<scp>BAY</scp> 87â€2243, a highly potent and selective activation has antitumor activities by inhibition of mite

Cancer Medicine 2, 611-624 DOI: 10.1002/cam4.112

Citation Report

#	ARTICLE	IF	CITATIONS
1	BAY 87–2243, a novel inhibitor of hypoxia-induced gene activation, improves local tumor control after fractionated irradiation in a schedule-dependent manner in head and neck human xenografts. Radiation Oncology, 2014, 9, 207.	1.2	50
2	Synthesis and structure–activity relationships of novel, potent, orally active hypoxia-inducible factor-1 inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 5513-5529.	1.4	5
3	Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation. International Journal of Radiation Oncology Biology Physics, 2014, 88, 159-166.	0.4	29
4	Tumor aerobic glycolysis: new insights into therapeutic strategies with targeted delivery. Expert Opinion on Biological Therapy, 2014, 14, 1145-1159.	1.4	43
5	Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor- $1\hat{l}$ in cancer cells. Scientific Reports, 2015, 5, 14296.	1.6	38
6	Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance. Journal of Experimental Medicine, 2015, 212, 2223-2234.	4.2	65
7	SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle, 2015, 14, 3734-3747.	1.3	25
8	Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth. Cancer & Metabolism, 2015, 3, 11.	2.4	139
9	Targeting respiratory complex I to prevent the Warburg effect. International Journal of Biochemistry and Cell Biology, 2015, 63, 41-45.	1.2	28
10	The emerging role of hypoxia-inducible factor-2 involved in chemo/radioresistance in solid tumors. Cancer Treatment Reviews, 2015, 41, 623-633.	3.4	44
11	18F-FAZA PET Imaging Response Tracks the Reoxygenation of Tumors in Mice upon Treatment with the Mitochondrial Complex I Inhibitor BAY 87-2243. Clinical Cancer Research, 2015, 21, 335-346.	3.2	24
12	Novel therapeutic targets and predictive markers for hepatocellular carcinoma. Expert Opinion on Therapeutic Targets, 2015, 19, 973-983.	1.5	9
13	Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition. Journal of Medicinal Chemistry, 2015, 58, 7659-7671.	2.9	19
14	Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 689-721.	2.5	93
15	Inhibition of oxidative phosphorylation suppresses the development of osimertinib resistance in a preclinical model of EGFR-driven lung adenocarcinoma. Oncotarget, 2016, 7, 86313-86325.	0.8	34
16	MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget, 2016, 7, 24466-24482.	0.8	103
17	Control of the heart rate of rat embryos during the organogenic period. Hypoxia (Auckland, N Z), 2016, Volume 4, 147-159.	1.9	2
18	The 2-oxoglutarate analog 3-oxoglutarate decreases normoxic hypoxia-inducible factor-1α in cancer cells, induces cell death, and reduces tumor xenograft growth. Hypoxia (Auckland, N Z), 2016,	1.9	7

#	Article	IF	CITATIONS
19	Identification of Targets of the HIF-1 Inhibitor IDF-11774 Using Alkyne-Conjugated Photoaffinity Probes. Bioconjugate Chemistry, 2016, 27, 1911-1920.	1.8	25
20	Hypoxia-Dependent HIF-1 Activation Impacts on Tissue Remodeling in Graves' Ophthalmopathy—Implications for Smoking. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4834-4842.	1.8	53
21	The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nature Communications, 2016, 7, 12308.	5.8	173
22	Targeting hypoxia-mediated mucin 2 production as a therapeutic strategy for mucinous tumors. Translational Research, 2016, 169, 19-30.e1.	2.2	25
23	Clinically Evaluated Cancer Drugs Inhibiting Redox Signaling. Antioxidants and Redox Signaling, 2017, 26, 262-273.	2.5	42
24	The Promoting Effect of Radiation on Glucose Metabolism in Breast Cancer Cells under the Treatment of Cobalt Chloride. Pathology and Oncology Research, 2017, 23, 47-53.	0.9	9
25	Identification of 4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine as a novel, highly potent and specific inhibitor of mitochondrial complex I. MedChemComm, 2017, 8, 657-661.	3.5	10
26	Palladiumâ€Catalyzed, Silverâ€Assisted Direct Câ€5–H Arylation of 3â€Substituted 1,2,4â€Oxadiazoles under Microwave Irradiation. Advanced Synthesis and Catalysis, 2017, 359, 772-778.	2.1	19
27	Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica, 2017, 102, 1247-1257.	1.7	100
28	Mechanistic Investigations of the Mitochondrial Complex I Inhibitor Rotenone in the Context of Pharmacological and Safety Evaluation. Scientific Reports, 2017, 7, 45465.	1.6	196
29	The novel hypoxia-inducible factor- $1\hat{l}\pm$ inhibitor IDF-11774 regulates cancer metabolism, thereby suppressing tumor growth. Cell Death and Disease, 2017, 8, e2843-e2843.	2.7	65
30	Functional inhibition of acid sphingomyelinase by Fluphenazine triggers hypoxia-specific tumor cell death. Cell Death and Disease, 2017, 8, e2709-e2709.	2.7	30
31	Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death and Disease, 2017, 8, e2716-e2716.	2.7	355
32	AC311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1α stabilization. Cancer Letters, 2017, 388, 149-157.	3.2	45
33	Inhibition of hypoxic response decreases stemness and reduces tumorigenic signaling due to impaired assembly of HIF1 transcription complex in pancreatic cancer. Scientific Reports, 2017, 7, 7872.	1.6	35
34	Molecular targeting of hypoxia in radiotherapy. Advanced Drug Delivery Reviews, 2017, 109, 45-62.	6.6	146
35	2-Deoxy-d-Glucose Treatment Decreases Anti-inflammatory M2 Macrophage Polarization in Mice with Tumor and Allergic Airway Inflammation. Frontiers in Immunology, 2017, 8, 637.	2.2	70
36	Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer. Frontiers in Oncology, 2017, 7, 286.	1.3	167

#	Article	IF	CITATIONS
37	Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy. Yonsei Medical Journal, 2017, 58, 489.	0.9	157
38	Targeting the long noncoding RNA MALAT1 blocks the pro-angiogenic effects of osteosarcoma and suppresses tumour growth. International Journal of Biological Sciences, 2017, 13, 1398-1408.	2.6	43
39	The Bioenergetic Role of Mitochondria in Lung Cancer. , 2017, , .		3
40	Discovery of the novel autophagy inhibitor aumitin that targets mitochondrial complex I. Chemical Science, 2018, 9, 3014-3022.	3.7	34
41	Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clinical Cancer Research, 2018, 24, 2482-2490.	3.2	687
42	Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell and Bioscience, 2018, 8, 56.	2.1	31
43	HIF-α factors as potential therapeutic targets in leukemia. Expert Opinion on Therapeutic Targets, 2018, 22, 917-928.	1.5	6
44	Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10756-10761.	3.3	121
45	The Oncojanus Paradigm of Respiratory Complex I. Genes, 2018, 9, 243.	1.0	22
46	Targeting energy metabolism to eliminate cancer cells. Cancer Management and Research, 2018, Volume 10, 2325-2335.	0.9	23
47	Preclinical Efficacy of the Novel Monocarboxylate Transporter 1 Inhibitor BAY-8002 and Associated Markers of Resistance. Molecular Cancer Therapeutics, 2018, 17, 2285-2296.	1.9	67
48	An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nature Medicine, 2018, 24, 1036-1046.	15.2	622
49	Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. International Journal of Radiation Biology, 2019, 95, 408-426.	1.0	48
50	CHCHD4 regulates tumour proliferation and EMT-related phenotypes, through respiratory chain-mediated metabolism. Cancer & Metabolism, 2019, 7, 7.	2.4	13
51	Targeting Mitochondria for Treatment of Chemoresistant Ovarian Cancer. International Journal of Molecular Sciences, 2019, 20, 229.	1.8	82
52	A strategy for poisoning cancer cell metabolism: Inhibition of oxidative phosphorylation coupled to anaplerotic saturation. International Review of Cell and Molecular Biology, 2019, 347, 27-37.	1.6	6
53	Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Reports, 2019, 27, 3587-3601.e4.	2.9	29
54	AIF-regulated oxidative phosphorylation supports lung cancer development. Cell Research, 2019, 29, 579-591.	5.7	58

#	Article	IF	CITATIONS
55	BAY 87‑2243 sensitizes hepatocellular carcinoma Hep3B cells to histone deacetylase inhibitors treatment via GSK‑3β activation. Experimental and Therapeutic Medicine, 2019, 17, 4547-4553.	0.8	5
56	Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl α-Ketoglutarate. Cell Reports, 2019, 27, 820-834.e9.	2.9	36
57	CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain. Cancer & Metabolism, 2019, 7, 2.	2.4	15
58	Pard3 suppresses glioma invasion by regulating RhoA through atypical protein kinase C/NFâ€₽B signaling. Cancer Medicine, 2019, 8, 2288-2302.	1.3	16
59	Hypoxia enhances CD8+ TC2 cell–dependent airway hyperresponsiveness and inflammation through hypoxia-inducible factor 1α. Journal of Allergy and Clinical Immunology, 2019, 143, 2026-2037.e7.	1.5	15
60	Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-11± inhibition. Experimental and Molecular Medicine, 2019, 51, 1-14.	3.2	22
61	Targeting STAT3 and oxidative phosphorylation in oncogene-addicted tumors. Redox Biology, 2019, 25, 101073.	3.9	90
62	Pharmacologic Targeting of Hypoxia-Inducible Factors. Annual Review of Pharmacology and Toxicology, 2019, 59, 379-403.	4.2	193
63	Mitochondria-driven elimination of cancer and senescent cells. Biological Chemistry, 2019, 400, 141-148.	1.2	13
64	The multifaceted effects of metformin on tumor microenvironment. Seminars in Cell and Developmental Biology, 2020, 98, 90-97.	2.3	57
65	Oxidative phosphorylation as a potential therapeutic target for cancer therapy. International Journal of Cancer, 2020, 146, 10-17.	2.3	125
66	HIF-1α is over-expressed in leukemic cells from <i>TP53</i> disrupted patients and is a promising therapeutic target in chronic lymphocytic leukemia. Haematologica, 2020, 105, 1042-1054.	1.7	39
67	The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-11±. Cell Death and Differentiation, 2020, 27, 695-710.	5.0	140
68	Targeting Cell Metabolism as Cancer Therapy. Antioxidants and Redox Signaling, 2020, 32, 285-308.	2.5	32
69	Small molecules targeting HIF-1α pathway for cancer therapy in recent years. Bioorganic and Medicinal Chemistry, 2020, 28, 115235.	1.4	39
70	Cardioprotection by triiodothyronine following caloric restriction via long noncoding RNAs. Biomedicine and Pharmacotherapy, 2020, 131, 110657.	2.5	6
71	The disubstituted adamantyl derivative LW1564 inhibits the growth of cancer cells by targeting mitochondrial respiration and reducing hypoxia-inducible factor (HIF)-1α accumulation. Experimental and Molecular Medicine, 2020, 52, 1845-1856.	3.2	10
72	Hypoxia Dictates Metabolic Rewiring of Tumors: Implications for Chemoresistance. Cells, 2020, 9, 2598.	1.8	62

#	Article	IF	CITATIONS
73	Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression. International Journal of Molecular Sciences, 2020, 21, 8162.	1.8	40
74	Concise Synthesis of 1,4â€Benzoquinoneâ€Based Natural Products as Mitochondrial Complex I Substrates and Substrateâ€Based Inhibitors. ChemMedChem, 2020, 15, 2491-2499.	1.6	2
75	Why All the Fuss about Oxidative Phosphorylation (OXPHOS)?. Journal of Medicinal Chemistry, 2020, 63, 14276-14307.	2.9	64
76	Androgen Receptor Signaling and Metabolic and Cellular Plasticity During Progression to Castration Resistant Prostate Cancer. Frontiers in Oncology, 2020, 10, 580617.	1.3	44
77	Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. Journal of Experimental and Clinical Cancer Research, 2020, 39, 224.	3.5	49
78	EWSAT1 Acts in Concert with Exosomes in Osteosarcoma Progression and Tumorâ€Induced Angiogenesis: The "Double Stacking Effect― Advanced Biology, 2020, 4, e2000152.	3.0	17
79	Emerging strategies to target cancer metabolism and improve radiation therapy outcomes. British Journal of Radiology, 2020, 93, 20200067.	1.0	15
80	Mitochondrial Dysfunction Inhibits Hypoxia-Induced HIF- $1\hat{1}\pm$ Stabilization and Expression of Its Downstream Targets. Frontiers in Oncology, 2020, 10, 770.	1.3	16
81	Targeting Pyruvate Carboxylase by a Small Molecule Suppresses Breast Cancer Progression. Advanced Science, 2020, 7, 1903483.	5.6	33
82	Anti-VECF Treatment Enhances CD8+ T-cell Antitumor Activity by Amplifying Hypoxia. Cancer Immunology Research, 2020, 8, 806-818.	1.6	51
83	Inhibition of Oxidative Phosphorylation Reverses Bone Marrow Hypoxia Visualized in Imageable Syngeneic B-ALL Mouse Model. Frontiers in Oncology, 2020, 10, 991.	1.3	11
84	Targeting the Redox Landscape in Cancer Therapy. Cancers, 2020, 12, 1706.	1.7	29
85	DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduction and Targeted Therapy, 2020, 5, 60.	7.1	474
86	HIF-1α: a potential treatment target in chronic lymphocytic leukemia. Haematologica, 2020, 105, 856-858.	1.7	5
87	IACS-010759, a potent inhibitor of glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I through a unique mechanism. Journal of Biological Chemistry, 2020, 295, 7481-7491.	1.6	47
88	PLAGL2â€EGFRâ€HIFâ€1/2α Signaling Loop Promotes HCC Progression and Erlotinib Insensitivity. Hepatology, 2021, 73, 674-691.	3.6	52
89	Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nature Biotechnology, 2021, 39, 357-367.	9.4	163
90	Hypoxia–CXCL6 axis affects arteriolar niche remodeling in acute myeloid leukemia. Experimental Biology and Medicine, 2021, 246, 84-96.	1.1	5

#	Article	IF	CITATIONS
91	Small Molecule Regulators of Ferroptosis. Advances in Experimental Medicine and Biology, 2021, 1301, 81-121.	0.8	3
92	Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas. Journal of Clinical Investigation, 2021, 131, .	3.9	25
93	Mimicking Tumor Hypoxia in Non-Small Cell Lung Cancer Employing Three-Dimensional In Vitro Models. Cells, 2021, 10, 141.	1.8	28
94	Paracrine Placental Growth Factor Signaling in Response to Ionizing Radiation Is p53-Dependent and Contributes to Radioresistance. Molecular Cancer Research, 2021, 19, 1051-1062.	1.5	3
95	Ferroptosis: mechanisms and links with diseases. Signal Transduction and Targeted Therapy, 2021, 6, 49.	7.1	508
96	Hypoxia-induced therapy resistance: Available hypoxia-targeting strategies and current advances in head and neck cancer. Translational Oncology, 2021, 14, 101017.	1.7	35
98	CXCL2 benefits acute myeloid leukemia cells in hypoxia. International Journal of Laboratory Hematology, 2021, 43, 1085-1092.	0.7	7
99	Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Frontiers in Oncology, 2021, 11, 653621.	1.3	7
100	Cork-in-bottle mechanism of inhibitor binding to mammalian complex I. Science Advances, 2021, 7, .	4.7	36
101	The therapeutic potential of mitochondrial toxins. Journal of Antibiotics, 2021, 74, 696-705.	1.0	3
102	Interfering with Tumor Hypoxia for Radiotherapy Optimization. Journal of Experimental and Clinical Cancer Research, 2021, 40, 197.	3.5	70
103	Drug delivery systems as immunomodulators for therapy of infectious disease: Relevance to COVID-19. Advanced Drug Delivery Reviews, 2021, 178, 113848.	6.6	6
104	Regulation of redox signaling in HIFâ€1â€dependent tumor angiogenesis. FEBS Journal, 2022, 289, 5413-5425.	2.2	37
105	EVTâ€701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent antiâ€ŧumor activity in models of solid cancers. Pharmacology Research and Perspectives, 2021, 9, e00854.	1.1	7
106	Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Advances, 2021, 5, 4233-4255.	2.5	36
107	Petasin potently inhibits mitochondrial complex $l\hat{a}\in$ based metabolism that supports tumor growth and metastasis. Journal of Clinical Investigation, 2021, 131, .	3.9	19
108	Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-11±/PPAR-1³/PKM2-mediated glycolysis. Journal of Experimental and Clinical Cancer Research, 2020, 39, 24.	3.5	126
109	Mitochondrial deficiency impairs hypoxic induction of HIF-1 transcriptional activity and retards tumor growth. Oncotarget, 2017, 8, 11841-11854.	0.8	18

#	ARTICLE	IF	CITATIONS
110	Hypoxia regulates TRAIL sensitivity of colorectal cancer cells through mitochondrial autophagy. Oncotarget, 0, 7, 41488-41504.	0.8	18
111	Athymic Nude Mice as an Experimental Model for Cancer Treatment. Physiological Research, 2016, 65, S441-S453.	0.4	80
112	Respiratory Complex I dysfunction in cancer: from a maze of cellular adaptive responses to potential therapeutic strategies. FEBS Journal, 2022, 289, 8003-8019.	2.2	6
113	Computer Aided Design of New PHD Inhibitors for Oral Anti-Anemia Drug Molecules. Hans Journal of Medicinal Chemistry, 2017, 05, 17-23.	0.0	0
116	Targeting Hypoxia: Revival of Old Remedies. Biomolecules, 2021, 11, 1604.	1.8	8
117	HIFâ€1α inhibition alleviates the exaggerated exercise pressor reflex in rats with peripheral artery disease induced by femoral artery occlusion. Physiological Reports, 2021, 8, e14676.	0.7	1
118	The miR-873/NDFIP1 axis promotes hepatocellular carcinoma growth and metastasis through the AKT/mTOR-mediated Warburg effect. American Journal of Cancer Research, 2019, 9, 927-944.	1.4	11
119	Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: the anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway. American Journal of Translational Research (discontinued), 2020, 12, 428-446.	0.0	8
120	Baicalin promotes extracellular matrix synthesis in chondrocytes via the activation of hypoxia-inducible factor-11±. Experimental and Therapeutic Medicine, 2020, 20, 226.	0.8	1
121	Neutrophil Cytoâ€Pharmaceuticals Suppressing Tumor Metastasis via Inhibiting Hypoxiaâ€Inducible Factorâ€I <i>α</i> in Circulating Breast Cancer Cells. Advanced Healthcare Materials, 2022, 11, e2101761.	3.9	13
122	Baicalin promotes extracellular matrix synthesis in chondrocytes via the activation of hypoxia‑inducible factor‑1α. Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	7
123	Artesunate attenuates atherosclerosis by inhibiting macrophage M1-like polarization and improving metabolism. International Immunopharmacology, 2022, 102, 108413.	1.7	12
124	2-Hydroxyestradiol Overcomes Mesenchymal Stem Cells-Mediated Platinum Chemoresistance in Ovarian Cancer Cells in an ERK-Independent Fashion. Molecules, 2022, 27, 804.	1.7	5
125	Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis. Critical Care, 2022, 26, 29.	2.5	51
126	Discovery and Lead Optimization of Benzene-1,4-disulfonamides as Oxidative Phosphorylation Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 343-368.	2.9	13
127	Targeting OXPHOS and the electron transport chain in cancer; Molecular and therapeutic implications. Seminars in Cancer Biology, 2022, 86, 851-859.	4.3	39
128	Targeted downregulation of HIF-1α for restraining circulating tumor microemboli mediated metastasis. Journal of Controlled Release, 2022, 343, 457-468.	4.8	7
131	Multiparameter Optimization of Oxidative Phosphorylation Inhibitors for the Treatment of Pancreatic Cancer. Journal of Medicinal Chemistry, 2022, 65, 3404-3419.	2.9	13

#	Article	IF	CITATIONS
132	Identification of the Highly Active, Species Cross-Reactive Complex I Inhibitor BAY-179. ACS Medicinal Chemistry Letters, 2022, 13, 348-357.	1.3	3
133	Key Players of the Immunosuppressive Tumor Microenvironment and Emerging Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2022, 10, 830208.	1.8	13
135	Integrative multi-omics and drug response profiling of childhood acute lymphoblastic leukemia cell lines. Nature Communications, 2022, 13, 1691.	5.8	20
136	The Influence of Mitochondrial Energy and 1C Metabolism on the Efficacy of Anticancer Drugs: Exploring Potential Mechanisms of Resistance. Current Medicinal Chemistry, 2023, 30, 1209-1231.	1.2	1
137	Activation of transcription factor HIF inhibits IL-1β-induced NO production in primary cultured rat hepatocytes. Nitric Oxide - Biology and Chemistry, 2022, 124, 1-14.	1.2	5
154	Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods in Molecular Biology, 2022, 2451, 285-403.	0.4	1
155	Simultaneous targeting of glycolysis and oxidative phosphorylation as a therapeutic strategy to treat diffuse large B-cell lymphoma. British Journal of Cancer, 2022, 127, 937-947.	2.9	18
156	Sorafenib and nitazoxanide disrupt mitochondrial function and inhibit regrowth capacity in three-dimensional models of hepatocellular and colorectal carcinoma. Scientific Reports, 2022, 12, .	1.6	9
157	First-in-human study of IM156, a novel potent biguanide oxidative phosphorylation (OXPHOS) inhibitor, in patients with advanced solid tumors. Investigational New Drugs, 2022, 40, 1001-1010.	1.2	14
158	Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Seminars in Cancer Biology, 2022, 86, 269-279.	4.3	7
159	Metabolic study of hypoxiaâ€inducible factor stabilizers BAY 87â€2243, MKâ€8617, and PTâ€2385 in equine liver microsomes for doping control. Drug Testing and Analysis, 2022, 14, 1703-1723.	1.6	5
160	Characterization of <scp>TR</scp> â€107, a novel chemical activator of the human mitochondrial protease <scp>ClpP</scp> . Pharmacology Research and Perspectives, 2022, 10, .	1.1	12
161	TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. Journal of Hematology and Oncology, 2022, 15, .	6.9	35
162	Cancer Stem Cell Oxidative Phosphorylation: Target for Cancer Therapy. , 2022, , 2003-2019.		0
163	Binding of Natural Inhibitors to Respiratory Complex I. Pharmaceuticals, 2022, 15, 1088.	1.7	4
164	Regulation of autoimmune disease progression by Pik3ip1 through metabolic reprogramming in T cells and therapeutic implications. Science Advances, 2022, 8, .	4.7	3
165	Metabolic Pathways Regulating Colorectal Cancer: A Potential Therapeutic Approach. Current Pharmaceutical Design, 2022, 28, 2995-3009.	0.9	10
167	Discovery of a Highly Potent and Orally Bioavailable STAT3 Dual Phosphorylation Inhibitor for Pancreatic Cancer Treatment. Journal of Medicinal Chemistry, 2022, 65, 15487-15511.	2.9	6

#	Article	IF	CITATIONS
168	Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Diseases, 2023, 29, 3101-3120.	1.5	5
169	Discovery of Mitochondrial Complex I Inhibitors as Anticancer and Radiosensitizer Drugs Based on Compensatory Stimulation of Lactate Release. Cancers, 2022, 14, 5454.	1.7	3
170	NDUFS3 knockout cancer cells and molecular docking reveal specificity and mode of action of anti-cancer respiratory complex I inhibitors. Open Biology, 2022, 12, .	1.5	5
171	Anti-hypoxic Agents for Improving Head and Neck Cancer Therapy. , 2022, , .		Ο
172	Cancer-specific cytotoxicity of pyridinium-based ionic liquids by regulating hypoxia-inducible factor-11±-centric cancer metabolism. Ecotoxicology and Environmental Safety, 2022, 248, 114334.	2.9	3
173	Effects of metabolic cancer therapy on tumor microenvironment. Frontiers in Oncology, 0, 12, .	1.3	5
174	Ferroptosis: a potential therapeutic target for Alzheimer's disease. Reviews in the Neurosciences, 2023, 34, 573-598.	1.4	6
175	Targeting TRMT5 suppresses hepatocellular carcinoma progression via inhibiting the HIF-1α pathways. Journal of Zhejiang University: Science B, 2023, 24, 50-63.	1.3	3
176	Hypoxia-mediated activation of hypoxia-inducible factor-1α in head and neck squamous cell carcinoma: A review. Medicine (United States), 2023, 102, e32533.	0.4	1
177	Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment. Cancer Drug Resistance (Alhambra, Calif), 2023, 6, 138-150.	0.9	4
178	OXPHOS inhibitors, metabolism and targeted therapies in cancer. Biochemical Pharmacology, 2023, 211, 115531.	2.0	2
179	Recent advances of mitochondrial complex I inhibitors for cancer therapy: Current status and future perspectives. European Journal of Medicinal Chemistry, 2023, 251, 115219.	2.6	5
180	Engine shutdown: migrastatic strategies and prevention of metastases. Trends in Cancer, 2023, 9, 293-308.	3.8	9
181	Crosstalk between oxidative phosphorylation and immune escape in cancer: a new concept of therapeutic targets selection. Cellular Oncology (Dordrecht), 2023, 46, 847-865.	2.1	8
182	Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Clycolysis on the Initiation and Progression of Tumorigenesis. International Journal of Molecular Sciences, 2023, 24, 7076.	1.8	3
183	CRIF1 siRNA-Encapsulated PLGA Nanoparticles Suppress Tumor Growth in MCF-7 Human Breast Cancer Cells. International Journal of Molecular Sciences, 2023, 24, 7453.	1.8	0
191	Exploring glycolytic adaptations in cancer cells. , 2024, , 201-234.		0