Catalytic micromotor generating self-propelled regular fluctuation

Journal of Chemical Physics 139, 034705 DOI: 10.1063/1.4813791

Citation Report

#	Article	IF	CITATIONS
1	Self-propulsion through symmetry breaking. Europhysics Letters, 2013, 103, 60009.	0.7	32
2	Diffusion, sedimentation equilibrium, and harmonic trapping of run-and-tumble nanoswimmers. Soft Matter, 2014, 10, 3209.	1.2	30
3	Self-Propelling Nanomotors in the Presence of Strong Brownian Forces. Nano Letters, 2014, 14, 2407-2412.	4.5	257
4	Diffusion and surface excess of a confined nanoswimmer dispersion. Journal of Chemical Physics, 2014, 141, 184902.	1.2	12
5	Self-propelled Motor Driven by a Glucose Engine. Chemistry Letters, 2014, 43, 453-455.	0.7	4
6	An Abiotic Glass-Bead Collector Exhibiting Active Transport. Scientific Reports, 2015, 5, 14348.	1.6	11
7	Self-Propelled Catalytic Particles with a Chemical Reaction. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2015, 23, 158-163.	0.0	0
8	Self-Propelled Nano/Micromotors with a Chemical Reaction: Underlying Physics and Strategies of Motion Control. KONA Powder and Particle Journal, 2015, 32, 2-22.	0.9	57
9	Micromotors working in water through artificial aerobic metabolism. Nanoscale, 2015, 7, 13186-13190.	2.8	25
10	A unified model of drag force for bubble-propelled catalytic micro/nano-motors with different geometries in low Reynolds number flows. Journal of Applied Physics, 2015, 117, .	1.1	44
11	Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater. Journal of Materials Chemistry A, 2015, 3, 7437-7444.	5.2	64
12	Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors. Micromachines, 2016, 7, 229.	1.4	25
13	Complex-shaped three-dimensional multi-compartmental microparticles generated by diffusional and Marangoni microflows in centrifugally discharged droplets. Scientific Reports, 2016, 6, 20793.	1.6	37
14	Superdiffusion in dispersions of active colloids driven by an external field and their sedimentation equilibrium. Physical Review E, 2016, 93, 042611.	0.8	8
15	Autonomously Propelled Motors for Valueâ€Added Product Synthesis and Purification. Chemistry - A European Journal, 2016, 22, 9072-9076.	1.7	14
16	Light-controlled propulsion, aggregation and separation of water-fuelled TiO ₂ /Pt Janus submicromotors and their "on-the-fly―photocatalytic activities. Nanoscale, 2016, 8, 4976-4983.	2.8	172
17	Wastewater Mediated Activation of Micromotors for Efficient Water Cleaning. Nano Letters, 2016, 16, 817-821.	4.5	142
18	Chemotactic Motion of Catalytic Particles Induced by Chemical Reactions. Journal of the Society of Powder Technology, Japan, 2017, 54, 770-775.	0.0	1

ATION REDO

#	ARTICLE	IF	Citations
19	A Viscosity-Based Model for Bubble-Propelled Catalytic Micromotors. Micromachines, 2017, 8, 198.	1.4	13
20	Poly(ionic liquid)s Based Brush Type Nanomotor. Micromachines, 2018, 9, 364.	1.4	3
21	Hydrodynamic interaction induced breakdown of the state properties of active fluids. Soft Matter, 2018, 14, 5319-5326.	1.2	6
22	Helical micromotor operating under stationary DC electrostatic field. Journal of Chemical Physics, 2019, 150, 014901.	1.2	17
23	Self-propulsion of symmetric chemically active particles: Point-source model and experiments on camphor disks. Physical Review E, 2019, 99, 062605.	0.8	40
24	Light-driven locomotion of a centimeter-sized object at the air–water interface: effect of fluid resistance. RSC Advances, 2019, 9, 8333-8339.	1.7	12
25	A remotely steerable Janus micromotor adsorbent for the active remediation of Cs-contaminated water. Journal of Hazardous Materials, 2019, 369, 416-422.	6.5	33
26	Autonomous Motions of Catalytic Particles in Water. Journal of the Society of Powder Technology, Japan, 2016, 53, 717-723.	0.0	1
27	Abiotic Colloids Exhibiting Active Motion with Semblance of Life. Oleoscience, 2017, 17, 63-75.	0.0	0

CITATION REPORT