Immunotherapeutic approaches in triple-negative brea clinical prospects

Therapeutic Advances in Medical Oncology 5, 169-181 DOI: 10.1177/1758834012475152

Citation Report

#	Article	IF	CITATIONS
1	Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth?. Breast, 2013, 22, 1026-1033.	0.9	43
2	The Critical Role of the Tumor Microenvironment in Shaping Natural Killer Cell-Mediated Anti-Tumor Immunity. Frontiers in Immunology, 2013, 4, 490.	2.2	155
3	Neogenin expression is inversely associated with breast cancer grade in ex vivo. World Journal of Surgical Oncology, 2014, 12, 352.	0.8	7
4	Loss of androgen receptor expression predicts early recurrence in triple-negative and basal-like breast cancer. Modern Pathology, 2014, 27, 352-360.	2.9	125
5	Harnessing the immune system for the treatment of breast cancer. Journal of Zhejiang University: Science B, 2014, 15, 1-15.	1.3	29
6	Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 863-881.	1.5	37
7	Expanding the use of monoclonal antibody therapy of cancer by using ionising radiation to upregulate antibody targets. British Journal of Cancer, 2014, 110, 1472-1480.	2.9	24
8	Cdc20 and securin overexpression predict short-term breast cancer survival. British Journal of Cancer, 2014, 110, 2905-2913.	2.9	133
9	Clinical Activity of Adjuvant Cytokine-Induced Killer Cell Immunotherapy in Patients with Post-Mastectomy Triple-Negative Breast Cancer. Clinical Cancer Research, 2014, 20, 3003-3011.	3.2	68
10	ALK alteration is a frequent event in aggressive breast cancers. Breast Cancer Research, 2015, 17, 127.	2.2	29
11	Positive correlation between expression level of mitochondrial serine hydroxymethyltransferase and breast cancer grade. OncoTargets and Therapy, 2015, 8, 1069.	1.0	19
12	Loss of PTEN expression is associated with aggressive behavior and poor prognosis in Middle Eastern triple-negative breast cancer. Breast Cancer Research and Treatment, 2015, 151, 541-553.	1.1	43
13	The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clinical, 2015, 3, 257-275.	4.1	293
14	A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. , 2015, 3, 43.		114
15	Expression of NY-ESO-1 in Triple-Negative Breast Cancer Is Associated with Tumor-Infiltrating Lymphocytes and a Good Prognosis. Oncology, 2015, 89, 337-344.	0.9	27
16	Breast Cancer: Molecular Mechanisms, Diagnosis, and Treatment. , 2015, , 155-200.		1
17	Immunotherapy for the Treatment of Breast Cancer. Current Oncology Reports, 2015, 17, 5.	1.8	59
18	The evolution of checkpoint blockade as a cancer therapy: what's here, what's next?. Current Opinion in Immunology, 2015, 33, 23-35.	2.4	298

#	Article	IF	CITATIONS
19	Prognostic and predictive value of NanoString-based immune-related gene signatures in a neoadjuvant setting of triple-negative breast cancer: relationship to tumor-infiltrating lymphocytes. Breast Cancer Research and Treatment, 2015, 151, 619-627.	1,1	58
20	The New Era of Cancer Immunotherapy. Advances in Cancer Research, 2015, 128, 1-68.	1.9	41
21	Therapies for triple negative breast cancer. Expert Opinion on Pharmacotherapy, 2015, 16, 983-998.	0.9	85
22	Combination of SF1126 and gefitinib induces apoptosis of triple-negative breast cancer cells through the PI3K/AKT–mTOR pathway. Anti-Cancer Drugs, 2015, 26, 422-427.	0.7	20
23	Role of inflammatory infiltrates in triple negative breast cancer: TableÂ1. Journal of Clinical Pathology, 2015, 68, 506-510.	1.0	89
24	Modelling the spatial heterogeneity and molecular correlates of lymphocytic infiltration in triple-negative breast cancer. Journal of the Royal Society Interface, 2015, 12, 20141153.	1.5	82
25	Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease. Trends in Pharmacological Sciences, 2015, 36, 822-846.	4.0	242
26	Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer. Clinical Cancer Research, 2015, 21, 1688-1698.	3.2	990
27	Chemoradiation Increases PD-L1 Expression in Certain Melanoma and Glioblastoma Cells. Frontiers in Immunology, 2016, 7, 610.	2.2	111
28	TAK1 inhibitor NG25 enhances doxorubicin-mediated apoptosis in breast cancer cells. Scientific Reports, 2016, 6, 32737.	1.6	29
29	CD8+ tumor infiltrating lymphocytes strongly correlate with molecular subtype and clinico-pathological characteristics in breast cancer patients from Sudan. Translational Medicine Communications, 2016, 1, .	0.5	5
30	DGCA: A comprehensive R package for Differential Gene Correlation Analysis. BMC Systems Biology, 2016, 10, 106.	3.0	171
31	Correlation Between MRI and the Level of Tumor-Infiltrating Lymphocytes in Patients With Triple-Negative Breast Cancer. American Journal of Roentgenology, 2016, 207, 1146-1151.	1.0	37
32	Strategies to modulate the immune system in breast cancer: checkpoint inhibitors and beyond. Therapeutic Advances in Medical Oncology, 2016, 8, 360-374.	1.4	37
33	Breast cancer classification and prognostication through diverse systems along with recent emerging findings in this respect; the dawn of new perspectives in the clinical applications. Tumor Biology, 2016, 37, 14479-14499.	0.8	13
34	Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacological Research, 2016, 111, 577-591.	3.1	46
35	Triple-negative breast cancer $\hat{a} \in$ " the past, present and future: recent and emerging trends in immunotherapy. Breast Cancer Management, 2016, 5, 1-5.	0.2	1
36	CD73–adenosine: a next-generation target in immuno-oncology. Immunotherapy, 2016, 8, 145-163.	1.0	110

#	Article	IF	CITATIONS
37	Expression of the MHC Class II Pathway in Triple-Negative Breast Cancer Tumor Cells Is Associated with a Good Prognosis and Infiltrating Lymphocytes. Cancer Immunology Research, 2016, 4, 390-399.	1.6	112
38	Emerging therapeutic targets in metastatic progression: A focus on breast cancer. , 2016, 161, 79-96.		53
39	Molecular Testing and the Pathologist's Role in Clinical Trials of Breast Cancer. Clinical Breast Cancer, 2016, 16, 166-179.	1.1	18
40	Breast cancer survival among young women: a review of the role of modifiable lifestyle factors. Cancer Causes and Control, 2016, 27, 459-472.	0.8	63
41	Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification. Expert Opinion on Therapeutic Targets, 2016, 20, 705-720.	1.5	49
42	CD73 Expression Is an Independent Prognostic Factor in Prostate Cancer. Clinical Cancer Research, 2016, 22, 158-166.	3.2	156
43	Prospective study of cyclophosphamide, thiotepa, carboplatin combined with adoptive DC-CIK followed by metronomic cyclophosphamide therapy as salvage treatment for triple negative metastatic breast cancers patients (aged <45). Clinical and Translational Oncology, 2016, 18, 82-87.	1.2	34
44	Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. Journal of Clinical Pathology, 2016, 69, 422-430.	1.0	117
45	An overview of triple-negative breast cancer. Archives of Gynecology and Obstetrics, 2016, 293, 247-269.	0.8	465
46	Tumor-intrinsic oncogene pathways mediating immune avoidance. Oncolmmunology, 2016, 5, e1086862.	2.1	120
47	Biological network-driven gene selection identifies a stromal immune module as a key determinant of triple-negative breast carcinoma prognosis. Oncolmmunology, 2016, 5, e1061176.	2.1	30
48	More than a scaffold: Stromal modulation of tumor immunity. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 3-13.	3.3	32
49	HAGE in Triple-Negative Breast Cancer Is a Novel Prognostic, Predictive, and Actionable Biomarker: A Transcriptomic and Protein Expression Analysis. Clinical Cancer Research, 2016, 22, 905-914.	3.2	16
50	Macrophage Polarization: Anti-Cancer Strategies to Target Tumor-Associated Macrophage in Breast Cancer. Journal of Cellular Biochemistry, 2017, 118, 2484-2501.	1.2	135
51	Higher densities of Foxp3+ regulatory T cells are associated with better prognosis in triple-negative breast cancer. Breast Cancer Research and Treatment, 2017, 163, 21-35.	1.1	102
52	Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Science Translational Medicine, 2017, 9, .	5.8	422
53	Advancing Immunotherapy in Metastatic Breast Cancer. Current Treatment Options in Oncology, 2017, 18, 35.	1.3	13
54	ADAR1 expression is associated with tumour-infiltrating lymphocytes in triple-negative breast cancer. Tumor Biology, 2017, 39, 101042831773481.	0.8	18

#	Article	IF	CITATIONS
55	Improvement of cytotoxicity of autologous CIKs from patients with breast cancer to MCF-7 cells by suppressed PD-1 expression. Cancer Biomarkers, 2017, 20, 609-615.	0.8	6
56	Interferon-beta represses cancer stem cell properties in triple-negative breast cancer. Proceedings of the United States of America, 2017, 114, 13792-13797.	3.3	93
57	Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells. Bioelectrochemistry, 2017, 113, 42-50.	2.4	23
58	HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget, 2017, 8, 114156-114172.	0.8	139
59	Expression of <scp>MAGE</scp> â€A and <scp>NY</scp> â€ <scp>ESO</scp> â€1 cancer/testis antigens is enriched in tripleâ€negative invasive breast cancers. Histopathology, 2018, 73, 68-80.	1.6	34
60	ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin. Experimental Cell Research, 2018, 366, 24-33.	1.2	25
61	Oncolytic vaccines increase the response to PD-L1 blockade in immunogenic and poorly immunogenic tumors. Oncolmmunology, 2018, 7, e1457596.	2.1	31
62	Where do the immune checkpoint inhibitors stand in the management of triple negative breast cancer?. Immunotherapy, 2018, 10, 247-250.	1.0	2
63	microRNA as a systemic intervention in the specific breast cancer subtypes with Câ€MYC impacts; introducing subtypeâ€based appraisal tool. Journal of Cellular Physiology, 2018, 233, 5655-5669.	2.0	19
64	Immunotherapy in triple-negative breast cancer. Medical Oncology, 2018, 35, 13.	1.2	94
65	Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncolmmunology, 2018, 7, e1421891.	2.1	57
66	Prediction of treatment responses to neoadjuvant chemotherapy in triple-negative breast cancer by analysis of immune checkpoint protein expression. Journal of Translational Medicine, 2018, 16, 87.	1.8	35
67	Effect of CCL5 expression in the recruitment of immune cells in triple negative breast cancer. Scientific Reports, 2018, 8, 4899.	1.6	91
68	The therapeutic candidate for immune checkpoint inhibitors elucidated by the status of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression in triple negative breast cancer (TNBC). Breast Cancer, 2018, 25, 34-42.	1.3	88
69	Predicting the level of tumorâ€infiltrating lymphocytes in patients with tripleâ€negative breast cancer: Usefulness of breast MRI computerâ€aided detection and diagnosis. Journal of Magnetic Resonance Imaging, 2018, 47, 760-766.	1.9	24
70	Fluoxetine induces autophagic cell death via <scp>eEF</scp> 2Kâ€ <scp>AMPK</scp> â€ <scp>mTOR</scp> â€ <scp>ULK</scp> complex axis in triple negative breast cancer. Cell Proliferation, 2018, 51, e12402.	2.4	55
71	Characteristics and prognosis of breast cancer after liver or kidney transplantation. Breast Cancer Research and Treatment, 2018, 167, 101-106.	1.1	6
72	Immune checkpoint inhibitors in cancer therapy. Journal of Biomedical Research, 2018, 32, 317.	0.7	101

#	Article	IF	CITATIONS
73	Subgrouping breast cancer patients based on immune evasion mechanisms unravels a high involvement of transforming growth factor-beta and decoy receptor 3. PLoS ONE, 2018, 13, e0207799.	1.1	21
74	Revitalizing the AZT Through of the Selenium: An Approach in Human Triple Negative Breast Cancer Cell Line. Frontiers in Oncology, 2018, 8, 525.	1.3	14
75	Characterization of the Neuroendocrine Tumor Immune Microenvironment. Pancreas, 2018, 47, 1123-1129.	0.5	63
76	Predictive value of tumor-infiltrating lymphocytes to pathological complete response in neoadjuvant treated triple-negative breast cancers. Diagnostic Pathology, 2018, 13, 66.	0.9	33
77	Efficiency of Cytokine-Induced Killer Cells in Combination with Chemotherapy for Triple-Negative Breast Cancer. Journal of Breast Cancer, 2018, 21, 150.	0.8	12
78	Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nature Immunology, 2018, 19, 885-897.	7.0	152
79	Invasive lobular and ductal breast carcinoma differ in immune response, protein translation efficiency and metabolism. Scientific Reports, 2018, 8, 7205.	1.6	71
80	Immunomodulatory role of histamine H4 receptor in breast cancer. British Journal of Cancer, 2019, 120, 128-138.	2.9	29
81	Decoding Immune Heterogeneity of Triple Negative Breast Cancer and Its Association with Systemic Inflammation. Cancers, 2019, 11, 911.	1.7	40
84	Tumorâ€Targeted Drug and CpG Delivery System for Phototherapy and Docetaxelâ€Enhanced Immunotherapy with Polarization toward M1â€Type Macrophages on Triple Negative Breast Cancers. Advanced Materials, 2019, 31, e1904997.	11.1	238
85	Adjuvant treatment for triple-negative breast cancer: a retrospective study of immunotherapy with autologous cytokine-induced killer cells in 294 patients. Cancer Biology and Medicine, 2019, 16, 350.	1.4	13
86	The Use of Immunotherapy to Treat Metastatic Breast Cancer. Current Medicinal Chemistry, 2019, 26, 941-962.	1.2	14
87	Tumor-Stroma-Inflammation Networks Promote Pro-metastatic Chemokines and Aggressiveness Characteristics in Triple-Negative Breast Cancer. Frontiers in Immunology, 2019, 10, 757.	2.2	119
88	Prognostic value of CD8 + PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. , 2019, 7, 34.		75
89	Incorporating Biomarkers to Improve Statistical Power of Immunotherapeutic Neoadjuvant Clinical Trials in Patients with Triple-Negative Breast Cancer. Statistics in Biopharmaceutical Research, 2019, 11, 210-219.	0.6	0
90	Antiproliferative activities of tricyclic amides derived from β-caryophyllene <i>via</i> the Ritter reaction against MDA-MB-231 breast cancer cells. RSC Medicinal Chemistry, 2020, 11, 118-124.	1.7	4
91	Tumor cell lysate-loaded immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17543-17550.	3.3	54
92	Immunotherapeutic Approaches in Triple-Negative Breast Cancer: State of the Art and Future Perspectives. International Journal of Breast Cancer, 2020, 2020, 1-9.	0.6	7

#	Article	IF	CITATIONS
93	Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nature Communications, 2020, 11, 3806.	5.8	101
94	CAR T-cell therapy for triple-negative breast cancer: Where we are. Cancer Letters, 2020, 491, 121-131.	3.2	28
95	Prognostic Role and Clinical Significance of Tumor-Infiltrating Lymphocyte (TIL) and Programmed Death Ligand 1 (PD-L1) Expression in Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis Study. Diagnostics, 2020, 10, 704.	1.3	54
96	Establishing Correlations between Breast Tumor Response to Radio-Immunotherapy and Radiomics from Multi-Parametric Imaging: An Animal Study. Applied Sciences (Switzerland), 2020, 10, 6493.	1.3	2
97	De novo necroptosis creates an inflammatory environment mediating tumor susceptibility to immune checkpoint inhibitors. Communications Biology, 2020, 3, 645.	2.0	30
98	Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research, 2020, 22, 61.	2.2	1,022
99	Streamlined selection of cancer antigens for vaccine development through integrative multi-omics and high-content cell imaging. Scientific Reports, 2020, 10, 5885.	1.6	5
100	Notch-Inflammation Networks in Regulation of Breast Cancer Progression. Cells, 2020, 9, 1576.	1.8	11
101	Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer, 2020, 2, zcaa002.	1.6	142
102	A new immunotherapy schedule in addition to first-line hormone therapy for metastatic breast cancer patients in a state of clinical benefit during hormone therapy. Journal of Molecular Medicine, 2020, 98, 375-382.	1.7	7
103	Assessment of outcomes and novel immune biomarkers in metaplastic breast cancer: a single institution retrospective study. World Journal of Surgical Oncology, 2020, 18, 11.	0.8	19
104	Gemcitabine and doxorubicin in immunostimulatory monophosphoryl lipid A liposomes for treating breast cancer. Bioengineering and Translational Medicine, 2021, 6, e10188.	3.9	14
105	Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation. Journal of Immunology Research, 2021, 2021, 1-18.	0.9	7
107	Atovaquone Suppresses Triple-Negative Breast Tumor Growth by Reducing Immune-Suppressive Cells. International Journal of Molecular Sciences, 2021, 22, 5150.	1.8	19
108	Combined Radionuclide Therapy and Immunotherapy for Treatment of Triple Negative Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 4843.	1.8	8
110	Autologous tumor antigens and boron nanosheet-based nanovaccines for enhanced photo-immunotherapy against immune desert tumors. Nanophotonics, 2021, 10, 2519-2535.	2.9	8
111	Multiplexed imaging analysis of the tumor-immune microenvironment reveals predictors of outcome in triple-negative breast cancer. Communications Biology, 2021, 4, 852.	2.0	25
112	Immune checkpoint blockade in triple negative breast cancer influenced by B cells through myeloid-derived suppressor cells. Communications Biology, 2021, 4, 859.	2.0	13

#	Article	IF	CITATIONS
113	Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets. Biomolecules, 2021, 11, 1232.	1.8	20
114	Unveiling Novel Therapeutic Drug Targets and Prognostic Markers of Triple Negative Breast Cancer. Current Cancer Drug Targets, 2021, 21, 907-918.	0.8	7
115	FolateÂreceptor-mediated delivery of 1-MDT-loaded mesoporous silica magnetic nanoparticles to target breast cancer cells. Nanomedicine, 2021, 16, 2137-2154.	1.7	11
116	Sensitive detection of PD-L1 expression on circulating epithelial tumor cells (CETCs) could be a potential biomarker to select patients for treatment with PD-1/PD-L1 inhibitors in early and metastatic solid tumors. Oncotarget, 2017, 8, 72755-72772.	0.8	43
117	Large-scale in-silico identification of a tumor-specific antigen pool for targeted immunotherapy in triple-negative breast cancer. Oncotarget, 2019, 10, 2515-2529.	0.8	11
118	The Influence of Host Factors on the Prognosis of Breast Cancer: Stroma and Immune Cell Components as Cancer Biomarkers. Current Cancer Drug Targets, 2015, 15, 652-664.	0.8	33
119	Prediction of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer by Subtype Using Tumor-infiltrating Lymphocytes. Anticancer Research, 2018, 38, 2311-2321.	0.5	37
120	Increased Tumour Infiltration of CD4+ and CD8+ T-Lymphocytes in Patients with Triple Negative Breast Cancer Suggests Susceptibility to Immune Therapy. Asian Pacific Journal of Cancer Prevention, 2017, 18, 1827-1832.	0.5	10
121	An Integrative Genomics Approach for Associating Genetic Susceptibility with the Tumor Immune Microenvironment in Triple Negative Breast Cancer. Biomedical Journal of Scientific & Technical Research, 2019, 15, .	0.0	1
122	Radiotherapy and immune checkpoint blockades: a snapshot in 2016. Radiation Oncology Journal, 2016, 34, 250-259.	0.7	26
123	Evaluation of CD30/CD4/CD8 in triple-negative invasive ductal carcinoma of breast in association with clinicopathological prognostic factors. Indian Journal of Pathology and Microbiology, 2018, 61, 500.	0.1	3
124	Predictive Value of Tertiary Lymphoid Structures Assessed by High Endothelial Venule Counts in the Neoadjuvant Setting of Triple-Negative Breast Cancer. Cancer Research and Treatment, 2017, 49, 399-407.	1.3	97
125	Immune Checkpoint Inhibitors: Therapeutic Tools for Breast Cancer. Asian Pacific Journal of Cancer Prevention, 2016, 17, 905-910.	0.5	23
126	RNA-Based Therapeutics: Current Developments in Targeted Molecular Therapy of Triple-Negative Breast Cancer. Pharmaceutics, 2021, 13, 1694.	2.0	17
128	Triple-negative breast cancer $\hat{a} \in$ " the past, present and future: recent and emerging trends in immunotherapy. Breast Cancer Management, 0, , .	0.2	0
129	Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Frontiers in Oncology, 2021, 11, 766248.	1.3	7
130	Combination of CTLA-4 blockade with MUC1 mRNA nanovaccine induces enhanced anti-tumor CTL activity by modulating tumor microenvironment of triple negative breast cancer. Translational Oncology, 2022, 15, 101298.	1.7	7
131	Clinical Significance of Expression of Immunoadjuvant Molecules (LAG-3, TIM-3, OX-40) in Neoadjuvant Chemotherapy for Breast Cancer. Anticancer Research, 2022, 42, 125-136.	0.5	6

ARTICLE IF CITATIONS # Clinicopathologic and Genomic Features in Triple-Negative Breast Cancer Between Special and 132 1.3 2 No-Special Morphologic Pattern. Frontiers in Oncology, 2022, 12, 830124. Advances in the Prevention and Treatment of Obesity-Driven Effects in Breast Cancers. Frontiers in 134 1.3 Oncology, 0, 12, . A Cell-Based Systematic Review on the Role of Annexin A1 in Triple-Negative Breast Cancers. 135 1.8 6 International Journal of Molecular Sciences, 2022, 23, 8256. Triple negative breast cancer: approved treatment options and their mechanisms of action. Journal of 1.2 Cancer Research and Clinical Oncology, 2023, 149, 3701-3719. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. 137 4.8 22 Journal of Controlled Release, 2022, 349, 844-875. Integrating Genomic Information with Tumor-Immune Microenvironment in Triple-Negative Breast Cancer. International Journal of Environmental Research and Public Health, 2022, 19, 13901. 1.2 Global research trends on anti-PD-1/anti-PD-L1 immunotherapy for triple-negative breast cancer: A 139 1.31 scientometric analysis. Frontiers in Oncology, 0, 12, . Sialyl LewisX/A and Cytokeratin Crosstalk in Triple Negative Breast Cancer. Cancers, 2023, 15, 731. 140 1.7

CITATION REPORT

141 ĐĐ¾Đ»ÑŒ Đ,Đ¼Đ¼Đ¼Đ1/2Đ1/2Đ3/4Đ3Đ3/4 Đ1/4Đ,ĐºÑ€Đ3/4Đ3/4ĐºÑ€ÑfжеĐ1/2Đ,Ñ+Đ2 Ñ€Đ°Đ+Đ2Đ,Ñ,Đ,Đ, Ñ€Đ°Đ**•**Đ,2Đ1/4Đ3/0Đ»Đ3/4҇ł

142	Antimicrobial exposure is associated with decreased survival in triple-negative breast cancer. Nature Communications, 2023, 14, .	5.8	5
149	Chimeric antigen receptor (CAR)-T cell therapy in triple-negative breast cancer: current status and future perspectives. , 2024, , .		0