Beyond collisionless dark matter: Particle physics dyna structure

Physical Review D 87, DOI: 10.1103/physrevd.87.115007

Citation Report

#	Article	IF	CITATIONS
1	Baryogenesis and Dark Matter through a Higgs Asymmetry. Physical Review Letters, 2013, 111, 151601. New scotogenic model of neutrino mass with smml:math	2.9	23
2	xmins:mml="http://www.w3.org/1998/Math/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mi>U</mml:mi> <mml:msub><mml:mrow><mml:mo stretchy="false">(<mml:mn>1</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>6971.d (str</td><td>etchø="false"</td></mml:mo)></mml:mo </mml:mrow></mml:msub>	697 1.d (str	etc h ø="false"
3	gauge interaction. Physics Letters, Section B. Nuclear, Elementary Particle and High Energy Physics, 201 Indirect detection of self-interacting asymmetric dark matter. Physical Review D, 2013, 87, .	1.6	34
4	Sommerfeld enhancements with vector, scalar, and pseudoscalar force carriers. Physical Review D, 2013, 88, .	1.6	27
5	Universal two-body physics in dark matter near an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi>-wave resonance. Physical Review D, 2013, 88, .</mml:math 	1.6	22
6	Effective theory of self-interacting dark matter. Physical Review D, 2013, 88, .	1.6	41
7	Unified framework for matter, dark matter, and radiative neutrino mass. Physical Review D, 2013, 88, .	1.6	13
8	Self-interacting scalar dark matter with local Z ₃ symmetry. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 047-047.	1.9	62
9	Direct detection with dark mediators. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 738, 477-482.	1.5	6
10	Colliding clusters and dark matter self-interactions. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2865-2881.	1.6	159
11	Thermal conduction by dark matter with velocity and momentum-dependent cross-sections. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 019-019.	1.9	25
12	Constraints on self interacting dark matter from IceCube results. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 047-047.	1.9	23
13	Radiative Origin of All Quark and Lepton Masses through Dark Matter with Flavor Symmetry. Physical Review Letters, 2014, 112, 091801.	2.9	47
14	Scattering, damping, and acoustic oscillations: Simulating the structure of dark matter halos with relativistic force carriers. Physical Review D, 2014, 90, .	1.6	91
15	New weakly coupled forces hidden in low-energy QCD. Physical Review D, 2014, 89, .	1.6	63
16	Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure. Physical Review Letters, 2014, 112, 031803.	2.9	184
17	Singlet extension of the MSSM as a solution to the small cosmological scale anomalies. Physical Review D, 2014, 90, .	1.6	13
18	Bounds on self-interacting fermion dark matter from observations of old neutron stars. Physical Review D, 2014, 89, .	1.6	63

		CITATION REPORT		
#	Article		IF	Citations
19	Constraints on large-scale dark acoustic oscillations from cosmology. Physical Review D	, 2014, 89, .	1.6	129
20	Dark Radiation Alleviates Problems with Dark Matter Halos. Physical Review Letters, 201	4, 113, 161301.	2.9	45
21	Dark photons and resonant monophoton signatures in Higgs boson decays at the LHC. D, 2014, 90, .	Physical Review	1.6	30
22	Direct detection portals for self-interacting dark matter. Physical Review D, 2014, 89, .		1.6	112
23	Self-interacting dark matter from a non-Abelian hidden sector. Physical Review D, 2014,	89,.	1.6	161
24	Stable bound states of asymmetric dark matter. Physical Review D, 2014, 90, .		1.6	93
25	Scattering properties of dark atoms and molecules. Physical Review D, 2014, 89, .		1.6	81
26	Hidden on-shell mediators for the Galactic Center <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>î³</mml:mi>-ray excess. Physical Review D, 201</mml:math 	4, 90, .	1.6	108
27	Effects of dark matter-baryon scattering on redshifted 21Âcm signals. Physical Review D), 2014, 90, .	1.6	88
28	New Directions in Direct Dark Matter Searches. Advances in High Energy Physics, 2014,	2014, 1-19.	0.5	35
29	Constraints on new neutrino interactions via light Abelian vector bosons. Physical Revie	w D, 2014, 89,	1.6	68
30	Detecting Dark Matter with Imploding Pulsars in the Galactic Center. Physical Review Le 191301.	tters, 2014, 113,	2.9	80
31	Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles. Phys Letters, 2014, 113, 171301.	sical Review	2.9	377
32	Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of da Monthly Notices of the Royal Astronomical Society, 2014, 444, 3684-3698.	rk matter.	1.6	166
33	Daily modulation as a smoking gun of dark matter with significant stopping rate. Physic 2014, 90, .	al Review D,	1.6	49
34	Composite strongly interacting dark matter. Physical Review D, 2014, 90, .		1.6	107
35	Tying Dark Matter to Baryons with Self-Interactions. Physical Review Letters, 2014, 113,	,021302.	2.9	113
36	Direct detection of dark matter in universal bound states. Physical Review D, 2014, 89, .		1.6	41

		CITATION REPORT	
#	Article	IF	CITATIONS
37	Freeze-in through portals. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 003-	003. 1.9	67
38	X-ray lines from dark matter: the good, the bad, and the unlikely. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 033-033.	1.9	57
39	Halo-independent direct detection of momentum-dependent dark matter. Journal of Cosmol Astroparticle Physics, 2014, 2014, 022-022.	ogy and 1.9	39
40	Self-interacting asymmetric dark matter coupled to a light massive dark photon. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 039-039.	1.9	79
41	Tight bonds between sterile neutrinos and dark matter. Journal of Cosmology and Astroparti Physics, 2014, 2014, 042-042.	cle 1.9	72
42	View FI m P miracle (by scale invariance) Ã la self-interaction. Physics Letters, Section B: Nucl Elementary Particle and High-Energy Physics, 2015, 751, 201-204.	ear, 1.5	37
43	Signals from dark atom formation in halos. Physical Review D, 2015, 91, .	1.6	27
44	Multimediator models for the Galactic Center gamma ray excess. Physical Review D, 2015, 9	1,. 1.6	33
45	Hidden dark matter sector, dark radiation, and the CMB. Physical Review D, 2015, 92, .	1.6	61
46	Asymmetric dark matter stars. Physical Review D, 2015, 92, .	1.6	63
47	Directional detection of dark matter in universal bound states. Physical Review D, 2015, 92,	. 1.6	29
48	Long-range Self-interacting Dark Matter in the Sun. Journal of Cosmology and Astroparticle F 2015, 2015, 021-021.	Physics, 1.9	9
49	Higgs portals to pulsar collapse. Physical Review D, 2015, 91, .	1.6	25
50	Self-scattering for Dark Matter with an excited state. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 021-021.	1.9	68
51	Light mediators in dark matter direct detections. Journal of Cosmology and Astroparticle Phy 2015, 2015, 032-032.	/sics, 1.9	28
52	Long-lived light mediator to dark matter and primordial small scale spectrum. Journal of Cosi and Astroparticle Physics, 2015, 2015, 008-008.	nology 1.9	30
53	Direct detection signatures of self-interacting dark matter with a light mediator. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 055-055.	1.9	56
54	Self-interacting dark matter through the Higgs portal. Physical Review D, 2015, 91, .	1.6	59

#	Article	IF	CITATIONS
55	Inflation in \$\$f(R,phi)\$\$ f (R , i •) -theories and mimetic gravity scenario. European Physical Journal C, 2015, 75, 1.	1.4	140
56	Dark Matter with Pseudoscalar-Mediated Interactions Explains the DAMA Signal and the Galactic Center Excess. Physical Review Letters, 2015, 114, 011301.	2.9	90
57	AMS02 positron excess from decaying fermion DM with local dark gauge symmetry. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 741, 284-289.	1.5	11
58	Faint dwarfs as a test of DM models: WDM versus CDM. Monthly Notices of the Royal Astronomical Society, 2015, 448, 792-803.	1.6	76
59	Galactic Center Excess in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>γ</mml:mi></mml:mrow></mml:math> Rays from Annihilation of Self-Interacting Dark Matter. Physical Review Letters, 2015, 114, 211303.	2.9	52
60	Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles. Physical Review Letters, 2015, 115, 021301.	2.9	246
61	All about baryons: revisiting SIDM predictions at small halo masses. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1468-1479.	1.6	79
62	Confronting the moduli-induced lightest-superpartner problem. Physical Review D, 2015, 91, .	1.6	17
63	Searching for dark matter at colliders. European Physical Journal C, 2015, 75, 171.	1.4	10
64	Cold dark matter: Controversies on small scales. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12249-12255.	3.3	286
65	Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary. Monthly Notices of the Royal Astronomical Society, 2015, 453, 29-37.	1.6	225
66	Fermionic dark matter through a light pseudoscalar portal: Hints from the DAMA results. Physical Review D, 2016, 94, .	1.6	10
67	Asymmetric dark matter models and the LHC diphoton excess. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 064-064.	1.9	4
68	The spectrum of darkonium in the Sun. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 012-012.	1.9	24
69	Global constraints on vector-like WIMP effective interactions. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 015-015.	1.9	6
70	Production regimes for Self-Interacting Dark Matter. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 018-018.	1.9	124
71	Suppressing structure formation at dwarf galaxy scales and below: Late kinetic decoupling as a compelling alternative to warm dark matter. Physical Review D, 2016, 94, .	1.6	45
72	Hunting for dark particles with gravitational waves. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 001-001.	1.9	112

#	Article	IF	CITATIONS
73	Recent Progress in Search for Dark Sector Signatures. Open Physics, 2016, 14, 281-303.	0.8	20
74	Interacting scalar radiation and dark matter in cosmology. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 757, 387-392.	1.5	16
75	Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 762, 462-466.	1.5	73
76	X-ray line from exciting dark matter. Physical Review D, 2016, 94, .	1.6	39
77	Dark photons from the center of the Earth: Smoking-gun signals of dark matter. Physical Review D, 2016, 93, .	1.6	33
78	Self-interacting dark matter and cosmology of a light scalar mediator. Physical Review D, 2016, 93, .	1.6	40
79	Dark matter annihilation decay at the LHC. Physical Review D, 2016, 93, .	1.6	18
80	Detecting dark matter through dark photons from the Sun: Charged particle signatures. Physical Review D, 2016, 93, .	1.6	58
81	Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal. Physical Review D, 2016, 93, .	1.6	56
82	ETHOS—an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe. Physical Review D, 2016, 93, .	1.6	155
83	Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters. Physical Review Letters, 2016, 116, 041302.	2.9	353
84	Probing the Dark Sector with Dark Matter Bound States. Physical Review Letters, 2016, 116, 151801.	2.9	29
85	Extending the MSSM with Singlet Higgs and Right Handed Neutrino for the Self-Interacting Dark Matter. Communications in Theoretical Physics, 2016, 65, 499-505.	1.1	4
86	A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Reports on Progress in Physics, 2016, 79, 124201.	8.1	496
87	Ultralight repulsive dark matter and BEC. Physics of the Dark Universe, 2016, 14, 84-94.	1.8	70
88	Complementary test of the dark matter self-interaction in dark U(1) model by direct and indirect dark matter detection. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 013-013.	1.9	2
89	The Sommerfeld enhancement in the scotogenic model with large electroweak scalar multiplets. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 041-041.	1.9	6
90	Self-interacting dark matter without direct detection constraints. Physics of the Dark Universe, 2017, 15, 82-89.	1.8	38

	CITATION	I REPORT	
#	Article	IF	CITATIONS
91	Protophobic light vector boson as a mediator to the dark sector. Physical Review D, 2017, 95, .	1.6	34
92	Interacting dark matter and dark radiation. Modern Physics Letters A, 2017, 32, 1740006.	0.5	3
93	Make dark matter charged again. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 022-022.	1.9	82
94	What does the Bullet Cluster tell us about self-interacting dark matter?. Monthly Notices of the Royal Astronomical Society, 2017, 465, 569-587.	1.6	155
95	Cosmic particle colliders: simulations of self-interacting dark matter with anisotropic scattering. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4719-4730.	1.6	57
96	Dark gamma-ray bursts. Physical Review D, 2017, 95, .	1.6	6
97	Self-interacting inelastic dark matter: a viable solution to the small scale structure problems. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 048-048.	1.9	36
98	Effect of electromagnetic dipole dark matter on energy transport in the solar interior. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 029-029.	1.9	15
99	Prospects of direct search for dark photon and dark Higgs in SeaQuest/E1067 experiment at the Fermilab main injector. Modern Physics Letters A, 2017, 32, 1730008.	0.5	8
100	Prospects for discovering a neutrino line induced by dark matter annihilation. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 021-021.	1.9	32
101	Asymmetric dark matter bound state. Physical Review D, 2017, 95, .	1.6	9
102	Dark catalysis. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 021-021.	1.9	36
103	Hidden charged dark matter and chiral dark radiation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 773, 513-520.	1.5	35
104	Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves. Physical Review Letters, 2017, 119, 111102.	2.9	183
105	Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 003-003.	1.9	25
106	Dark stars: Gravitational and electromagnetic observables. Physical Review D, 2017, 96, .	1.6	49
107	Nuclear structure of bound states of asymmetric dark matter. Physical Review D, 2017, 96, .	1.6	56
108	Strong Constraints on Self-Interacting Dark Matter with Light Mediators. Physical Review Letters, 2017, 118, 141802.	2.9	112

#	Article	IF	CITATIONS
109	Solar neutrinos as a probe of dark matter-neutrino interactions. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 021-021.	1.9	29
110	Detection of sub-GeV dark matter and solar neutrinos via chemical-bond breaking. Physical Review D, 2017, 95, .	1.6	58
111	WIMP miracle of the second kind. Physical Review D, 2017, 96, .	1.6	42
112	Naturalness and a light Zâ ${\in}^2$. Physical Review D, 2017, 96, .	1.6	5
113	DarkBit: a GAMBIT module for computing dark matter observables and likelihoods. European Physical Journal C, 2017, 77, 1.	1.4	80
114	Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1346-1360.	1.6	77
115	Dark matter self-interactions from a general spin-0 mediator. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 003-003.	1.9	70
116	Light dark matter: Models and constraints. Physical Review D, 2017, 96, .	1.6	213
117	Exploring light mediators with low-threshold direct detection experiments. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 016-016.	1.9	27
118	Linear scale bounds on dark matter-dark radiation interactions and connection with the small scale crisis of cold dark matter. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 010-010.	1.9	24
119	Detecting physics beyond the Standard Model with the REDTOP experiment. Journal of Physics: Conference Series, 2017, 912, 012042.	0.3	5
120	Mimetic Gravity: A Review of Recent Developments and Applications to Cosmology and Astrophysics. Advances in High Energy Physics, 2017, 2017, 1-43.	0.5	190
121	Spreading out and staying sharp – creating diverse rotation curves via baryonic and self-interaction effects. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2283-2295.	1.6	109
122	Probing velocity dependent self-interacting dark matter with neutrino telescopes. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 056-056.	1.9	7
123	Effective description of dark matter self-interactions in small dark matter haloesa˜ Monthly Notices of the Royal Astronomical Society, 2018, 474, 388-399.	1.6	23
124	Electroweak-charged bound states as LHC probes of hidden forces. Physical Review D, 2018, 97, .	1.6	7
125	Tests of neutrino and dark radiation models from galaxy and CMB surveys. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 022-022.	1.9	16
126	Ultralight Axion Dark Matter and Its Impact on Dark Halo Structure in N-body Simulations. Astrophysical Journal, 2018, 853, 51.	1.6	45

#	Article	IF	CITATIONS
127	Dark matter self-interactions and small scale structure. Physics Reports, 2018, 730, 1-57.	10.3	617
128	Thermal Dark Matter Below a MeV. Physical Review Letters, 2018, 120, 021801.	2.9	59
129	Detecting hidden particles with MATHUSLA. Physical Review D, 2018, 97, .	1.6	37
130	Self-interacting dark matter with a stable vector mediator. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 033-033.	1.9	18
131	BBN constraints on MeV-scale dark sectors. Part II: Electromagnetic decays. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 032-032.	1.9	65
132	Emergent dark matter in late time universe on holographic screen. Journal of High Energy Physics, 2018, 2018, 1.	1.6	6
133	Dark matter direct detection is testing freeze-in. Physical Review D, 2018, 98, .	1.6	47
134	Atomki anomaly and the Secluded Dark Sector. EPJ Web of Conferences, 2018, 168, 06007.	0.1	4
135	Possible Couplings of Dark Matter. , 0, , .		0
136	Higgs portal dark matter in non-standard cosmological histories. Journal of High Energy Physics, 2018, 2018, 1.	1.6	39
137	Strong constraints on light dark matter interpretation of the EDGES signal. Physical Review D, 2018, 98, .	1.6	141
138	Constraints on Dark Matter with a moderately large and velocity-dependent DM-nucleon cross-section. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 007-007.	1.9	55
139	Astrophysical signatures of asymmetric dark matter bound states. Physical Review D, 2018, 98, .	1.6	40
140	Multi-component dark matter: the vector and fermion case. European Physical Journal C, 2018, 78, 1.	1.4	54
141	Small-scale structure from neutron dark decay. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 036-036.	1.9	19
142	Realization of sneutrino self-interacting dark matter in the focus point supersymmetry. Physical Review D, 2018, 98, .	1.6	2
143	Robust constraints and novel gamma-ray signatures of dark matter that interacts strongly with nucleons. Physical Review D, 2018, 97, .	1.6	52
144	Cosmological singlet diagnostics of neutrinophilic dark matter. Physical Review D, 2018, 98, .	1.6	5

#	Article	IF	Citations
145	Complementarity for dark sector bound states. Physical Review D, 2018, 98, .	1.6	14
146	BBN constraints on MeV-scale dark sectors. Part I. Sterile decays. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 044-044.	1.9	42
147	Dark matter-neutrino interactions through the lens of their cosmological implications. Physical Review D, 2018, 97, .	1.6	64
148	DarkSUSY 6: an advanced tool to compute dark matter properties numerically. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 033-033.	1.9	88
149	Constraining dwarf spheroidal dark matter halos with the Galactic Center excess. Physical Review D, 2018, 97, .	1.6	4
150	The pursuit of dark matter at colliders—an overview. Journal of Physics G: Nuclear and Particle Physics, 2018, 45, 063001.	1.4	31
151	Is Self-Interacting Dark Matter Undergoing Dark Fusion?. Physical Review Letters, 2018, 120, 221806.	2.9	38
152	Gamma rays from dark matter annihilation in three-loop radiative neutrino mass generation models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 782, 215-223.	1.5	3
153	Higgs exotic decays in general NMSSM with self-interacting dark matter. International Journal of Modern Physics A, 2018, 33, 1841002.	0.5	4
154	Gravitational probes of dark matter physics. Physics Reports, 2018, 761, 1-60.	10.3	87
155	Converting nonrelativistic dark matter to radiation. Physical Review D, 2018, 98, .	1.6	78
156	A minimal model for two-component FIMP dark matter: A basic search. Chinese Physics C, 2018, 42, 073101.	1.5	14
157	Constraining a Thin Dark Matter Disk with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>G</mml:mi><mml:mi>a</mml:mi><mml:mi>i</mml:mi>iaPhysical Review Letters, 2018, 121, 081101.</mml:math 	ath\$.	61
158	Reannihilation of self-interacting dark matter. Physical Review D, 2018, 97, .	1.6	33
159	Scope of self-interacting thermal WIMPs in a minimal U(1)D extension and its future prospects. Journal of High Energy Physics, 2019, 2019, 1.	1.6	7
160	Reconciling the Diversity and Uniformity of Galactic Rotation Curves with Self-Interacting Dark Matter. Physical Review X, 2019, 9, .	2.8	77
161	Displaced lepton jet signatures from self-interacting dark matter bound states. Journal of High Energy Physics, 2019, 2019, 1.	1.6	3
162	Cosmological constraints on the velocity-dependent baryon-dark matter coupling. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 020-020.	1.9	4

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
163	Not as big as a barn: Upper bounds on dark matter-nucleus cross sections. Physical Review D, 2019, 100,	1.6	41
164	Revisiting a Negative Cosmological Constant from Low-Redshift Data. Symmetry, 2019, 11, 1035.	1.1	104
165	Constraining Dark Matter-Dark Radiation interactions with CMB, BAO, and Lyman-α. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 055-055.	1.9	80
166	Neutron Star Stability in Light of the Neutron Decay Anomaly. Physical Review Letters, 2019, 123, 091601.	2.9	25
167	Thermal neutrino portal to sub-MeV dark matter. Physical Review D, 2019, 99, .	1.6	36
168	Supernovae sparked by dark matter in white dwarfs. Physical Review D, 2019, 100, .	1.6	29
169	The distribution of dark matter in galaxies. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	155
170	Long-lived particles at the energy frontier: the MATHUSLA physics case. Reports on Progress in Physics, 2019, 82, 116201.	8.1	220
171	Search for gamma-ray emission from <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -wave dark matter annihilation in the Galactic Center. Physical Review D, 2019, 99, .	1.6	22
172	Asymmetric dark stars and neutron star stability. Physical Review D, 2019, 99, .	1.6	59
173	Light dark matter from leptogenesis. Physical Review D, 2019, 99, .	1.6	21
174	Light dark states with electromagnetic form factors. Physical Review D, 2019, 99, .	1.6	38
175	Activating the fourth neutrino of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:math> scheme. Physical Review D, 2019, 99, .	1.6	37
176	Dark matter interactions with muons in neutron stars. Physical Review D, 2019, 100, .	1.6	46
177	Forays into the dark side of the swamp. Physical Review D, 2019, 100, .	1.6	5
178	Probing dark-axionlike particle portals at future e+eâ^² colliders. Physical Review D, 2019, 100, .	1.6	4
179	Reviving millicharged dark matter for 21-cm cosmology. Physical Review D, 2019, 100, .	1.6	75
180	An Introduction to Particle Dark Matter. Universe, 2019, 5, 213.	0.9	36

#	Article	IF	CITATIONS
181	Charged planckian interacting dark matter. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 021-021.	1.9	25
182	Phenomenological consequences of an interacting multicomponent dark sector. Physical Review D, 2020, 102, .	1.6	2
183	Dark matter bound-state formation at higher order: a non-equilibrium quantum field theory approach. Journal of High Energy Physics, 2020, 2020, 1.	1.6	22
184	PandaX limits on the light dark matter with a light mediator in the singlet extension of MSSM. Chinese Physics C, 2020, 44, 063102.	1.5	1
185	Astrophysical probes of inelastic dark matter with a light mediator. Physical Review D, 2020, 101, .	1.6	11
186	Self-interacting dark matter without prejudice. Physical Review D, 2020, 101, .	1.6	18
187	Dark Matters on the Scale of Galaxies. Universe, 2020, 6, 107.	0.9	62
188	Constraining galactic structures of mirror dark matter. Physical Review D, 2020, 102, .	1.6	13
189	Attractive scenario for light dark matter direct detection. Physical Review D, 2020, 102, .	1.6	7
190	Implications of baryon–dark matter interaction on IGM temperature and tSZ effect with magnetic field. Monthly Notices of the Royal Astronomical Society, 2020, 500, 643-654.	1.6	0
191	Glueball scattering cross section in lattice <mm:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(stretchy="false">) Wong Wille theory Division Bostory D.2020_102</mml:mo </mm:math 	1.6	25
192	Higgs portal to dark QED. Physical Review D, 2020, 102, .	1.6	2
193	Rapid Bound State Formation of Dark Matter in the Early Universe. Physical Review Letters, 2020, 124, 161102.	2.9	17
194	Minimal self-interacting dark matter models with light mediator. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 001-001.	1.9	19
195	Velocity-dependent self-interacting dark matter from thermal freeze-out and tests in direct detections. European Physical Journal C, 2020, 80, 1.	1.4	1
196	A practical and consistent parametrization of dark matter self-interactions. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 043-043.	1.9	26
197	Vector self-interacting dark matter. Physical Review D, 2020, 101, .	1.6	2
198	The structure of dissipative dark matter halos. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 051-051.	1.9	23

#	Article	IF	CITATIONS
199	Lensing of fast radio bursts: Future constraints on primordial black hole density with an extended mass function and a new probe of exotic compact fermion and boson stars. Physical Review D, 2020, 102, .	1.6	26
200	Signatures of self-interacting dark matter on cluster density profile and subhalo distributions. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 024-024.	1.9	50
201	Finite-Size Dark Matter and its Effect on Small-Scale Structure. Physical Review Letters, 2020, 124, 041101.	2.9	20
202	Spontaneous freeze out of dark matter from an early thermal phase transition. Physical Review D, 2020, 101, .	1.6	20
203	A generalized Higgs potential with two degenerate minima for a dark QCD matter scenario. European Physical Journal C, 2020, 80, 1.	1.4	1
204	The Physics of the Dark Photon. SpringerBriefs in Physics, 2021, , .	0.2	103
205	A model of interacting dark matter and dark radiation for HO and σ8 tensions. Journal of High Energy Physics, 2021, 2021, 1.	1.6	13
206	Velocity-dependent self-interacting dark matter from groups and clusters of galaxies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 024-024.	1.9	50
207	Dark matter scattering cross section and dynamics in dark Yang-Mills theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 813, 136056.	1.5	17
208	Constraining velocity-dependent self-interacting dark matter with the Milky Way's dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 503, 920-937.	1.6	51
209	Semiclassical regime for dark matter self-interactions. Physical Review D, 2021, 103, .	1.6	27
210	Recasting direct detection limits within micrOMEGAs and implication for non-standard dark matter scenarios. European Physical Journal C, 2021, 81, 1.	1.4	64
211	Effective theory for self-interacting dark matter and massive spin-2 mediators. Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 045002.	1.4	8
212	Self-interacting hidden sector dark matter, small scale galaxy structure anomalies, and a dark force. Physical Review D, 2021, 103, .	1.6	13
213	Implications of feebly interacting dark sector on neutron star properties and constraints from GW170817. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3354-3363.	1.6	19
214	Late-time dark matter oscillations and the core-cusp problem. Journal of High Energy Physics, 2021, 2021, 1.	1.6	1
215	X-ray shapes of elliptical galaxies and implications for self-interacting dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 020.	1.9	7
216	Self-interacting inelastic dark matter in the light of XENON1T excess. Physical Review D, 2021, 103, .	1.6	20

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
217	Supernova constraint on self-interacting dark sector particles. Physical Review D, 2021	., 103, .	1.6	12
218	Gas-rich dwarf galaxies as a new probe of dark matter interactions with ordinary matte Review D, 2021, 103, .	r. Physical	1.6	30
219	Earth-bound millicharge relics. Physical Review D, 2021, 103, .		1.6	17
220	Continuum-mediated self-interacting dark matter. Journal of High Energy Physics, 202	1, 2021, 1.	1.6	13
221	Precise dark matter relic abundance in decoupled sectors. Physics Letters, Section B: N Elementary Particle and High-Energy Physics, 2021, 817, 136341.	luclear,	1.5	15
222	The central densities of Milky Way-mass galaxies in cold and self-interacting dark matt Monthly Notices of the Royal Astronomical Society, 2021, 507, 720-729.	er models.	1.6	31
223	Dissipative dark matter on FIRE $\hat{a} \in$ "I. Structural and kinematic properties of dwarf gala Notices of the Royal Astronomical Society, 2021, 506, 4421-4445.	axies. Monthly	1.6	18
224	Dark mesons as self-interacting dark matter. European Physical Journal: Special Topics,	0, , 1.	1.2	1
225	Density spikes near black holes in self-interacting dark matter halos and indirect detec constraints. Physical Review D, 2021, 104, .	tion	1.6	6
226	Testing the predictions of axisymmetric distribution functions of galactic dark matter hydrodynamical simulations. Journal of Cosmology and Astroparticle Physics, 2021, 20	with 21, 031.	1.9	2
227	The singularity structure of quantum-mechanical potentials. Physical Review D, 2021, 2	104, .	1.6	2
228	Strong lensing signatures of self-interacting dark matter in low-mass haloes. Monthly N Royal Astronomical Society, 2021, 507, 2432-2447.	Notices of the	1.6	30
229	A strong broadband 21 cm cosmological signal from dark matter spin-flip interactions. Cosmology and Astroparticle Physics, 2021, 2021, 041.	Journal of	1.9	2
230	Consistent explanation for the cosmic-ray positron excess in p-wave Sommerfeld-enha matter annihilation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 005.	nced dark	1.9	7
231	Fundamental Properties of the Dark and the Luminous Matter from the Low Surface Br Universe, 2021, 7, 344.	ightness Discs.	0.9	3
232	Feeble DM-SM interaction via new scalar and vector mediators in rotating neutron star Cosmology and Astroparticle Physics, 2021, 2021, 027.	rs. Journal of	1.9	12
233	Multi-scalar signature of self-interacting dark matter in the NMSSM and beyond. Journa Energy Physics, 2021, 2021, 1.	al of High	1.6	2
234	Maximally self-interacting dark matter: models and predictions. Journal of High Energy 2020, 1.	Physics, 2020,	1.6	19

#	Article	IF	CITATIONS
235	Navarro-Frenk-White dark matter profile and the dark halos around disk systems. Astronomy and Astrophysics, 2020, 643, A161.	2.1	9
236	Analysis on the black hole formations inside old neutron stars by isospin-violating dark matter with self-interaction. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 022-022.	1.9	7
237	Equilibrium axisymmetric halo model for the MilkyÂWay and its implications for direct and indirect dark matter searches. Physical Review D, 2020, 102, .	1.6	6
238	Asymmetric dark matter: residual annihilations and self-interactions. SciPost Physics, 2018, 4, .	1.5	44
239	Indirect searches for dark matter bound state formation and level transitions. SciPost Physics, 2020, 9, .	1.5	11
240	Signatures of Velocity-dependent Dark Matter Self-interactions in Milky Way-mass Halos. Astrophysical Journal, 2020, 896, 112.	1.6	34
241	Cold Particle Dark Matter. Symmetry, 2021, 13, 1945.	1.1	0
242	Neutrino as the dark force. Physical Review D, 2021, 104, .	1.6	10
243	Solar mass primordial black holes in moduli dominated universe. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 071.	1.9	5
244	Shedding light on dark matter and neutrino interactions from cosmology. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 017.	1.9	12
245	Dark matter self-interactions from spin-2 mediators. European Physical Journal C, 2021, 81, 1.	1.4	4
246	Indirect Probes of Light Dark Matter. Thirty Years of Astronomical Discovery With UKIRT, 2019, , 143-152.	0.3	0
247	Standard Models and What Lies Beyond. Springer Theses, 2020, , 5-36.	0.0	0
248	Self-resonant dark matter. Journal of High Energy Physics, 2021, 2021, 1.	1.6	4
250	A stringent upper limit on dark matter self-interaction cross-section from cluster strong lensing. Monthly Notices of the Royal Astronomical Society, 2021, 510, 54-81.	1.6	40
251	Review on Higgs hidden-dark sector physics. Physica Scripta, 2022, 97, 024001.	1.2	4
252	Self-interacting dark matter via right handed neutrino portal. Physical Review D, 2022, 105, .	1.6	12
253	Non-Abelian electric field correlator at NLO for dark matter relic abundance and quarkonium transport. Journal of High Energy Physics, 2022, 2022, 1.	1.6	17

#	Article	IF	CITATIONS
254	Direct measurement of the distribution of dark matter with strongly lensed gravitational waves. Astronomy and Astrophysics, 2022, 659, L5.	2.1	13
255	Scalar and fermion two-component SIMP dark matter with an accidental â" 4 symmetry. Journal of High Energy Physics, 2022, 2022, 1.	1.6	9
256	Simulation of energy transport by dark matter scattering in stars. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 002.	1.9	6
257	Thermal relic of self-interacting dark matter with retarded decay of mediator. Journal of High Energy Physics, 2021, 2021, 1.	1.6	3
258	Unequal-mass mergers of dark matter haloes with rare and frequent self-interactions. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4080-4099.	1.6	9
259	Realistic scattering of puffy dark matter. Physical Review D, 2022, 105, .	1.6	4
260	Galactic Anomalies and Particle Dark Matter. Symmetry, 2022, 14, 812.	1.1	3
261	Comparing implementations of self-interacting dark matter in the <scp>gizmo</scp> and <scp>arepo</scp> codes. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2600-2608.	1.6	3
262	Singlet-doublet self-interacting dark matter and radiative neutrino mass. Physical Review D, 2022, 105, .	1.6	11
263	Dark unification: A UV-complete theory of asymmetric dark matter. Physical Review D, 2022, 105, .	1.6	8
264	Population inference of spin-induced quadrupole moments as a probe for nonblack hole compact binaries. Physical Review D, 2022, 105, .	1.6	11
265	Explaining lepton-flavor non-universality and self-interacting dark matter with \$\$L_mu -L_au \$\$. European Physical Journal C, 2022, 82, .	1.4	17
266	Models for self-resonant dark matter. Journal of High Energy Physics, 2022, 2022, .	1.6	6
267	Cosmological constraints on the decay of heavy relics into neutrinos. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 033.	1.9	6
268	Ultralight millicharged dark matter via misalignment. Journal of High Energy Physics, 2022, 2022, .	1.6	6
269	Dark matter self-interactions in the matter power spectrum. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 012.	1.9	4
270	Shapes of Milky-Way-mass galaxies with self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2389-2405.	1.6	9
271	Self-interacting dark scalar spikes around black holes via relativistic Bondi accretion. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 032.	1.9	11

#	ARTICLE	IF	CITATIONS
272	X-ray morphology of cluster-mass haloes in self-interacting dark matter. Monthly Notices of the Royal Astronomical Society, 2022, 516, 1302-1319.	1.6	4
273	Dark stars powered by self-interacting dark matter. Physical Review D, 2022, 106, .	1.6	2
274	Freeze-In of radiative keV-scale neutrino dark matter from a new U(1)B-L. Journal of High Energy Physics, 2022, 2022, .	1.6	1
275	Gravothermal evolution of dark matter halos with differential elastic scattering. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 077.	1.9	11
276	Linear sigma dark matter. Journal of High Energy Physics, 2022, 2022, .	1.6	10
277	Searching for dark clumps with gravitational-wave detectors. Physical Review D, 2022, 106, .	1.6	8
278	Vector dark boson mediated feeble interaction between fermionic dark matter and strange quark matter in quark stars. Monthly Notices of the Royal Astronomical Society, 2022, 517, 518-525.	1.6	6
279	Cross section calculations in theories of self-interacting dark matter. Physical Review D, 2022, 106, .	1.6	10
280	Self-interacting freeze-in dark matter in a singlet doublet scenario. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 017.	1.9	11
281	Self-interacting dark baryons. Physical Review D, 2022, 106, .	1.6	2
281 282	Self-interacting dark baryons. Physical Review D, 2022, 106, . Motivations for a large self-interacting dark matter cross-sectionÂfrom Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2418-2435.	1.6 1.6	2
281 282 283	Self-interacting dark baryons. Physical Review D, 2022, 106, . Motivations for a large self-interacting dark matter cross-sectionÂfrom Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2418-2435. Asymmetric self-interacting dark matter via Dirac leptogenesis. Physical Review D, 2022, 106, .	1.6 1.6 1.6	2 11 4
281 282 283 283	Self-interacting dark baryons. Physical Review D, 2022, 106, . Motivations for a large self-interacting dark matter cross-sectionÂfrom Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2418-2435. Asymmetric self-interacting dark matter via Dirac leptogenesis. Physical Review D, 2022, 106, . Unified origin of dark matter self interactions and low scale leptogenesis. Physical Review D, 2022, 106, .	1.6 1.6 1.6	2 11 4 5
281 282 283 283 284 285	Self-interacting dark baryons. Physical Review D, 2022, 106, . Motivations for a large self-interacting dark matter cross-sectionÂfrom Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2418-2435. Asymmetric self-interacting dark matter via Dirac leptogenesis. Physical Review D, 2022, 106, . Unified origin of dark matter self interactions and low scale leptogenesis. Physical Review D, 2022, 106, . Exploring the self interacting dark matter properties from low redshift observations. European Physical Journal C, 2022, 82, .	1.6 1.6 1.6 1.6	2 11 4 5 0
281 282 283 284 285 286	Self-interacting dark baryons. Physical Review D, 2022, 106, . Motivations for a large self-interacting dark matter cross-sectionÂfrom Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2418-2435. Asymmetric self-interacting dark matter via Dirac leptogenesis. Physical Review D, 2022, 106, . Unified origin of dark matter self interactions and low scale leptogenesis. Physical Review D, 2022, 106, . Exploring the self interacting dark matter properties from low redshift observations. European Physical Journal C, 2022, 82, . A next-generation liquid xenon observatory for dark matter and neutrino physics. Journal of Physics C: Nuclear and Particle Physics, 2023, 50, 013001.	1.6 1.6 1.6 1.4	2 11 4 5 0 34
281 282 283 284 285 286 287	Self-interacting dark baryons. Physical Review D, 2022, 106, . Motivations for a large self-interacting dark matter cross-sectionÂfrom Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2418-2435. Asymmetric self-interacting dark matter via Dirac leptogenesis. Physical Review D, 2022, 106, . Unified origin of dark matter self interactions and low scale leptogenesis. Physical Review D, 2022, 106, . Exploring the self interacting dark matter properties from low redshift observations. European Physical Journal C, 2022, 82, . A next-generation liquid xenon observatory for dark matter and neutrino physics. Journal of Physics C: Nuclear and Particle Physics, 2023, 50, 013001. Condensed dark matter with a Yukawa interaction. Physical Review D, 2022, 106, .	1.6 1.6 1.6 1.4 1.4	2 11 4 5 0 34 8
281 282 283 284 285 286 287	Self-Interacting dark baryons. Physical Review D, 2022, 106, . Motivations for a large self-interacting dark matter cross-sectionÂfrom Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2418-2435. Asymmetric self-interacting dark matter via Dirac leptogenesis. Physical Review D, 2022, 106, . Unified origin of dark matter self interactions and low scale leptogenesis. Physical Review D, 2022, 106, . Exploring the self interacting dark matter properties from low redshift observations. European Physical Journal C, 2022, 82, . A next-generation liquid xenon observatory for dark matter and neutrino physics. Journal of Physics Condensed dark matter with a Yukawa interaction. Physical Review D, 2022, 106, . Condensed dark matter with a Yukawa interaction. Physical Review D, 2022, 106, . Cosmological phase transitions, gravitational waves and self-interacting dark matter in the singlet extension of MSSM. European Physical Journal C, 2022, 82, .	1.6 1.6 1.6 1.4 1.4 1.4	2 11 4 5 0 34 8 7

#	Article	IF	CITATIONS
290	No room to hide: implications of cosmic-ray upscattering for GeV-scale dark matter. Journal of High Energy Physics, 2023, 2023, .	1.6	10
291	Standard Model ofÂCosmology. Springer Theses, 2022, , 73-176.	0.0	0
292	Orbital evolution of satellite galaxies in self-interacting dark matter models. Physical Review D, 2023, 107, .	1.6	5
293	Fitting a self-interacting dark matter model to data ranging from satellite galaxies to galaxy clusters. Physical Review D, 2023, 107, .	1.6	2
294	Time-delayed neutrino emission from supernovae as a probe of dark matter-neutrino interactions. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 019.	1.9	3