Concatenation versus coalescence versus "concatale

Proceedings of the National Academy of Sciences of the Unite 110, E1179

DOI: 10.1073/pnas.1221121110

Citation Report

#	Article	IF	CITATIONS
1	Phylogenetics: Bats United, Microbats Divided. Current Biology, 2013, 23, R999-R1001.	1.8	19
2	Reply to Gatesy and Springer: The multispecies coalescent model can effectively handle recombination and gene tree heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1180.	3.3	26
3	Phylogenetic relationships and character evolution in <i>Heuchera</i> (Saxifragaceae) on the basis of multiple nuclear loci. American Journal of Botany, 2014, 101, 1532-1550.	0.8	28
4	Land plant origins and coalescence confusion. Trends in Plant Science, 2014, 19, 267-269.	4.3	61
5	Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Molecular Phylogenetics and Evolution, 2014, 80, 231-266.	1.2	286
6	An Introduction to Supertree Construction (and Partitioned Phylogenetic Analyses) with a View Toward the Distinction Between Gene Trees and Species Trees. , 2014, , 49-76.		10
7	A multilocus phylogeny reveals deep lineages within African galagids (Primates: Galagidae). BMC Evolutionary Biology, 2014, 14, 72.	3.2	80
8	Dubious resolution and support from published sparse supermatrices: The importance of thorough tree searches. Molecular Phylogenetics and Evolution, 2014, 78, 334-348.	1.2	26
9	Phylogenomic species tree estimation in the presence of incomplete lineage sorting and horizontal gene transfer. BMC Genomics, 2015, 16, S1.	1.2	57
10	The BPP program for species tree estimation and species delimitation. Environmental Epigenetics, 2015, 61, 854-865.	0.9	568
11	Estimating phylogenetic trees from genomeâ€scale data. Annals of the New York Academy of Sciences, 2015, 1360, 36-53.	1.8	165
12	Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theoretical Population Biology, 2015, 100, 56-62.	0.5	218
13	Disentangling the complex evolutionary history of the Western Palearctic blue tits (<i>Cyanistes</i>) Tj ETQq0 0 isolation. Molecular Ecology, 2015, 24, 2477-2494.	0 rgBT /0 2.0	verlock 10 Tf 39
14	Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased. Molecular Phylogenetics and Evolution, 2015, 92, 63-71.	1.2	104
15	Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies. Systematic Biology, 2015, 64, 505-524.	2.7	204
16	Convergence of multiple markers and analysis methods defines the genetic distinctiveness of cryptic pitvipers. Molecular Phylogenetics and Evolution, 2015, 92, 266-279.	1.2	9
17	On the Robustness to Gene Tree Estimation Error (or lack thereof) of Coalescent-Based Species Tree Methods. Systematic Biology, 2015, 64, 663-676.	2.7	161
18	Phylogenetic analysis of <scp>RAD</scp> â€seq data: examining the influence of gene genealogy conflict on analysis of concatenated data. Cladistics, 2016, 32, 672-681.	1.5	39

		I KEI OKT	
#	Article	IF	CITATIONS
19	Incomplete Lineage Sorting in Mammalian Phylogenomics. Systematic Biology, 2017, 66, syw082.	2.7	88
20	Accounting for Uncertainty in Gene Tree Estimation: Summary-Coalescent Species Tree Inference in a Challenging Radiation of Australian Lizards. Systematic Biology, 2017, 66, syw089.	2.7	56
21	Ancestral Gene Flow and Parallel Organellar Genome Capture Result in Extreme Phylogenomic Discord in a Lineage of Angiosperms. Systematic Biology, 2017, 66, syw083.	2.7	132
22	Consensus Methods, Phylogenetic. , 2016, , 341-346.		о
23	A performance study of the impact of recombination on species tree analysis. BMC Genomics, 2016, 17, 785.	1.2	15
24	Mammal madness: is the mammal tree of life not yet resolved?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150140.	1.8	216
25	Analysis of a Rapid Evolutionary Radiation Using Ultraconserved Elements: Evidence for a Bias in Some Multispecies Coalescent Methods. Systematic Biology, 2016, 65, 612-627.	2.7	137
26	Computational Performance and Statistical Accuracy of *BEAST and Comparisons with Other Methods. Systematic Biology, 2016, 65, 381-396.	2.7	107
27	Implementing and testing the multispecies coalescent model: A valuable paradigm for phylogenomics. Molecular Phylogenetics and Evolution, 2016, 94, 447-462.	1.2	321
28	The gene tree delusion. Molecular Phylogenetics and Evolution, 2016, 94, 1-33.	1.2	259
29	StarBEAST2 Brings Faster Species Tree Inference and Accurate Estimates of Substitution Rates. Molecular Biology and Evolution, 2017, 34, 2101-2114.	3.5	371
30	Assessing the potential of RAD-sequencing to resolve phylogenetic relationships within species radiations: The fly genus Chiastocheta (Diptera: Anthomyiidae) as a case study. Molecular Phylogenetics and Evolution, 2017, 114, 189-198.	1.2	18
31	Systematics and biogeography of the Automolus infuscatus complex (Aves; Furnariidae): Cryptic diversity reveals western Amazonia as the origin of a transcontinental radiation. Molecular Phylogenetics and Evolution, 2017, 107, 503-515.	1.2	22
32	Talpid Mole Phylogeny Unites Shrew Moles and Illuminates Overlooked Cryptic Species Diversity. Molecular Biology and Evolution, 2017, 34, 78-87.	3.5	36
33	Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust familyâ€level tree for Mammalia. Cladistics, 2017, 33, 295-332.	1.5	70
34	Phylogenomics of tubeworms (Siboglinidae, Annelida) and comparative performance of different reconstruction methods. Zoologica Scripta, 2017, 46, 200-213.	0.7	33
35	Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus <i>Lachemilla</i> (Rosaceae). New Phytologist, 2018, 218, 1668-1684.	3.5	141
36	Bayesian Divergence-Time Estimation with Genome-Wide Single-Nucleotide Polymorphism Data of Sea Catfishes (Ariidae) Supports Miocene Closure of the Panamanian Isthmus. Systematic Biology, 2018, 67, 681-699.	2.7	137

TION P

#	Article	IF	CITATIONS
37	Optimal data partitioning, multispecies coalescent and Bayesian concordance analyses resolve early divergences of the grape family (Vitaceae). Cladistics, 2018, 34, 57-77.	1.5	44
38	Analysis of Phylogenomic Tree Space Resolves Relationships Among Marsupial Families. Systematic Biology, 2018, 67, 400-412.	2.7	85
39	Pinniped Diphyly and Bat Triphyly: More Homology Errors Drive Conflicts in the Mammalian Tree. Journal of Heredity, 2018, 109, 297-307.	1.0	13
40	Incomplete lineage sorting impacts the inference of macroevolutionary regimes from molecular phylogenies when concatenation is employed: An analysis based on Cetacea. Ecology and Evolution, 2018, 8, 6965-6971.	0.8	5
41	Delimiting Coalescence Genes (C-Genes) in Phylogenomic Data Sets. Genes, 2018, 9, 123.	1.0	30
42	ILS-Aware Analysis of Low-Homoplasy Retroelement Insertions: Inference of Species Trees and Introgression Using Quartets. Journal of Heredity, 2020, 111, 147-168.	1.0	30
43	What This Book Is About. , 2020, , 13-22.		0
46	Essentialism and Typology. , 2020, , 108-118.		0
47	Monothetic and Polythetic Taxa. , 2020, , 119-123.		0
48	Non-taxa or the Absence of $\hat{a} \in \mathcal{E}$ Phyly: Paraphyly and Aphyly. , 2020, , 124-148.		0
49	Parameters of Classification: <i>Ordo Ab Chao</i> ., 2020, , 153-212.		0
51	Modern Artificial Methods and Raw Data. , 2020, , 215-236.		0
52	How to Study Classification. , 2020, , 273-286.		0
53	How to Study Classification. , 2020, , 287-350.		0
54	Further Myths and More Misunderstandings. , 2020, , 396-429.		0
56	Introduction: Carving Nature at Its Joints, or Why Birds Are Not Dinosaurs and Men Are Not Apes. , 2020, , 1-10.		0
57	Intragenic Conflict in Phylogenomic Data Sets. Molecular Biology and Evolution, 2020, 37, 3380-3388.	3.5	5
59	The Separation of Classification and Phylogenetics. , 2020, , 369-395.		0

CITATION REPORT

#	Article	IF	CITATIONS
61	Relationship Diagrams. , 2020, , 57-107.		0
62	Beyond Classification: How to Study Phylogeny. , 2020, , 353-368.		0
64	How to Study Classification: Consensus Techniques and General Classifications. , 2020, , 237-252.		0
65	How to Study Classification: †Total Evidence' vs. †Consensus', Character Congruence vs. Taxonomic Congruence, Simultaneous Analysis vs. Partitioned Data. , 2020, , 253-272.		0
68	From Summary Statistics to Gene Trees: Methods for Inferring Positive Selection. Trends in Genetics, 2020, 36, 243-258.	2.9	28
69	Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annual Review of Animal Biosciences, 2021, 9, 29-53.	3.6	32
70	Gene Tree Discord, Simplex Plots, and Statistical Tests under the Coalescent. Systematic Biology, 2022, 71, 929-942.	2.7	14
71	Dissecting Incongruence between Concatenation- and Quartet-Based Approaches in Phylogenomic Data. Systematic Biology, 2021, 70, 997-1014.	2.7	28
72	Rampant Genome-Wide Admixture across the <i>Heliconius</i> Radiation. Genome Biology and Evolution, 2021, 13, .	1.1	31
73	Defining Coalescent Genes: Theory Meets Practice in Organelle Phylogenomics. Systematic Biology, 2022, 71, 476-489.	2.7	47
75	Gene Tree Estimation Error with Ultraconserved Elements: An Empirical Study on <i>Pseudapis</i> Bees. Systematic Biology, 2021, 70, 803-821.	2.7	25
82	Concatenation Analyses in the Presence of Incomplete Lineage Sorting. PLOS Currents, 2015, 7, .	1.4	31
83	Can Single Protein and Protein Family Phylogenies be Resolved Better?. Journal of Phylogenetics & Evolutionary Biology, 2015, 03, .	0.2	4
84	Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage. PeerJ, 2016, 4, e1584.	0.9	72
90	How challenging RADseq data turned out to favor coalescent-based species tree inference. A case study in Aichryson (Crassulaceae). Molecular Phylogenetics and Evolution, 2022, 167, 107342.	1.2	14
91	Phylogenetic Relationships Within the Hyper-Diverse Genus Eugenia (Myrtaceae: Myrteae) Based on Target Enrichment Sequencing. Frontiers in Plant Science, 2021, 12, 759460.	1.7	5
92	Phylogenomic Coalescent Analyses of Avian Retroelements Infer Zero-Length Branches at the Base of Neoaves, Emergent Support for Controversial Clades, and Ancient Introgressive Hybridization in Afroaves. Genes, 2022, 13, 1167.	1.0	2