Soil conditions and cereal root system architecture: rev linking Darwin and Weaver

Journal of Experimental Botany 64, 1193-1208 DOI: 10.1093/jxb/ert043

Citation Report

#	Article	IF	CITATIONS
1	Post-embryonic root organogenesis in cereals: branching out from model plants. Trends in Plant Science, 2013, 18, 459-467.	4.3	142
2	Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.). Rice, 2013, 6, 30.	1.7	24
3	A DNA-based method for studying root responses to drought in field-grown wheat genotypes. Scientific Reports, 2013, 3, 3194.	1.6	29
4	Gas Diffusion, Non-Darcy Air Permeability, and Computed Tomography Images of a Clay Subsoil Affected by Compaction. Soil Science Society of America Journal, 2013, 77, 1977-1990.	1.2	71
5	Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta, 2014, 240, 667-678.	1.6	95
6	Image-Based High-Throughput Field Phenotyping of Crop Roots. Plant Physiology, 2014, 166, 470-486.	2.3	239
7	Root architecture and root and tuber crop productivity. Trends in Plant Science, 2014, 19, 419-425.	4.3	135
8	Developing phosphorus-efficient crop varieties—An interdisciplinary research framework. Field Crops Research, 2014, 162, 87-98.	2.3	68
10	Reprint of "Developing phosphorus-efficient crop varieties—An interdisciplinary research framework― Field Crops Research, 2014, 165, 49-60.	2.3	17
11	Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding. Journal of Experimental Botany, 2014, 65, 6231-6249.	2.4	134
12	Using tube rhizotrons to measure variation in depth penetration rate among modern North-European winter wheat (Triticum aestivum L.) cultivars. Euphytica, 2014, 199, 233-245.	0.6	29
13	Abscisic Acid: Hidden Architect of Root System Structure. Plants, 2015, 4, 548-572.	1.6	120
14	Changes in root architecture under elevated concentrations of <scp>CO</scp> ₂ and nitrogen reflect alternate soil exploration strategies. New Phytologist, 2015, 205, 1153-1163.	3.5	50
15	Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	221
16	Genetic improvement for root growth angle to enhance crop production. Breeding Science, 2015, 65, 111-119.	0.9	103
17	A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice, 2015, 8, 8.	1.7	65
18	QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice, 2015, 8, 16.	1.7	69
19	High-throughput phenotyping of seminal root traits in wheat. Plant Methods, 2015, 11, 13.	1.9	150

#	Article	IF	CITATIONS
20	Sequencing, assembly, annotation, and gene expression: novel insights into the hormonal control of carrot root development revealed by a high-throughput transcriptome. Molecular Genetics and Genomics, 2015, 290, 1379-1391.	1.0	37
21	qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. Journal of Experimental Botany, 2015, 66, 2723-2732.	2.4	64
22	Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping. Journal of Experimental Botany, 2015, 66, 5441-5452.	2.4	21
23	Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across <i>Brachypodium distachyon</i> Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments. Plant Physiology, 2015, 168, 953-967.	2.3	44
24	Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology, 2015, 32, 93-98.	3.3	351
25	Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biology and Biochemistry, 2015, 80, 34-44.	4.2	104
26	Effects of Nitrogen Application on Root Length and Grain Yield of Rainâ€Fed Maize under Different Soil Types. Agronomy Journal, 2016, 108, 1656-1665.	0.9	28
27	Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. Frontiers in Plant Science, 2016, 07, 1335.	1.7	359
28	Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops. Frontiers in Plant Science, 2016, 7, 1584.	1.7	157
29	Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits. Frontiers in Plant Science, 2016, 7, 1864.	1.7	27
30	Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Scientific Reports, 2016, 6, 28084.	1.6	198
31	Automated characterization of the mature root system form by a double-quadrangle-shaped polygon. , 2016, , .		1
32	Effect of twenty four wheat genotypes on soil biochemical and microbial properties. Plant and Soil, 2016, 404, 141-155.	1.8	42
33	The influence of soil drying- and tillage-induced penetration resistance on maize root growth in a clayey soil. Journal of Integrative Agriculture, 2016, 15, 1112-1120.	1.7	20
34	Rhizobial strains exert a major effect on the amino acid composition of alfalfa nodules under NaCl stress. Plant Physiology and Biochemistry, 2016, 108, 344-352.	2.8	19
35	Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of <i>TaSHY2</i> and <i>TalAA7</i> , and Enhances Root Length and Biomass in Wheat. Plant and Cell Physiology, 2016, 57, 2076-2090.	1.5	44
36	Plant roots: understanding structure and function in an ocean of complexity. Annals of Botany, 2016, 118, 555-559.	1.4	55
37	X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture. Plant Physiology, 2016, 171, 2028-2040.	2.3	87

#	Article	IF	CITATIONS
38	A quantitative analysis of root distortion from contrasting wheat cropping systems. Plant and Soil, 2016, 404, 173-192.	1.8	8
39	Wheats developed for high yield on stored soil moisture have deep vigorous root systems. Functional Plant Biology, 2016, 43, 173.	1.1	27
40	archiDART: an R package for the automated computation of plant root architectural traits. Plant and Soil, 2016, 398, 351-365.	1.8	27
41	Extreme rainfall and snowfall alter responses of soil respiration to nitrogen fertilization: a 3â€year field experiment. Global Change Biology, 2017, 23, 3403-3417.	4.2	45
42	What crop type for atmospheric carbon sequestration: Results from a global data analysis. Agriculture, Ecosystems and Environment, 2017, 243, 34-46.	2.5	53
43	Maize root morphology responses to soil penetration resistance related to tillage and drought in a clayey soil. Journal of Agricultural Science, 2017, 155, 1137-1149.	0.6	16
44	Association between root growth angle and root length density of a near-isogenic line of IR64 rice with <i>DEEPER ROOTING 1</i> under different levels of soil compaction. Plant Production Science, 2017, 20, 162-175.	0.9	26
45	Root growth dynamics and fruit yield of melon (Cucumis melo L) genotypes at two locations with sandy loam and clay soils. Soil and Tillage Research, 2017, 168, 50-62.	2.6	18
46	Root growth in field-grown winter wheat: Some effects of soil conditions, season and genotype. European Journal of Agronomy, 2017, 91, 74-83.	1.9	77
47	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930.	1.8	162
47 48		1.8 4.4	162 464
	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930. Drought and host selection influence bacterial community dynamics in the grass root microbiome.		
48	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME Journal, 2017, 11, 2691-2704.	4.4	464
48 49	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME Journal, 2017, 11, 2691-2704. Shaping an Optimal Soil by Root–Soil Interaction. Trends in Plant Science, 2017, 22, 823-829. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning. Functional Plant Biology, 2017, 44,	4.4 4.3	464 87
48 49 50	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME Journal, 2017, 11, 2691-2704. Shaping an Optimal Soil by Root–Soil Interaction. Trends in Plant Science, 2017, 22, 823-829. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning. Functional Plant Biology, 2017, 44, 10. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of <i>Arabidopsis thaliana</i>	4.4 4.3 1.1	464 87 39
48 49 50 51	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME Journal, 2017, 11, 2691-2704. Shaping an Optimal Soil by Root–Soil Interaction. Trends in Plant Science, 2017, 22, 823-829. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning. Functional Plant Biology, 2017, 44, 10. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of <i>Arabidopsis thaliana</i> American Journal of Botany, 2017, 104, 1802-1815. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root	4.4 4.3 1.1 0.8	464 87 39 7
48 49 50 51 52	Shaping 3D Root System Architecture. Current Biology, 2017, 27, R919-R930. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME Journal, 2017, 11, 2691-2704. Shaping an Optimal Soil by Rootâ€"Soil Interaction. Trends in Plant Science, 2017, 22, 823-829. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning. Functional Plant Biology, 2017, 44, 10. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of <i>Arabidopsis thaliana Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density. Frontiers in Plant Science, 2017, 8, 282. A Soil-Plate Based Pipeline for Assessing Cereal Root Growth in Response to Polyethylene Glycol</i>	4.4 4.3 1.1 0.8 1.7	464 87 39 7 15

		CITATION REPORT		
#	Article		IF	CITATIONS
56	Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere,	2018, 6, 47-51.	1.4	213
57	Measuring root system traits of wheat in 2D images to parameterize 3D root architect Plant and Soil, 2018, 425, 457-477.	ure models.	1.8	21
58	Morphological responses of plant roots to mechanical stress. Annals of Botany, 2018,	122, 711-723.	1.4	51
59	Plant-associated Bacillus modulates the expression of auxin-responsive genes of rice ar root architecture. Rhizosphere, 2018, 5, 57-66.	nd modifies the	1.4	89
60	Growth and root responses of woody species to rocky substrate: implications for gully rehabilitation. Plant Biosystems, 2018, 152, 918-928.		0.8	2
61	Maize and wheat root biomass, vertical distribution, and size class as affected by fertili intensity in two long-term field trials. Field Crops Research, 2018, 216, 197-208.	ization	2.3	60
62	Root system architecture in winter varieties of spelt (<i>Triticumspelta</i> L.). BIO Wel Conferences, 2018, 10, 01019.	o of	0.1	0
63	Progressive drought alters architectural and anatomical traits of rice roots. Rice, 2018,	11, 62.	1.7	60
64	Anatomical modifications of Butia capitata propagated under colored shade nets. Anai Brasileira De Ciencias, 2018, 90, 3615-3624.	s Da Academia	0.3	4
65	Relay Intercropping with Cover Crops Improved Autumn Forage Potential of Sweet Ma Agriculture (Switzerland), 2018, 8, 103.	ize Stover.	1.4	6
67	Screening wheat genotypes for better performance on reduced phosphorus supply by glasshouse experiments with field trials. Plant and Soil, 2018, 430, 349-360.	comparing	1.8	11
68	Root architectural traits and yield: exploring the relationship in barley breeding trials. E 2018, 214, 1.	uphytica,	0.6	46
69	Existing and Potential Statistical and Computational Approaches for the Analysis of 3D Plant Roots. Agronomy, 2018, 8, 71.) CT Images of	1.3	21
70	Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D image analysis. BMC Genomics, 2018, 19, 273.	root system	1.2	12
71	Drought responsive transcriptome profiling in roots of contrasting rice genotypes. Indi Plant Physiology, 2018, 23, 393-407.	ian Journal of	0.8	19
72	Overexpression of RCc3 improves root system architecture and enhances salt toleranc Physiology and Biochemistry, 2018, 130, 566-576.	e in rice. Plant	2.8	21
73	Yield components and reproductive, physiological, and root traits used in early selectic nitrogen use efficiency in corn. Pesquisa Agropecuaria Brasileira, 2018, 53, 620-632.	on for	0.9	0
74	Studying root water uptake of wheat genotypes in different soils using water δ180 sta Agriculture, Ecosystems and Environment, 2018, 264, 119-129.	able isotopes.	2.5	14

#	Article	IF	CITATIONS
75	Root morphological traits of winter wheat under contrasting environments. Journal of Agronomy and Crop Science, 2019, 205, 571-585.	1.7	11
76	Genotype by environment interaction for seeds yield in pea (Pisum sativum L.) using additive main effects and multiplicative interaction model. Euphytica, 2019, 215, 1.	0.6	26
77	Maize root distributions strongly associated with water tables in Iowa, USA. Plant and Soil, 2019, 444, 225-238.	1.8	26
78	Soil compaction and the architectural plasticity of root systems. Journal of Experimental Botany, 2019, 70, 6019-6034.	2.4	166
79	Alien chromosome segment from Aegilops speltoides and Dasypyrum villosum increases drought tolerance in wheat via profuse and deep root system. BMC Plant Biology, 2019, 19, 242.	1.6	21
80	Scanner-Based Minirhizotrons Help to Highlight Relations between Deep Roots and Yield in Various Wheat Cultivars under Combined Water and Nitrogen Deficit Conditions. Agronomy, 2019, 9, 297.	1.3	19
81	Mitigation of Cadmium Stress in Cereals. , 2019, , 401-422.		2
82	Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops. Frontiers in Plant Science, 2019, 10, 237.	1.7	52
83	Roots and Uptake of Water and Nutrients. , 2019, , 107-130.		2
84	On-farm study reveals positive relationship between gas transport capacity and organic carbon content in arable soil. Soil, 2019, 5, 91-105.	2.2	19
85	Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS ONE, 2019, 14, e0214145.	1.1	36
86	Semi-automated Root Image Analysis (saRIA). Scientific Reports, 2019, 9, 19674.	1.6	33
87	Root growth dynamics and yield responses of rice (Oryza sativa L.) under drought—Flood abrupt alternating conditions. Environmental and Experimental Botany, 2019, 157, 11-25.	2.0	31
88	Variability of leaf photosynthetic characteristics in rice and its relationship with resistance to water stress under different nitrogen nutrition regimes. Physiologia Plantarum, 2019, 167, 613-627.	2.6	3
89	Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant and Soil, 2019, 439, 57-73.	1.8	38
90	Genetic analysis of roots and shoots in rice seedling by association mapping. Genes and Genomics, 2019, 41, 95-105.	0.5	27
91	Energy costs of salt tolerance in crop plants. New Phytologist, 2020, 225, 1072-1090.	3.5	284
92	The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant and Soil, 2020, 447, 39-53.	1.8	36

#	Article	IF	CITATIONS
93	Interspecific variation in root penetration abilities of 15 wild plants in the Mongolian steppe. Journal of Arid Environments, 2020, 173, 104010.	1.2	1
94	Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry, 2020, 146, 1-12.	2.8	260
95	Wheat root system architecture and soil moisture distribution in an aggregated soil using neutron computed tomography. Geoderma, 2020, 359, 113988.	2.3	23
96	Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities. Trends in Plant Science, 2020, 25, 105-118.	4.3	141
97	Characteristics of the root system in two Brazilian upland rice varieties which exhibit contrasting behavior towards drought tolerance. Semina:Ciencias Agrarias, 2020, 41, 421-434.	0.1	3
98	Genomic prediction of yield and root development in wheat under changing water availability. Plant Methods, 2020, 16, 90.	1.9	25
99	Characterising the effect of crop species and fertilisation treatment on root fungal communities. Scientific Reports, 2020, 10, 18741.	1.6	6
100	Biopore-Induced Deep Root Traits of Two Winter Crops. Agriculture (Switzerland), 2020, 10, 634.	1.4	15
101	Accessing Legacy Phosphorus in Soils. Soil Systems, 2020, 4, 74.	1.0	35
102	Conserved <i>LBL1-ta-siRNA</i> and miR165/166 <i>-RLD1/2</i> modules regulate root development in maize. Development (Cambridge), 2021, 148, .	1.2	9
103	Factors influencing elemental micronutrient supply from pasture systems for grazing ruminants. Advances in Agronomy, 2020, , 161-229.	2.4	20
104	OsPP2C09, a negative regulatory factor in abscisic acid signalling, plays an essential role in balancing plant growth and drought tolerance in rice. New Phytologist, 2020, 227, 1417-1433.	3.5	38
105	Molecular Genetic Analysis of Drought Stress Response Traits in Brachypodium spp Agronomy, 2020, 10, 518.	1.3	1
106	Plant Growth-Promoting Bacillus sp. Cahoots Moisture Stress Alleviation in Rice Genotypes by Triggering Antioxidant Defense System. Microbiological Research, 2020, 239, 126518.	2.5	40
107	The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta, 2020, 251, 84.	1.6	67
108	Effect of irrigation methods on root growth, root-shoot ratio and yield components of cotton by regulating the growth redundancy of root and shoot. Agricultural Water Management, 2020, 234, 106120.	2.4	50
109	Characterization of root traits for improvement of spring wheat in the Pacific Northwest. Agronomy Journal, 2020, 112, 228-240.	0.9	9
110	What should organic farmers grow: heritage or modern spring wheat cultivars?. Organic Agriculture, 2020, 10, 93-108.	1.2	4

#	Article	IF	CITATIONS
111	Maize root biomass and architecture depend on site but not on variety: Consequences for prediction of C inputs and spread in topsoil based on root-to-shoot ratios. European Journal of Agronomy, 2020, 119, 126121.	1.9	6
112	The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. Journal of Experimental Botany, 2020, 71, 4452-4468.	2.4	119
113	Root phenotypes of young wheat plants grown in controlled environments show inconsistent correlation with mature root traits in the field. Journal of Experimental Botany, 2020, 71, 4751-4762.	2.4	43
114	Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance. Plant Physiology, 2020, 183, 1011-1025.	2.3	76
115	Variation in Endophytic Bacterial Communities Associated with the Rhizomes of Tropical Bamboos. Journal of Sustainable Forestry, 2021, 40, 111-123.	0.6	10
116	Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 2021, 461, 219-244.	1.8	109
117	Enhanced root carbon allocation through organic farming is restricted to topsoils. Science of the Total Environment, 2021, 755, 143551.	3.9	15
118	Barley. , 2021, , 164-195.		6
119	Soil Texture, Sampling Depth and Root Hairs Shape the Structure of ACC Deaminase Bacterial Community Composition in Maize Rhizosphere. Frontiers in Microbiology, 2021, 12, 616828.	1.5	23
120	Genome-Wide Association Study of Topsoil Root System Architecture in Field-Grown Soybean [Glycine max (L.) Merr.]. Frontiers in Plant Science, 2020, 11, 590179.	1.7	7
121	Genome-Wide Analysis of the Catharanthus roseus RLK1-Like in Soybean and GmCrRLK1L20 Responds to Drought and Salt Stresses. Frontiers in Plant Science, 2021, 12, 614909.	1.7	16
122	Effect of Water Stress on Germination and Seedling Characteristics of Some bread Wheat Cultivars (Triticum aestivum). Iranian Journal of Seed Research, 2021, 7, 151-170.	0.0	1
125	Transcriptome sequencing analysis of maize roots reveals the effects of substrate and root hair formation in a spatial context. Plant and Soil, 2022, 478, 211-228.	1.8	9
126	Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 2021, 134, 1645-1662.	1.8	74
127	Determinants of root system architecture for futureâ€ready, stressâ€resilient crops. Physiologia Plantarum, 2021, 172, 2090-2097.	2.6	25
128	Reducing environmental risk by improving crop management practices at high crop yield levels. Field Crops Research, 2021, 265, 108123.	2.3	25
129	The ability of maize roots to grow through compacted soil is not dependent on the amount of roots formed. Field Crops Research, 2021, 264, 108013.	2.3	10
130	Responses of a root system structure to soil compaction stress among maize (<i>Zea mays L</i> .) hybrids. Journal of Agronomy and Crop Science, 2022, 208, 106-119.	1.7	6

	CITATION RE	PORT	
# 132	ARTICLE Long-term effects of contrasting tillage systems on soil C and N pools and on main microbial groups	IF 2.6	CITATIONS
132	differ by crop sequence. Soil and Tillage Research, 2021, 211, 104995. Reversible and irreversible root phenotypic plasticity under fluctuating soil physical conditions. Environmental and Experimental Botany, 2021, 188, 104494.	2.0	7
134	Roots and Uptake of Water and Nutrients. , 2018, , 1-24.		13
135	Nutrient Use and Nutrient Use Efficiency of Crops in a High CO2 Atmosphere. Plant Ecophysiology, 2014, , 229-252.	1.5	10
136	Abiotic Stress and Applications of Omics Approaches to Develop Stress Tolerance in Agronomic Crops. , 2020, , 557-578.		4
137	Genome-Wide Association Mapping of Root Traits in a Japonica Rice Panel. PLoS ONE, 2013, 8, e78037.	1.1	259
139	Bakır, Çinko ve Fosfor İçerikli Priming Uygulamalarının BuÄŸday ve Arpada Tohum ve Fide İçeriÄŸi Ã Etkileri. Turkish Journal of Agricultural and Natural Sciences, 2020, 7, 104-111.	æzerine 0.1	3
140	Sugar Beet Shoot and Root Phenotypic Plasticity to Nitrogen, Phosphorus, Potassium and Lime Omission. Agriculture (Switzerland), 2021, 11, 21.	1.4	16
141	Plant Gravitropism: From Mechanistic Insights into Plant Function on Earth to Plants Colonizing Other Worlds. Methods in Molecular Biology, 2022, 2368, 1-41.	0.4	10
143	Flora and Vegetation in Different Physiognomies of a Mussununga in Southeastern Brazil. Floresta E Ambiente, 2019, 26, .	0.1	1
144	Ecophysiology and Responses of Plants Under Drought. , 2020, , 231-268.		2
145	Harnessing root architecture to address global challenges. Plant Journal, 2022, 109, 415-431.	2.8	93
146	Considerations for Selecting Potassium Placement Methods in Soil. , 2021, , 341-362.		1
147	Root development on cuttings of seven arctic shrub species for revegetation. Arctic, Antarctic, and Alpine Research, 2021, 53, 237-251.	0.4	3
148	Complementary Phenotyping of Maize Root System Architecture by Root Pulling Force and X-Ray Imaging. Plant Phenomics, 2021, 2021, 9859254.	2.5	13
149	Variation in Root System Architecture among the Founder Parents of Two 8-way MAGIC Wheat Populations for Selection in Breeding. Agronomy, 2021, 11, 2452.	1.3	6
150	Investigation of soil nutrients and associated rhizobacterial communities in different sugarcane genotypes in relation to sugar content. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	11
152	The Right-Skewed Distribution of Fine-Root Size in Three Temperate Forests in Northeastern China. Frontiers in Plant Science, 2021, 12, 772463.	1.7	2

#	Article	IF	CITATIONS
153	Harnessing soil bacteria and their benefits for sustainable agriculture with changing climate CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2022, 17, .	0.6	4
154	Integrated root phenotypes for improved rice performance under low nitrogen availability. Plant, Cell and Environment, 2022, 45, 805-822.	2.8	23
155	The root system architecture of wheat establishing in soil is associated with varying elongation rates of seminal roots: quantification using 4D magnetic resonance imaging. Journal of Experimental Botany, 2022, 73, 2050-2060.	2.4	19
156	Evaluation of Vetiver Volatile Compound Production under Aeroponic-Grown Conditions for the Perfume Industry. Molecules, 2022, 27, 1942.	1.7	2
157	Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties. Journal of Integrative Agriculture, 2022, 21, 1310-1320.	1.7	15
158	Nutripriming with ammonium nitrate improves emergence and root architecture and promotes an increase in nitrogen content in upland rice seedlings. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102331.	1.5	5
159	Physiological and Morphological Responses of Okra (Abelmoschus esculentus L.) to Rhizoglomus irregulare Inoculation under Ample Water and Drought Stress Conditions Are Cultivar Dependent. Plants, 2022, 11, 89.	1.6	4
160	Genomic Designing for Abiotic Stress Tolerance in Pea (Pisum Sativum L.). , 2022, , 45-113.		2
161	Development of an Algorithm to Indicate the Right Moment of Plant Watering Using the Analysis of Plant Biomasses Based on Dahlia × hybrida. Sustainability, 2022, 14, 5165.	1.6	0
164	Physiological, Biochemical, and Molecular Responses of Young Cacao Plants Grown in Coastal Plain Compacted Soil, with Location and Phosphorus Limitation. Journal of Plant Growth Regulation, 0, , .	2.8	0
165	Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants, 2022, 11, 1855.	1.6	23
166	Impact of Collembola on the Winter Wheat Growth in Soil Infected by Soil-Borne Pathogenic Fungi. Agronomy, 2022, 12, 1599.	1.3	2
167	Nutrient Acquisition with Particular Reference to Subsoil Constraints. , 2022, , 289-321.		7
168	Genetic modification of <i>PIN</i> genes induces causal mechanisms of stay-green drought adaptation phenotype. Journal of Experimental Botany, 2022, 73, 6711-6726.	2.4	9
169	Characterization of a Soybean (Glycine max L. Merr.) Population for Germination and Seedling Root Traits under Water Stress. Agronomy, 2022, 12, 1944.	1.3	1
170	Effects of revetments on soil ecosystems in the urban river-riparian interface. IScience, 2022, 25, 105277.	1.9	1
171	Phenotypic Diversity of Seminal Root Traits in Bread Wheat Germplasm from Different Origins. Plants, 2022, 11, 2842.	1.6	4
173	Integrated nutrient management in spring-maize improves yield, nutrient use efficiency and minimizes greenhouse gas intensity. Archives of Agronomy and Soil Science, 2023, 69, 2522-2536.	1.3	1

#	Article	IF	CITATIONS
174	Triggering root system plasticity in a changing environment with bacterial bioinoculants – Focus on plant P nutrition. Plant and Soil, 0, , .	1.8	0
175	Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 0, 13, .	1.7	25
176	Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Frontiers in Plant Science, 0, 13, .	1.7	30
177	Differences in Root Morphologies of Contrasting Wheat (Triticum aestivum) Genotypes Are Robust of a Drought Treatment. Plants, 2023, 12, 275.	1.6	3
178	Deficiencies of Secondary Nutrients in Crop Plants—A Real Challenge to Improve Nitrogen Management. Agronomy, 2023, 13, 66.	1.3	4
179	Genetic and environmental regulation of root growth and development. , 2023, , 523-543.		0
180	Ion-uptake mechanisms of individual cells and roots: short-distance transport. , 2023, , 11-71.		4
181	Responses of root architecture and the rhizosphere microbiome assembly of maize (Zea mays L.) to a soil texture gradient. Soil Biology and Biochemistry, 2023, 181, 109026.	4.2	3
182	Crop root system plasticity for improved yields in saline soils. Frontiers in Plant Science, 0, 14, .	1.7	15
183	Root angle, phosphorus, and water: Interactions and effects on durum wheat genotype performance in drought-prone environments. Plant and Soil, 0, , .	1.8	7
184	Perennial grass root system specializes for multiple resource acquisitions with differential elongation and branching patterns. Frontiers in Plant Science, 0, 14, .	1.7	2
185	Response network and regulatory measures of plant-soil-rhizosphere environment to drought stress. Advances in Agronomy, 2023, , 93-196.	2.4	2
186	Differences in soil physicochemical properties and rhizosphere microbial communities of flue-cured tobacco at different transplantation stages and locations. Frontiers in Microbiology, 0, 14, .	1.5	1
187	Small RNAs as emerging regulators of agricultural traits of food crops. , 2023, , 69-106.		0
191	Soil Physical Productivity and Plant Growth. , 2023, , 1-32.		0