Tutorial on logistic-regression calibration and fusion:co ratio

Australian Journal of Forensic Sciences 45, 173-197 DOI: 10.1080/00450618.2012.733025

Citation Report

#	ARTICLE	IF	CITATIONS
1	Testing the validity and reliability of forensic voice comparison based on reassigned time-frequency representations of Chinese /iau/. , 2013, , .		0
2	Experiments on using vocal tract estimates of nasal stops for speaker verification. , 2013, , .		0
3	A comparison of single-stage and two-stage modelling approaches for automatic forensic speaker recognition. , 2013, , .		2
4	Effects of telephone transmission on the performance of formant-trajectory-based forensic voice comparison – Female voices. Speech Communication, 2013, 55, 796-813.	1.6	19
5	Reliability of human-supervised formant-trajectory measurement for forensic voice comparison. Journal of the Acoustical Society of America, 2013, 133, EL54-EL60.	0.5	16
6	Forensic Speech Science. , 0, , .		3
7	A Comparative Study of Likelihood Ratio Based Forensic Text Comparison Procedures: Multivariate Kernel Density with Lexical Features vs. Word N-grams vs. Character N-grams. , 2014, , .		2
8	A fused forensic text comparison system using lexical features, word and character N-grams. , 2014, , .		0
9	Forensic strength of evidence statements should preferably be likelihood ratios calculated using relevant data, quantitative measurements, and statistical models – a response to Lennard (2013) Fingerprint identification: how far have we come?. Australian Journal of Forensic Sciences, 2014, 46, 282-292.	0.7	15
10	Application of automatic speaker verification techniques for forensic evidence evaluation. , 2014, , .		2
11	Biometric evidence evaluation: an empirical assessment of the effect of different training data. IET Biometrics, 2014, 3, 335-346.	1.6	7
12	Distinguishing between forensic science and forensic pseudoscience: Testing of validity and reliability, and approaches to forensic voice comparison. Science and Justice - Journal of the Forensic Science Society, 2014, 54, 245-256.	1.3	30
13	Issues and opportunities: The application of the numerical likelihood ratio framework to forensic speaker comparison. Science and Justice - Journal of the Forensic Science Society, 2014, 54, 292-299.	1.3	8
14	An investigation of supervector regression for forensic voice comparison on small data. Eurasip Journal on Audio, Speech, and Music Processing, 2015, 2015, .	1.3	0
15	The relevant population in forensic voice comparison: Effects of varying delimitations of social class and age. Speech Communication, 2015, 66, 218-230.	1.6	17
16	Sampling variability in forensic likelihood-ratio computation: A simulation study. Science and Justice - Journal of the Forensic Science Society, 2015, 55, 499-508.	1.3	13
17	Mismatched distances from speakers to telephone in a forensic-voice-comparison case. Speech Communication, 2015, 70, 28-41.	1.6	8
18	Speaker Recognition by Machines and Humans: A tutorial review. IEEE Signal Processing Magazine, 2015, 32, 74-99.	4.6	420

CITATION REPORT ARTICLE IF CITATIONS Fixed FAR correction factor of score level fusion., 2016,,. 2 On the reproducibility and repeatability of likelihood ratio in forensics: A case study using face biometrics., 2016,,. Use of relevant data, quantitative measurements, and statistical models to calculate a likelihood ratio for a Chinese forensic voice comparison case involving two sisters. Forensic Science 1.3 4 International, 2016, 267, 115-124. Refining the relevant population in forensic voice comparison $\hat{a} \in A$ response to Hicks et alii (2015) The importance of distinguishing information from evidence/observations when formulating propositions. Science and Justice - Journal of the Forensic Science Society, 2016, 56, 492-497. Two-step calibration method for multi-algorithm score-based face recognition systems by minimizing 2 discrimination loss., 2016,,. A demonstration of the application of the new paradigm for the evaluation of forensic evidence under conditions reflecting those of a real forensic-voice-comparison case. Science and Justice -1.3 24 Journal of the Forensic Science Society, 2016, 56, 42-57. Performance Study of a Scoreâ€based Likelihood Ratio System for Forensic Fingermark Comparison. 0.9 34 Journal of Forensic Sciences, 2017, 62, 626-640. Empirical test of the performance of an acoustic-phonetic approach to forensic voice comparison 1.3 under conditions similar to those of a real case. Forensic Science International, 2017, 277, 30-40. Evaluation of MSR Identity Toolbox under conditions reflecting those of a real forensic case () Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 422 Strength of linguistic text evidence: A fused forensic text comparison system. Forensic Science 1.3 International, 2017, 278, 184-197. Sample size and the multivariate kernel density likelihood ratio: How many speakers are enough?. 1.6 6 Speech Communication, 2017, 94, 15-29. Repeatability and reproducibility of forensic likelihood ratio methods when sample size ratio varies., 2017,,.

31	Machine Learning Based Fitness Tracker Platform Using MEMS Accelerometer. , 2017, , .		7
32	Model-effects on likelihood ratios for fire debris analysis. Forensic Chemistry, 2018, 7, 38-46.	1.7	14
33	Avoiding overstating the strength of forensic evidence: Shrunk likelihood ratios/Bayes factors. Science and Justice - Journal of the Forensic Science Society, 2018, 58, 200-218.	1.3	25
34	The impact in forensic voice comparison of lack of calibration and of mismatched conditions between the known-speaker recording and the relevant-population sample recordings. Forensic Science International, 2018, 283, e1-e7.	1.3	15
35	A response to Marquis et al. (2017) What is the error margin of your signature analysis?. Forensic Science International, 2018, 287, e11-e12.	1.3	6
36	Sensitivity of likelihood-ratio based forensic voice comparison under mismatched conditions of within-speaker sample sizes across databases. Australian Journal of Forensic Sciences, 2018, 50, 307-322.	0.7	0

19

21

23

25

27

#	Article	IF	CITATIONS
37	Score based procedures for the calculation of forensic likelihood ratios – Scores should take account of both similarity and typicality. Science and Justice - Journal of the Forensic Science Society, 2018, 58, 47-58.	1.3	36
38	9. Forensic voice comparison. , 2018, , 219-255.		2
39	Re-ranking spoken term detection with acoustic exemplars of keywords. Speech Communication, 2018, 104, 12-23.	1.6	5
40	Deconstructing Cross-Entropy for Probabilistic Binary Classifiers. Entropy, 2018, 20, 208.	1.1	60
41	A statistical procedure to adjust for time-interval mismatch in forensic voice comparison. Speech Communication, 2019, 112, 15-21.	1.6	3
42	Toward Robust Audio Spoofing Detection: A Detailed Comparison of Traditional and Learned Features. IEEE Access, 2019, 7, 84229-84241.	2.6	42
43	Evaluation of Phonexia automatic speaker recognition software under conditions reflecting those of a real forensic voice comparison case (forensic_eval_01). Speech Communication, 2019, 111, 22-28.	1.6	10
44	Formant dynamics of Spanish vocalic sequences in related speakers: A forensic-voice-comparison investigation. Journal of Phonetics, 2019, 75, 1-26.	0.6	7
45	Semiparametric likelihoodâ€ratioâ€based biometric scoreâ€level fusion via parametric copula. IET Biometrics, 2019, 8, 277-283.	1.6	2
46	Automated face recognition in forensic science: Review and perspectives. Forensic Science International, 2020, 307, 110124.	1.3	36
47	Evaluation of Forensic Data Using Logistic Regression-Based Classification Methods and an R Shiny Implementation. Frontiers in Chemistry, 2020, 8, 738.	1.8	4
48	Spatial-Temporal Omni-Scale Feature Learning for Person Re-Identification. , 2020, , .		3
49	Consensus on validation of forensic voice comparison. Science and Justice - Journal of the Forensic Science Society, 2021, 61, 299-309.	1.3	37
50	Calculating LRs for presence of body fluids from mRNA assay data in mixtures. Forensic Science International: Genetics, 2021, 52, 102455.	1.6	11
51	Evaluation of distanceâ€based approaches for forensic comparison: Application to hand odor evidence. Journal of Forensic Sciences, 2021, 66, 2208-2217.	0.9	1
52	Testing for Calibration Discrepancy of Reported Likelihood Ratios in Forensic Science. Journal of the Royal Statistical Society Series A: Statistics in Society, 2022, 185, 267-301.	0.6	3
53	Calculation of likelihood ratios for inference of biological sex from human skeletal remains. Forensic Science International (Online), 2021, 3, 100202.	0.6	2
54	Score-based likelihood ratios for linguistic text evidence with a bag-of-words model. Forensic Science International, 2021, 327, 110980.	1.3	8

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
55	Improving calibration of forensic glass comparisons by considering uncertainty in feature-based elemental data. Chemometrics and Intelligent Laboratory Systems, 2021, 217, 104399.	1.8	11
56	In the context of forensic casework, are there meaningful metrics of the degree of calibration?. Forensic Science International (Online), 2021, 3, 100157.	0.6	3
57	Vowel Inherent Spectral Change in Forensic Voice Comparison. , 2013, , 263-282.		6
58	A likelihood ratio-based evaluation of strength of authorship attribution evidence in SMS messages using N-grams. International Journal of Speech, Language and the Law, 2014, 21, 23-50.	0.2	13
59	Strength of forensic voice comparison evidence from the acoustics of filled pauses. International Journal of Speech, Language and the Law, 2016, 23, 99-132.	0.2	17
60	A Likelihood Ratio-Based Forensic Text Comparison in SMS Messages. Advances in Information Security, Privacy, and Ethics Book Series, 2014, , 208-224.	0.4	Ο
61	Proposta de Construção de um Banco de Dados de Amostras de Fala para Uso Forense em um Arcabouço Bayesiano. Revista Brasileira De CriminalÃstica, 2016, 5, 35-45.	0.1	1
62	Friction Ridge Identification Process. International Forensic Science and Investigation Series, 2016, , 33-126.	0.0	Ο
63	Likelihood Ratio Calculation in Acoustic-Phonetic Forensic Voice Comparison: Comparison of Three Statistical Modelling Approaches. , 0, , .		0
64	Null-Hypothesis LLR: A Proposal for Forensic Automatic Speaker Recognition. , 0, , .		1
65	The effect of sampling variability on systems and individual speakers in likelihood ratio-based forensic voice comparison. Speech Communication, 2022, 138, 38-49.	1.6	5
66	From facial images of different quality to score based LR. Forensic Science International, 2022, 332, 111201.	1.3	5
67	Likelihood ratio estimation for authorship text evidence: An empirical comparison of score- and feature-based methods. Forensic Science International, 2022, 334, 111268.	1.3	6
68	Forensic comparison of fired cartridge cases: Feature-extraction methods for feature-based calculation of likelihood ratios. Forensic Science International (Online), 2022, 5, 100272.	0.6	4
70	A segmentally informed solution to automatic accent classification and its advantages to forensic applications. International Journal of Speech, Language and the Law, 2022, 28, .	0.2	0
71	Sub-band cepstral distance as an alternative to formants: Quantitative evidence from a forensic comparison experiment. Journal of Phonetics, 2022, 94, 101177.	0.6	Ο
72	Forensic Voice Comparison: Human-Supervised-Automatic Approach. , 2023, , 720-736.		1
73	Forensic Voice Comparison: Overview. , 2023, , 737-750.		1

#	Article	IF	CITATIONS
74	The effect of sampling variability on overall performance and individual speakers' behaviour in likelihood ratio-based forensic voice comparison. International Journal of Speech, Language and the Law, 0, , .	0.2	1
75	A response to Busey & Klutzke (2022): Regarding subjective assignment of likelihood ratios. Science and Justice - Journal of the Forensic Science Society, 2023, 63, 61-62.	1.3	0
76	Likelihood ratios for categorical count data with applications in digital forensics. Law, Probability and Risk, 2023, 21, 91-122.	1.2	0
77	Assessing significant factors that can influence physical fit examinations – Part I. Physical fits of torn and cut duct tapes. Forensic Science International, 2023, 343, 111567.	1.3	3
78	Weight of authorship evidence with multiple categories of stylometric features: A multinomial-based discrete model. Science and Justice - Journal of the Forensic Science Society, 2023, 63, 181-199.	1.3	1
79	Speaker-specificity in speech production: The contribution of source and filter. Journal of Phonetics, 2023, 97, 101224.	0.6	0
80	Promoting transparency in forensic science by integrating categorical and evaluative reporting through decision theory. Frontiers in Analytical Science, 0, 3, .	1.1	0
81	Ink source prediction and assessment based on direct analysis in realâ€ŧime mass spectrometry via the likelihood ratio. Journal of Chemometrics, 2023, 37, .	0.7	1
88	A Model-Agnostic Feature Selection Technique to Improve the Performance of One-Class Classifiers. , 2023, , .		1