Biology, 2017, 37, .	1.1	77
125	Proximity Labeling of Interacting Proteins: Application of BioID as a Discovery Tool. Proteomics, 2017, 17, 1700002.	1.3	41
126	Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chemical Research in Toxicology, 2017, 30, 729-762.	1.7	26

#	Article	IF	CITATIONS
127	ROS in Cancer: The Burning Question. Trends in Molecular Medicine, 2017, 23, 411-429.	3.5	398
128	A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene, 2017, 36, 5285-5295.	2.6	87
129	Protein disulfide isomerase regulates renal AT $<$ sub $>$ 1 $<$ /sub $>$ receptor function and blood pressure in rats. American Journal of Physiology - Renal Physiology, 2017, 313, F461-F466.	1.3	11
130	Mazes of Nrf2 regulation. Biochemistry (Moscow), 2017, 82, 556-564.	0.7	42
131	Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicology Reports, 2017, 4, 306-318.	1.6	108
132	Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer's disease. Scientific Reports, 2017, 7, 45701.	1.6	59
133	Myricitrin Alleviates Oxidative Stress-induced Inflammation and Apoptosis and Protects Mice against Diabetic Cardiomyopathy. Scientific Reports, 2017, 7, 44239.	1.6	90
134	Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2. Journal of Biological Chemistry, 2017, 292, 7519-7530.	1.6	87
135	The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacological Reports, 2017, 69, 393-402.	1.5	207
136	Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radical Biology and Medicine, 2017, 103, 236-247.	1.3	117
137	A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. Nature Communications, 2017, 8, 1150.	5.8	71
138	Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Scientific Reports, 2017, 7, 14130.	1.6	153
139	Procyanidins from Cinnamomi Cortex promote proteasome-independent degradation of nuclear Nrf2 through phosphorylation of insulin-like growth factor-1 receptor in A549Âcells. Archives of Biochemistry and Biophysics, 2017, 635, 66-73.	1.4	15
140	Activating de novo mutations in NFE2L2 encoding NRF2 cause a multisystem disorder. Nature Communications, 2017, 8, 818.	5.8	72
141	Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia. American Journal of Pathology, 2017, 187, 2858-2875.	1.9	51
142	Camptothecin suppresses NRF2–ARE activity and sensitises hepatocellular carcinoma cells to anticancer drugs. British Journal of Cancer, 2017, 117, 1495-1506.	2.9	54
143	IL-11 contribution to tumorigenesis in an NRF2 addiction cancer model. Oncogene, 2017, 36, 6315-6324.	2.6	46
144	Î ² -TrCP1 Is a Vacillatory Regulator of Wnt Signaling. Cell Chemical Biology, 2017, 24, 944-957.e7.	2.5	39

#	Article	IF	Citations
145	Oxidative stress management in the hair follicle: Could targeting NRF2 counter ageâ€related hair disorders and beyond?. BioEssays, 2017, 39, 1700029.	1.2	33
146	The short isoform of <scp>PML</scp> â€ <scp>RAR</scp> α activates the <scp>NRF</scp> 2/ <scp>HO</scp> â€↓ pathway through a direct interaction with <scp>NRF</scp> 2. FEBS Letters, 2017, 591, 2859-2868.	1.3	7
147	Pharmacological stimulation of nuclear factor (erythroid-derived 2)-like 2 translation activates antioxidant responses. Journal of Biological Chemistry, 2017, 292, 14108-14121.	1.6	20
148	Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime?. Annals of the New York Academy of Sciences, 2017, 1401, 114-135.	1.8	166
149	PGC-1α attenuates hydrogen peroxide-induced apoptotic cell death by upregulating Nrf-2 via GSK3β inactivation mediated by activated p38 in HK-2 Cells. Scientific Reports, 2017, 7, 4319.	1.6	70
150	Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 585-597.	1.8	1,223
151	Small molecules inhibiting Keap1–Nrf2 protein–protein interactions: a novel approach to activate Nrf2 function. MedChemComm, 2017, 8, 286-294.	3.5	55
152	Keap1 as the redox sensor of the antioxidant response. Archives of Biochemistry and Biophysics, 2017, 617, 94-100.	1.4	93
153	Aldo-Keto Reductase Regulation by the Nrf2 System: Implications for Stress Response, Chemotherapy Drug Resistance, and Carcinogenesis. Chemical Research in Toxicology, 2017, 30, 162-176.	1.7	59
154	Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Archives of Biochemistry and Biophysics, 2017, 617, 84-93.	1.4	232
155	Various Mechanisms Involve the Nuclear Factor (Erythroid-Derived 2)-Like (NRF2) to Achieve Cytoprotection in Long-Term Cisplatin-Treated Urothelial Carcinoma Cell Lines. International Journal of Molecular Sciences, 2017, 18, 1680.	1.8	13
156	Nrf2-Inducers Counteract Neurodegeneration in Frataxin-Silenced Motor Neurons: Disclosing New Therapeutic Targets for Friedreich's Ataxia. International Journal of Molecular Sciences, 2017, 18, 2173.	1.8	58
157	Targeting NRF2 for Improved Skin Barrier Function and Photoprotection: Focus on the Achiote-Derived Apocarotenoid Bixin. Nutrients, 2017, 9, 1371.	1.7	59
158	Conservation of the Keap 1-Nrf2 System: An Evolutionary Journey through Stressful Space and Time. Molecules, 2017, 22, 436.	1.7	123
159	Systems Approach Reveals Nuclear Factor Erythroid 2-Related Factor 2/Protein Kinase R Crosstalk in Human Cutaneous Leishmaniasis. Frontiers in Immunology, 2017, 8, 1127.	2.2	44
160	The KEAP1–NRF2 System in Cancer. Frontiers in Oncology, 2017, 7, 85.	1.3	370
161	Nrf2., 2017,, 355-374.		8
162	Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacological Reviews, 2018, 70, 348-383.	7.1	441

#	ARTICLE	IF	CITATIONS
163	Cloning and Functional Analysis of <i>CncC</i> and <i>Keap1</i> Genes in Silkworm. Journal of Agricultural and Food Chemistry, 2018, 66, 2630-2636.	2.4	27
164	The redox-sensing gene Nrf2 affects intestinal homeostasis, insecticide resistance, and Zika virus susceptibility in the mosquito Aedes aegypti. Journal of Biological Chemistry, 2018, 293, 9053-9063.	1.6	38
165	Activation of GSK3 \hat{l}^2/\hat{l}^2 -TrCP axis via PHLPP1 exacerbates Nrf2 degradation leading to impairment in cell survival pathway during diabetic nephropathy. Free Radical Biology and Medicine, 2018, 120, 414-424.	1.3	46
166	ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radical Biology and Medicine, 2018, 117, 76-89.	1.3	549
167	Pharmacogenomics of Chemically Distinct Classes of Keap 1-Nrf2 Activators Identify Common and Unique Gene, Protein, and Pathway Responses In Vivo. Molecular Pharmacology, 2018, 93, 297-308.	1.0	11
168	The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS Journal, 2018, 285, 3576-3590.	2.2	220
169	F‑box proteins involved in cancer‒associated drug resistance (Review). Oncology Letters, 2018, 15, 8891-8900.	0.8	20
170	Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Molecular Nutrition and Food Research, 2018, 62, e1700908.	1.5	40
171	NRF2 and the Hallmarks of Cancer. Cancer Cell, 2018, 34, 21-43.	7.7	1,016
172	Arkadia (RING Finger Protein 111) Mediates Sumoylation-Dependent Stabilization of Nrf2 Through K48-Linked Ubiquitination. Cellular Physiology and Biochemistry, 2018, 46, 418-430.	1.1	16
173	NRF2 addiction in cancer cells. Cancer Science, 2018, 109, 900-911.	1.7	197
174	Prevention of contrast-induced nephropathy by limb ischemic preconditioning: underlying mechanisms and clinical effects. American Journal of Physiology - Renal Physiology, 2018, 314, F319-F328.	1.3	16
175	A partnership with the proteasome; the destructive nature of GSK3. Biochemical Pharmacology, 2018, 147, 77-92.	2.0	76
176	Transcriptional Regulation by Nrf2. Antioxidants and Redox Signaling, 2018, 29, 1727-1745.	2.5	1,356
177	The Regulation of NRF2 by Nutrient-Responsive Signaling and Its Role in Anabolic Cancer Metabolism. Antioxidants and Redox Signaling, 2018, 29, 1774-1791.	2.5	54
178	Mkp-1 protects mice against toxin-induced liver damage by promoting the Nrf2 cytoprotective response. Free Radical Biology and Medicine, 2018, 115, 361-370.	1.3	18
179	Nrf2 at the heart of oxidative stress and cardiac protection. Physiological Genomics, 2018, 50, 77-97.	1.0	290
180	Nach Is a Novel Subgroup at an Early Evolutionary Stage of the CNC-bZIP Subfamily Transcription Factors from the Marine Bacteria to Humans. International Journal of Molecular Sciences, 2018, 19, 2927.	1.8	14

#	Article	IF	CITATIONS
181	Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Cancers, 2018, 10, 481.	1.7	135
182	Sensing Oxidative Stress: The NRF2 Signaling Pathway. , 2018, , 337-351.		0
183	Importance of the Keap1-Nrf2 pathway in NSCLC: Is it a possible biomarker? (Review). Biomedical Reports, 2018, 9, 375-382.	0.9	26
184	Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2. Toxicology and Applied Pharmacology, 2018, 360, 45-57.	1.3	29
185	p62-Keap1-NRF2-ARE Pathway: A Contentious Player for Selective Targeting of Autophagy, Oxidative Stress and Mitochondrial Dysfunction in Prion Diseases. Frontiers in Molecular Neuroscience, 2018, 11, 310.	1.4	58
186	Mechanisms Behind Resistance to PI3K Inhibitor Treatment Induced by the PIM Kinase. Molecular Cancer Therapeutics, 2018, 17, 2710-2721.	1.9	38
187	Molecular Pathways Associated With Methylmercury-Induced Nrf2 Modulation. Frontiers in Genetics, 2018, 9, 373.	1.1	46
188	C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Scientific Reports, 2018, 8, 8037.	1.6	58
189	PML-Nuclear Bodies Regulate the Stability of the Fusion Protein Dendra2-Nrf2 in the Nucleus. Cellular Physiology and Biochemistry, 2018, 47, 800-816.	1.1	7
190	Contributions of Nrf2 to Puerarin Prevention of Cardiac Hypertrophy and its Metabolic Enzymes Expression in Rats. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 458-469.	1.3	21
191	Mkp-1 cross-talks with Nrf2/Ho-1 pathway protecting against intestinal inflammation. Free Radical Biology and Medicine, 2018, 124, 541-549.	1.3	52
192	The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiological Reviews, 2018, 98, 1169-1203.	13.1	1,067
193	Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology, 2018, 139, 124-136.	2.0	66
194	Oxidative Stress and Cancer: The Role of Nrf2. Current Cancer Drug Targets, 2018, 18, 538-557.	0.8	250
195	Oxidative Stress in Methylmercury-Induced Cell Toxicity. Toxics, 2018, 6, 47.	1.6	66
196	Dysregulation of NRF2 in Cancer: from Molecular Mechanisms to Therapeutic Opportunities. Biomolecules and Therapeutics, 2018, 26, 57-68.	1.1	67
197	Suppression of NRF2/ARE by convallatoxin sensitises A549 cells to 5-FU-mediated apoptosis. Free Radical Research, 2018, 52, 1416-1423.	1.5	21
198	Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacological Research, 2018, 134, 92-99.	3.1	252

#	Article	IF	CITATIONS
199	Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-20.	1.9	390
200	Shaping the Nrf2-ARE-related pathways in Alzheimer's and Parkinson's diseases. Ageing Research Reviews, 2019, 54, 100942.	5.0	163
201	Cerebrovascular and Neurological Disorders: Protective Role of NRF2. International Journal of Molecular Sciences, 2019, 20, 3433.	1.8	64
202	Targeting cell signaling in allergic asthma. Signal Transduction and Targeted Therapy, 2019, 4, 45.	7.1	162
203	Postâ€transcriptional regulation of Nrf2â€mRNA by the mRNAâ€binding proteins HuR and AUF1. FASEB Journal, 2019, 33, 14636-14652.	0.2	42
204	NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Letters, 2019, 466, 39-48.	3.2	37
205	Withaferin A Improves Nonalcoholic Steatohepatitis in Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 360-374.	1.3	17
206	Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. International Journal of Molecular Sciences, 2019, 20, 4659.	1.8	33
207	TFEB activates Nrf2 by repressing its E3 ubiquitin ligase DCAF11 and promoting phosphorylation of p62. Scientific Reports, 2019, 9, 14354.	1.6	26
208	Mechanisms of NRF2 activation to mediate fetal hemoglobin induction and protection against oxidative stress in sickle cell disease. Experimental Biology and Medicine, 2019, 244, 171-182.	1.1	13
209	Cell-specific regulation of Nrf2 during ROS-Dependent cell death caused by 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ). Chemico-Biological Interactions, 2019, 302, 1-10.	1.7	10
210	Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-34.	1.9	137
211	The CncC/keap1 pathway is activated in high temperature-induced metamorphosis and mediates the expression of Cyp450 genes in silkworm, Bombyx mori. Biochemical and Biophysical Research Communications, 2019, 514, 1045-1050.	1.0	19
212	The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-26.	1.9	92
213	Genome-Wide CRISPR Screen Reveals Autophagy Disruption as the Convergence Mechanism That Regulates the NRF2 Transcription Factor. Molecular and Cellular Biology, 2019, 39, .	1.1	15
214	Curcumin induces p53-independent inactivation of Nrf2 during oxidative stress–induced apoptosis. Human and Experimental Toxicology, 2019, 38, 951-961.	1.1	28
215	Critical Role of Nrf2 in Experimental Ischemic Stroke. Frontiers in Pharmacology, 2019, 10, 153.	1.6	102
216	The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxidants and Redox Signaling, 2019, 31, 643-663.	2.5	26

#	ARTICLE	IF	Citations
217	Nrf2 in cancers: A doubleâ€edged sword. Cancer Medicine, 2019, 8, 2252-2267.	1.3	289
218	NF-κB activation is a turn on for vaccinia virus phosphoprotein A49 to turn off NF-κB activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5699-5704.	3.3	26
219	DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death and Differentiation, 2019, 26, 2300-2313.	5.0	69
220	NRF2 Activation in Cancer: From DNA to Protein. Cancer Research, 2019, 79, 889-898.	0.4	140
221	Binding partners of NRF2: Functions and regulatory mechanisms. Archives of Biochemistry and Biophysics, 2019, 678, 108184.	1.4	37
222	The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. International Journal of Molecular Sciences, 2019, 20, 5800.	1.8	49
223	Nrf2 in aging – Focus on the cardiovascular system. Vascular Pharmacology, 2019, 112, 42-53.	1.0	31
224	Targeting Cancer Stem Cell Redox Metabolism to Enhance Therapy Responses. Seminars in Radiation Oncology, 2019, 29, 42-54.	1.0	57
225	NRF2 and NF-Ò·B interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biology, 2019, 21, 101059.	3.9	409
226	Targeting the cell signaling pathway Keap1-Nrf2 as a therapeutic strategy for adenocarcinomas of the lung. Expert Opinion on Therapeutic Targets, 2019, 23, 241-250.	1.5	13
227	Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nature Reviews Drug Discovery, 2019, 18, 295-317.	21.5	849
228	Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Inhibition: An Emerging Strategy in Cancer Therapy. Journal of Medicinal Chemistry, 2019, 62, 3840-3856.	2.9	32
229	Nrf2 Activation Ameliorates Hepatotoxicity Induced by a Heme Synthesis Inhibitor. Toxicological Sciences, 2019, 167, 227-238.	1.4	6
230	Therapeutic Approaches to Alzheimer's Disease Through Modulation of NRF2. NeuroMolecular Medicine, 2019, 21, 1-11.	1.8	78
231	Nrf2-related gene expression is impaired during a glucose challenge in type II diabetic rat hearts. Free Radical Biology and Medicine, 2019, 130, 306-317.	1.3	14
232	Cardioprotective effects of a Fructus Aurantii polysaccharide in isoproterenol-induced myocardial ischemic rats. International Journal of Biological Macromolecules, 2020, 155, 995-1002.	3.6	28
233	PML/RARa Interferes with NRF2 Transcriptional Activity Increasing the Sensitivity to Ascorbate of Acute Promyelocytic Leukemia Cells. Cancers, 2020, 12, 95.	1.7	10
234	Recent progress in the development of small molecule Nrf2 activators: a patent review (2017-present). Expert Opinion on Therapeutic Patents, 2020, 30, 209-225.	2.4	31

#	Article	IF	Citations
235	CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish. Chemical Research in Toxicology, 2020, 33, 426-435.	1.7	8
236	HEATR1 deficiency promotes pancreatic cancer proliferation and gemcitabine resistance by up-regulating Nrf2 signaling. Redox Biology, 2020, 29, 101390.	3.9	24
237	AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes. Redox Biology, 2020, 29, 101393.	3.9	80
238	Nrf2 in liver toxicology. Archives of Pharmacal Research, 2020, 43, 337-349.	2.7	37
239	Flavonoids targeting NRF2 in neurodegenerative disorders. Food and Chemical Toxicology, 2020, 146, 111817.	1.8	39
240	Glycogen synthase kinase- $3\hat{l}^2$: a promising candidate in the fight against fibrosis. Theranostics, 2020, 10, 11737-11753.	4.6	36
241	Neddylation: A Versatile Pathway Takes on Chronic Liver Diseases. Frontiers in Medicine, 2020, 7, 586881.	1.2	17
242	p62-Nrf2-p62 Mitophagy Regulatory Loop as a Target for Preventive Therapy of Neurodegenerative Diseases. Brain Sciences, 2020, 10, 847.	1.1	27
243	A functionally defined high-density NRF2 interactome reveals new conditional regulators of ARE transactivation. Redox Biology, 2020, 37, 101686.	3.9	10
244	The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants, 2020, 9, 1151.	2.2	74
245	An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules, 2020, 25, 5474.	1.7	573
246	The Nrf2/PGC1α Pathway Regulates Antioxidant and Proteasomal Activity to Alter Cisplatin Sensitivity in Ovarian Cancer. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	1.9	29
247	<p>Reactive Oxygen Species: Drivers of Physiological and Pathological Processes</p> . Journal of Inflammation Research, 2020, Volume 13, 1057-1073.	1.6	333
248	Clock Protein Bmal1 and Nrf2 Cooperatively Control Aging or Oxidative Response and Redox Homeostasis by Regulating Rhythmic Expression of Prdx6. Cells, 2020, 9, 1861.	1.8	48
249	Perspectives on the Clinical Development of NRF2-Targeting Drugs. Handbook of Experimental Pharmacology, 2020, 264, 93-141.	0.9	14
250	Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Molecules, 2020, 25, 4926.	1.7	52
251	Natural Nrf2 Modulators for Skin Protection. Antioxidants, 2020, 9, 812.	2.2	40
252	Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability. Antioxidants, 2020, 9, 888.	2.2	57

#	ARTICLE	IF	CITATIONS
253	BRG1 protects the heart from acute myocardial infarction by reducing oxidative damage through the activation of the NRF2/HO1 signaling pathway. Free Radical Biology and Medicine, 2020, 160, 820-836.	1.3	16
254	Role of Nrf2 and Its Activators in Cardiocerebral Vascular Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	11
255	Pathogenic Mechanisms of Myeloma Bone Disease and Possible Roles for NRF2. International Journal of Molecular Sciences, 2020, 21, 6723.	1.8	13
256	The KEAP1/NRF2 Signaling Pathway in Keratinization. Antioxidants, 2020, 9, 751.	2.2	19
257	F-Box Proteins and Cancer. Cancers, 2020, 12, 1249.	1.7	32
258	Nrf2 and oxidative stress. , 2020, , 77-86.		0
259	The role of natural products in revealing NRF2 function. Natural Product Reports, 2020, 37, 797-826.	5.2	71
260	Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. Journal of Cell Science, 2020, 133, .	1.2	17
261	NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules, 2020, 10, 904.	1.8	50
262	Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Frontiers in Pharmacology, 2020, 11, 151.	1.6	55
263	QTC-4-MeOBnE Rescues Scopolamine-Induced Memory Deficits in Mice by Targeting Oxidative Stress, Neuronal Plasticity, and Apoptosis. ACS Chemical Neuroscience, 2020, 11, 1259-1269.	1.7	11
264	A small molecule NRF2 activator BC-1901S ameliorates inflammation through DCAF1/NRF2 axis. Redox Biology, 2020, 32, 101485.	3.9	13
265	Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer's disease. Biomedicine and Pharmacotherapy, 2020, 129, 110373.	2.5	56
266	Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: Influence of metabolite accumulation and oxygenation. Redox Biology, 2020, 36, 101627.	3.9	31
267	Oxidative Stress in Cancer. Cancer Cell, 2020, 38, 167-197.	7.7	1,203
268	NRF2, a Transcription Factor for Stress Response and Beyond. International Journal of Molecular Sciences, 2020, 21, 4777.	1.8	636
269	Nrf2 in early vascular ageing: Calcification, senescence and therapy. Clinica Chimica Acta, 2020, 505, 108-118.	0.5	48
270	Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Experimental Neurology, 2020, 328, 113247.	2.0	35

#	Article	IF	CITATIONS
271	Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants, 2020, 9, 193.	2.2	94
272	Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) in autophagy-induced hepatocellular carcinoma. Clinica Chimica Acta, 2020, 506, 1-8.	0.5	9
273	lncRNA SLC7A11-AS1 Promotes Chemoresistance by Blocking SCF \hat{l}^2 -TRCP-Mediated Degradation of NRF2 in Pancreatic Cancer. Molecular Therapy - Nucleic Acids, 2020, 19, 974-985.	2.3	70
274	Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy. Future Medicinal Chemistry, 2020, 12, 243-267.	1.1	21
275	Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from $A\hat{l}^2$ -mediated oxidative and metabolic damage. Alzheimer's Research and Therapy, 2020, 12, 13.	3.0	42
276	IGF-1 Signalling Regulates Mitochondria Dynamics and Turnover through a Conserved GSK-3β–Nrf2–BNIP3 Pathway. Cells, 2020, 9, 147.	1.8	50
277	câ€Jun NH2â€Terminal Protein Kinase Phosphorylates the Nrf2â€ECH Homology 6 Domain of Nuclear Factor Erythroid 2–Related Factor 2 and Downregulates Cytoprotective Genes in Acetaminophenâ€Induced Liver Injury in Mice. Hepatology, 2020, 71, 1787-1801.	3.6	50
278	Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) in non-small cell lung cancer. Life Sciences, 2020, 254, 117325.	2.0	11
279	Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomedicine and Pharmacotherapy, 2020, 123, 109732.	2.5	76
280	Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxidants and Redox Signaling, 2020, 33, 966-997.	2.5	51
281	Flumethasone enhances the efficacy of chemotherapeutic drugs in lung cancer by inhibiting Nrf2 signaling pathway. Cancer Letters, 2020, 474, 94-105.	3.2	19
282	The Potential Role of Nrf2 Signaling in Leishmania Infection Outcomes. Frontiers in Cellular and Infection Microbiology, 2019, 9, 453.	1.8	14
283	NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis, 2020, 41, 405-416.	1.3	160
284	Kaempferol Protects Against Cerebral Ischemia Reperfusion Injury Through Intervening Oxidative and Inflammatory Stress Induced Apoptosis. Frontiers in Pharmacology, 2020, 11, 424.	1.6	68
285	The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Molecular and Cellular Biology, 2020, 40, .	1.1	620
286	Bisdemethoxycurcumin Enhances the Sensitivity of Non-small Cell Lung Cancer Cells to Icotinib via Dual Induction of Autophagy and Apoptosis. International Journal of Biological Sciences, 2020, 16, 1536-1550.	2.6	17
287	Novel target for treating Alzheimer's Diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Research Reviews, 2021, 65, 101207.	5.0	91
288	Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson's disease. Medicinal Research Reviews, 2021, 41, 785-802.	5.0	42

#	Article	IF	CITATIONS
289	UFBP1, a key component in ufmylation, enhances drug sensitivity by promoting proteasomal degradation of oxidative stress-response transcription factor Nrf2. Oncogene, 2021, 40, 647-662.	2.6	13
290	Clinical Implications of KEAP1-NFE2L2 Mutations in NSCLC. Journal of Thoracic Oncology, 2021, 16, 395-403.	0.5	33
291	NRF2 activation by reversible KEAP1 binding induces the antioxidant response in primary neurons and astrocytes of a Huntington's disease mouse model. Free Radical Biology and Medicine, 2021, 162, 243-254.	1.3	32
292	CD147 confers temozolomide resistance of glioma cells via the regulation of \hat{l}^2 -TrCP/Nrf2 pathway. International Journal of Biological Sciences, 2021, 17, 3013-3023.	2.6	14
293	Roles of CNC Transcription Factors NRF1 and NRF2 in Cancer. Cancers, 2021, 13, 541.	1.7	33
294	Targeting Nrf2 may reverse the drug resistance in ovarian cancer. Cancer Cell International, 2021, 21, 116.	1.8	25
295	OsKEAP1 Interacts with OsABI5 and Its Downregulation Increases the Transcription of OsABI5 and the ABA Response Genes in Germinating Rice Seeds. Plants, 2021, 10, 527.	1.6	3
296	Targeting macrophage polarization by Nrf2 agonists for treating various xenobiotics-induced toxic responses. Toxicology Mechanisms and Methods, 2021, 31, 334-342.	1.3	9
297	The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Archives of Pharmacal Research, 2021, 44, 263-280.	2.7	23
298	Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer. Molecules, 2021, 26, 1417.	1.7	50
299	Downregulation of XBP1 protects kidney against ischemia-reperfusion injury via suppressing HRD1-mediated NRF2 ubiquitylation. Cell Death Discovery, 2021, 7, 44.	2.0	19
300	Gastrodin protects against high glucose-induced cardiomyocyte toxicity via GSK-3β-mediated nuclear translocation of Nrf2. Human and Experimental Toxicology, 2021, 40, 1584-1597.	1.1	11
301	SUMO-Modification of Human Nrf2 at K110 and K533 Regulates Its Nucleocytoplasmic Localization, Stability and Transcriptional Activity. Cellular Physiology and Biochemistry, 2021, 55, 141-159.	1.1	21
302	The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism. International Journal of Molecular Sciences, 2021, 22, 4376.	1.8	58
303	Challenges and Limitations of Targeting the Keap1-Nrf2 Pathway for Neurotherapeutics: Bach1 De-Repression to the Rescue. Frontiers in Aging Neuroscience, 2021, 13, 673205.	1.7	22
304	Cooperation between NRF2-mediated transcription and MDIG-dependent epigenetic modifications in arsenic-induced carcinogenesis and cancer stem cells. Seminars in Cancer Biology, 2021, 76, 310-318.	4.3	10
305	Ferroptosis: Biochemistry and Biology in Cancers. Frontiers in Oncology, 2021, 11, 579286.	1.3	39
306	A Crosstalk between the Biorhythms and Gatekeepers of Longevity: Dual Role of Glycogen Synthase Kinase-3. Biochemistry (Moscow), 2021, 86, 433-448.	0.7	15

#	Article	IF	CITATIONS
307	Curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at Ser351. Scientific Reports, 2021, 11, 8430.	1.6	25
308	ĐĐµĐ³ÑƒĐ»ÑÑ†Đ¸Ñ•Đ±ĐµĐ»Đ°Đ¾Đ² Ñ†Đ¸Ñ€Đ°Đ°ĐƊ½Ñ‹Ñ Ñ€Đ¸Ñ,Đ¼Đ¾Đ² и Nrf2-Đ¾Đ¿Đ¾ÑÑ€ĐµĐƊ³	/4Ð @Ð %Ð1/2	:Đ1∕ 0 Đ3⁄4Đ1 Đ
309	The intricacies of NRF2 regulation in cancer. Seminars in Cancer Biology, 2021, 76, 110-119.	4.3	50
310	Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications. Free Radical Biology and Medicine, 2021, 168, 129-141.	1.3	74
311	Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacological Research, 2021, 167, 105575.	3.1	84
312	Role of Oxidative Stress and Nrf2/KEAP1 Signaling in Colorectal Cancer: Mechanisms and Therapeutic Perspectives with Phytochemicals. Antioxidants, 2021, 10, 743.	2.2	36
313	An Overview of the Posttranslational Modifications and Related Molecular Mechanisms in Diabetic Nephropathy. Frontiers in Cell and Developmental Biology, 2021, 9, 630401.	1.8	9
314	Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes. Cell Biology and Toxicology, 2022, 38, 847-864.	2.4	8
315	Nrf2 in Cancer, Detoxifying Enzymes and Cell Death Programs. Antioxidants, 2021, 10, 1030.	2.2	22
316	Redox regulation of the insulin signalling pathway. Redox Biology, 2021, 42, 101964.	3.9	41
317	Targeting NRF2 to treat cancer. Seminars in Cancer Biology, 2021, 76, 61-73.	4.3	32
318	Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 2021, 20, 689-709.	21.5	975
319	Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxidants and Redox Signaling, 2021, 34, 1428-1483.	2.5	13
320	Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants, 2021, 10, 1069.	2.2	53
321	Nutrition Strategy and Life Style in Polycystic Ovary Syndromeâ€"Narrative Review. Nutrients, 2021, 13, 2452.	1.7	58
322	Role of NRF2 in Lung Cancer. Cells, 2021, 10, 1879.	1.8	35
323	Nrf2, the Major Regulator of the Cellular Oxidative Stress Response, is Partially Disordered. International Journal of Molecular Sciences, 2021, 22, 7434.	1.8	19
324	ITLN1 inhibits tumor neovascularization and myeloid derived suppressor cells accumulation in colorectal carcinoma. Oncogene, 2021, 40, 5925-5937.	2.6	14

#	Article	IF	CITATIONS
325	The Interplay Between Mitochondrial Reactive Oxygen Species, Endoplasmic Reticulum Stress, and Nrf2 Signaling in Cardiometabolic Health. Antioxidants and Redox Signaling, 2021, 35, 252-269.	2.5	19
326	The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling. Cell Reports, 2021, 36, 109466.	2.9	16
328	Sevoflurane preconditioning protects experimental ischemic stroke by enhancing antiâ€inflammatory microglia/macrophages phenotype polarization through GSKâ€3β/Nrf2 pathway. CNS Neuroscience and Therapeutics, 2021, 27, 1348-1365.	1.9	31
329	Akt $/$ GSK3 \hat{I}^2 $/$ Nrf2 $/$ HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity. Neuropharmacology, 2021, 196, 108654.	2.0	16
330	Nrf2 for cardiac protection: pharmacological options against oxidative stress. Trends in Pharmacological Sciences, 2021, 42, 729-744.	4.0	64
331	Targeting NRF2 and Its Downstream Processes: Opportunities and Challenges. Annual Review of Pharmacology and Toxicology, 2022, 62, 279-300.	4.2	74
332	Nrf2 and Heme Oxygenase-1 Involvement in Atherosclerosis Related Oxidative Stress. Antioxidants, 2021, 10, 1463.	2.2	50
333	An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 9592.	1.8	62
334	Fucoxanthin alleviates methamphetamine-induced neurotoxicity possibly via the inhibition of interaction between Keap1 and Nrf2. Journal of Functional Foods, 2021, 86, 104713.	1.6	9
335	Mathematical modeling reveals quantitative properties of KEAP1-NRF2 signaling. Redox Biology, 2021, 47, 102139.	3.9	12
336	The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. Advances in Pharmacology, 2021, 91, 61-110.	1.2	6
337	Glycocalyx sialic acids regulate Nrf2-mediated signaling by fluid shear stress in human endothelial cells. Redox Biology, 2021, 38, 101816.	3.9	38
338	Keap1-Nrf2 Regulatory System and Cancer. , 2015, , 269-285.		1
339	Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biology, 2020, 36, 101664.	3.9	24
340	GSK-3 \hat{l}^2 , a double-edged sword in Nrf2 regulation: Implications for neurological dysfunction and disease. F1000Research, 2018, 7, 1043.	0.8	45
341	Reduced EGFR Level in eIF2α PhosphorylationDeficient Hepatocytes Is Responsible for Susceptibility to Oxidative Stress. Molecules and Cells, 2020, 43, 264-275.	1.0	7
342	A novel mechanism of action of HER2 targeted immunotherapy is explained by inhibition of NRF2 function in ovarian cancer cells. Oncotarget, 2016, 7, 75874-75901.	0.8	27
343	Protective Role of Nrf2 in Renal Disease. Antioxidants, 2021, 10, 39.	2.2	46

#	Article	IF	CITATIONS
344	The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules, 2020, 10, 791.	1.8	55
345	Interplay between Nrf2 and NF-κB in Neuroinflammatory Diseases. Journal of Clinical & Cellular Immunology, 2017, 08, .	1.5	10
346	Role of Akt signaling in resistance to DNA-targeted therapy. World Journal of Clinical Oncology, 2016, 7, 352.	0.9	48
347	Nrf2-Keap1 Activation, A Promising Strategy in the Prevention of Cancer. Free Radicals and Antioxidants, 2016, 7, 01-07.	0.2	5
348	Comprehensive Analysis of VEGFR2 Expression in HPV-Positive and -Negative OPSCC Reveals Differing VEGFR2 Expression Patterns. Cancers, 2021, 13, 5221.	1.7	4
349	Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy. Molecular Neurodegeneration, 2021, 16, 71.	4.4	27
354	Regulation of Antioxidant Nrf2 Signaling: An Important Pathway in COPD., 2020, , 161-175.		0
355	EMERGING ROLE OF NRF2 AS A POTENTIAL THERAPEUTIC TARGET FOR CARDIOVASCULAR DISEASES. , 2020, , $1\text{-}9$.		0
356	AGE-Rich Bread Crust Extract Boosts Oxidative Stress Interception via Stimulation of the NRF2 Pathway. Nutrients, 2021, 13, 3874.	1.7	4
357	Nrf2 in Immune Responses During Inflammation. Agents and Actions Supplements, 2020, , 23-49.	0.2	0
358	Nrf2 in the Regulation of Endothelial Cell Homeostasis During Inflammation. Agents and Actions Supplements, 2020, , 77-96.	0.2	0
359	Role of Nrf2 in Oxidative and Inflammatory Processes in Obesity and Metabolic Diseases. Agents and Actions Supplements, 2020, , 153-187.	0.2	1
360	The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia–Reperfusion Injury. International Journal of Molecular Sciences, 2021, 22, 11939.	1.8	30
361	Cyclometalated Ru(II)-isoquinoline complexes overcome cisplatin resistance of A549/DDP cells by downregulation of Nrf2 via Akt/GSK- $3\hat{l}^2$ /Fyn pathway. Bioorganic Chemistry, 2022, 119, 105516.	2.0	8
362	Curcumin prevents As 3+-induced carcinogenesis through regulation of GSK3 \hat{l}^2 /Nrf2. Chinese Medicine, 2021, 16, 116.	1.6	10
363	Nuclear Factor Erythroid-2-Related Factor 2 Signaling in the Neuropathophysiology of Inherited Metabolic Disorders. Frontiers in Cellular Neuroscience, 2021, 15, 785057.	1.8	19
364	Posttranscriptional regulation of Nrf2 through miRNAs and their role in Alzheimer's disease. Pharmacological Research, 2022, 175, 106018.	3.1	14
365	The Effects of Ginsenosides on the Nrf2 Signaling Pathway. Advances in Experimental Medicine and Biology, 2021, 1328, 307-322.	0.8	3

#	Article	IF	CITATIONS
366	Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radical Biology and Medicine, 2022, 179, 133-143.	1.3	70
367	Inhibition of GCN2 alleviates hepatic steatosis and oxidative stress in obese mice: Involvement of NRF2 regulation. Redox Biology, 2022, 49, 102224.	3.9	18
368	A novel yeast model detects Nrf2 and Keap1 interactions with Hsp90. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	5
369	NRF2: KEAPing Tumors Protected. Cancer Discovery, 2022, 12, 625-643.	7.7	60
370	A Perspective on Nrf2 Signaling Pathway for Neuroinflammation: A Potential Therapeutic Target in Alzheimer's and Parkinson's Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 787258.	1.8	62
371	Role of CD133/NRF2 Axis in the Development of Colon Cancer Stem Cell-Like Properties. Frontiers in Oncology, 2021, 11, 808300.	1.3	16
372	Oxidative Stress-Induced Misfolding and Inclusion Formation of Nrf2 and Keap1. Antioxidants, 2022, 11, 243.	2,2	2
373	Nrf2 signaling pathway in trace metal carcinogenesis: A cross-talk between oxidative stress and angiogenesis. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 254, 109266.	1.3	6
374	A Novel Compound, Tanshinol Borneol Ester, Ameliorates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Oxidative Stress via the mTOR/β-TrCP/NRF2 Pathway. Frontiers in Pharmacology, 2022, 13, 830763.	1.6	3
375	Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Frontiers in Cell and Developmental Biology, 2021, 9, 809952.	1.8	58
376	The Nrf2 Pathway in Liver Diseases. Frontiers in Cell and Developmental Biology, 2022, 10, 826204.	1.8	51
378	Influence of endoplasmic reticulum stress and unfolded protein response in the onset and progression of hepatocellular carcinoma. , 2022, , 219-242.		0
379	Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response. Molecules, 2022, 27, 1468.	1.7	14
380	Dietary Phytochemicals Targeting Nrf2 to Enhance the Radiosensitivity of Cancer. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	6
381	Recent Advances in Understanding Nrf2 Agonism and Its Potential Clinical Application to Metabolic and Inflammatory Diseases. International Journal of Molecular Sciences, 2022, 23, 2846.	1.8	32
382	Targeting NLRP3 Inflammasome With Nrf2 Inducers in Central Nervous System Disorders. Frontiers in Immunology, 2022, 13, 865772.	2.2	26
383	Genetic Variations on Redox Control in Cardiometabolic Diseases: The Role of Nrf2. Antioxidants, 2022, 11, 507.	2.2	9
384	The TIAR-mediated Nrf2 response to oxidative stress is mediated through the Nrf2 noncoding 3'untranslated region in Spodoptera litura. Free Radical Biology and Medicine, 2022, 184, 17-29.	1.3	2

#	ARTICLE	IF	CITATIONS
385	The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules, 2021, 26, 7658.	1.7	18
386	Role of Nrf2 in Pancreatic Cancer. Antioxidants, 2022, 11, 98.	2.2	14
387	Sulforaphane alleviates hypoxic vestibular vertigo (HVV) by increasing NO production via upregulating the expression of NRF2. Bioengineered, 2022, 13, 10351-10361.	1.4	1
391	Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Frontiers in Pharmacology, 2022, 13, 720076.	1.6	27
392	Cardiac NF-κB Acetylation Increases While Nrf2-Related Gene Expression and Mitochondrial Activity Are Impaired during the Progression of Diabetes in UCD-T2DM Rats. Antioxidants, 2022, 11, 927.	2.2	4
393	A Pivotal Role of Nrf2 in Neurodegenerative Disorders: A New Way for Therapeutic Strategies. Pharmaceuticals, 2022, 15, 692.	1.7	15
394	Nrf2 Activation in Chronic Kidney Disease: Promises and Pitfalls. Antioxidants, 2022, 11, 1112.	2.2	16
395	Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress. Frontiers in Pharmacology, 0, 13, .	1.6	11
396	Nrf2 protects against radiation-induced oral mucositis via antioxidation and keratin layer thickening. Free Radical Biology and Medicine, 2022, 188, 206-220.	1.3	9
397	Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants, 2022, 11, 1128.	2.2	41
398	Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radical Biology and Medicine, 2022, 188, 221-261.	1.3	24
399	Recent Advances in the Role of Nuclear Factor Erythroid-2-Related Factor 2 in Spinal Cord Injury: Regulatory Mechanisms and Therapeutic Options. Frontiers in Aging Neuroscience, 0, 14, .	1.7	5
400	The $\langle i \rangle \hat{l}^2 \langle i \rangle$ -TrCP-Mediated Pathway Cooperates with the Keap1-Mediated Pathway in Nrf2 Degradation $\langle i \rangle$ In Vivo $\langle i \rangle$. Molecular and Cellular Biology, 2022, 42, .	1.1	13
401	The Nuclear Translocation of Heme Oxygenase-1 in Human Diseases. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	9
402	An inhibitor of interaction between the transcription factor NRF2 and the E3 ubiquitin ligase adapter \hat{l}^2 -TrCP delivers anti-inflammatory responses in mouse liver. Redox Biology, 2022, 55, 102396.	3.9	8
403	The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell International, 2022, 22, .	1.8	13
404	NRF2 and Mitochondrial Function in Cancer and Cancer Stem Cells. Cells, 2022, 11, 2401.	1.8	27
405	AMPK and NRF2: Interactive players in the same team for cellular homeostasis?. Free Radical Biology and Medicine, 2022, 190, 75-93.	1.3	30

#	Article	IF	CITATIONS
406	Novel cudraisoflavone J derivatives as potent neuroprotective agents for the treatment of Parkinson's disease via the activation of Nrf2/HO-1 signaling. European Journal of Medicinal Chemistry, 2022, 242, 114692.	2.6	1
407	Fibroblast growth factor 7 alleviates myocardial infarction by improving oxidative stress via PI3Kα/AKT-mediated regulation of Nrf2 and HXK2. Redox Biology, 2022, 56, 102468.	3.9	9
408	Targeting Oxidative Stress Specific NRF2 in Pancreatic Cancer Stem Cells., 2022,, 2021-2041.		0
409	The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants, 2022, 11, 1685.	2.2	12
410	NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression. Frontiers in Physiology, $0,13,13$	1.3	6
411	Exploring the role of Nrf2 signaling in glioblastoma multiforme. Discover Oncology, 2022, 13, .	0.8	14
412	Nrf2 Pathway and Autophagy Crosstalk: New Insights into Therapeutic Strategies for Ischemic Cerebral Vascular Diseases. Antioxidants, 2022, 11, 1747.	2.2	8
413	KEAP1â€NRF2 protein–protein interaction inhibitors: Design, pharmacological properties and therapeutic potential. Medicinal Research Reviews, 2023, 43, 237-287.	5.0	46
414	The KEAP1-NRF2 System and Esophageal Cancer. Cancers, 2022, 14, 4702.	1.7	11
415	Nrf2-Mediated Dichotomy in the Vascular System: Mechanistic and Therapeutic Perspective. Cells, 2022, 11, 3042.	1.8	6
416	Reactive Oxygen Species and Long Non-Coding RNAs, an Unexpected Crossroad in Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 10133.	1.8	4
417	Understanding the Role of NRF2 Signalling in Cancer. Current Protein and Peptide Science, 2022, 23, 672-683.	0.7	2
418	Significance of NRF2 in physiological and pathological conditions an comprehensive review. Archives of Biochemistry and Biophysics, 2022, 730, 109417.	1.4	15
419	The current status and future prospects for therapeutic targeting of KEAP1-NRF2 and \hat{l}^2 -TrCP-NRF2 interactions in cancer chemoresistance. Free Radical Biology and Medicine, 2022, 192, 246-260.	1.3	13
420	4-Octyl itaconate regulates immune balance by activating Nrf2 and negatively regulating PD-L1 in a mouse model of sepsis. International Journal of Biological Sciences, 2022, 18, 6189-6209.	2.6	11
421	<scp>NRF2</scp> , a crucial modulator of skin cells protection against vitiligo, psoriasis, and cancer. BioFactors, 2023, 49, 228-250.	2.6	6
422	Activation of Nrf2 to Optimise Immune Responses to Intracerebral Haemorrhage. Biomolecules, 2022, 12, 1438.	1.8	5
423	The RSL3 Induction of KLK Lung Adenocarcinoma Cell Ferroptosis by Inhibition of USP11 Activity and the NRF2-GSH Axis. Cancers, 2022, 14, 5233.	1.7	5

#	Article	IF	Citations
424	Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases. Ageing Research Reviews, 2022, 82, 101756.	5.0	32
425	Nrf2: An all-rounder in depression. Redox Biology, 2022, 58, 102522.	3.9	24
426	Active Nrf2 signaling flexibly regulates HO-1 and NQO-1 in hypoxic Gansu Zokor (Eospalax cansus). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2023, 264, 110811.	0.7	1
427	Maternal Calorie Restriction Induces a Transcriptional Cytoprotective Response in Embryonic Liver Partially Dependent on Nrf2. Antioxidants, 2022, 11, 2274.	2.2	2
428	NRF2 and Diabetes: The Good, the Bad, and the Complex. Diabetes, 2022, 71, 2463-2476.	0.3	12
429	The role of Nrf2 in periodontal disease by regulating lipid peroxidation, inflammation and apoptosis. Frontiers in Endocrinology, 0, 13 , .	1.5	7
430	Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants, 2022, 11, 2345.	2,2	77
431	Induction of Cardiac Pathology: Endogenous versus Exogenous Nrf2 Upregulation. Cells, 2022, 11, 3855.	1.8	1
432	Loss of pleckstrin homology domain and leucine-rich repeat protein phosphatase 2 has protective effects on high glucose-injured retinal ganglion cells via the effect on the Akt–GSK–3β–Nrf2 pathway. Inflammation Research, 2023, 72, 373-385.	1.6	2
433	Nuclear factor erythroid 2-related factor 2-mediated signaling and metabolic associated fatty liver disease. World Journal of Gastroenterology, 0, 28, 6909-6921.	1.4	18
434	Nrf2 Activation: Involvement in Central Nervous System Traumatic Injuries. A Promising Therapeutic Target of Natural Compounds. International Journal of Molecular Sciences, 2023, 24, 199.	1.8	10
435	Hydralazine Revives Cellular and Ocular Lens Health-Span by Ameliorating the Aging and Oxidative-Dependent Loss of the Nrf2-Activated Cellular Stress Response. Antioxidants, 2023, 12, 140.	2.2	2
436	Reciprocal REGÎ ³ -Nrf2 Regulation Promotes Long Period ROS Scavenging in Oxidative Stress-Induced Cell Aging. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-12.	1.9	0
437	Protein Kinase B (PKB/AKT) Protects IDH-Mutated Glioma from Ferroptosis via Nrf2. Clinical Cancer Research, 2023, 29, 1305-1316.	3.2	4
438	Does Nrf2 Play a Role of a Master Regulator of Mammalian Aging?. Biochemistry (Moscow), 2022, 87, 1465-1476.	0.7	3
439	The KEAP1-NRF2 system and neurodegenerative diseases. Antioxidants and Redox Signaling, 0, , .	2.5	3
440	Beneficial Effects of Sulforaphane on Diabetes and Its Complications via Both Nrf2-Dependent and Independent Mechanisms. Food Supplements and Biomaterials for Health, 2023, 3, .	0.3	2
441	Nrf2 signaling in diabetic nephropathy, cardiomyopathy and neuropathy: Therapeutic targeting, challenges and future prospective. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166714.	1.8	7

#	ARTICLE	IF	CITATIONS
442	The Complex Genetic and Epigenetic Regulation of the Nrf2 Pathways: A Review. Antioxidants, 2023, 12, 366.	2.2	8
443	Reactive Oxygen Species and NRF2 Signaling, Friends or Foes in Cancer?. Biomolecules, 2023, 13, 353.	1.8	18
444	An updated patent review of Nrf2 activators (2020-present). Expert Opinion on Therapeutic Patents, 2023, 33, 29-49.	2.4	7
445	Keap1-Nrf2 Heterodimer: A Therapeutic Target to Ameliorate Sickle Cell Disease. Antioxidants, 2023, 12, 740.	2.2	4
446	The KEAP1-NRF2 System and Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2023, 38, 974-988.	2.5	17
447	Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment. Molecules and Cells, 2023, 46, 142-152.	1.0	5
448	Sex differences in antioxidant defence and the regulation of redox homeostasis in physiology and pathology. Mechanisms of Ageing and Development, 2023, 211, 111802.	2.2	9
449	Nrf2 Activation Does Not Protect from Aldosterone-Induced Kidney Damage in Mice. Antioxidants, 2023, 12, 777.	2.2	1
450	The Nrf2 Pathway in Depressive Disorders: A Systematic Review of Animal and Human Studies. Antioxidants, 2023, 12, 817.	2.2	5
451	Antioxidants attenuate mitochondrial oxidative damage through the Nrf2 pathway: A promising therapeutic strategy for stroke. Journal of Neuroscience Research, 2023, 101, 1275-1288.	1.3	2
452	Mitigation of Cardiovascular Disease and Toxicity through NRF2 Signalling. International Journal of Molecular Sciences, 2023, 24, 6723.	1.8	3
453	Activation of Nrf2 pathway as a protective mechanism against oxidative stress-induced diseases: Potential of astaxanthin. Archives of Biochemistry and Biophysics, 2023, 741, 109601.	1.4	8
467	The mechanistic insights of the antioxidant Keap 1-Nrf2 pathway in oncogenesis: a deadly scenario. , 2023, 40, .		1
469	Regulation of NRF2 signaling pathway and the hallmarks of aging: An overview., 2023,, 29-41.		1
489	Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Archives of Toxicology, 2024, 98, 579-615.	1.9	1