CITATION REPORT List of articles citing

Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

DOI: 10.1175/bams-d-12-00117.1 Bulletin of the American Meteorological Society, 2013, 94, 1031-1049.

Source: https://exaly.com/paper-pdf/56570913/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
386	Structural evolution of monsoon clouds in the Indian CTCZ. 2013 , 40, 5295-5299		18
385	HelioFTH: combining cloud index principles and aggregated rating for cloud masking using infrared observations from geostationary satellites. <i>Atmospheric Measurement Techniques</i> , 2013 , 6, 1883-1901	4	3
384	Does the diurnal temperature range respond to changes in the cosmic ray flux?. <i>Environmental Research Letters</i> , 2013 , 8, 045018	6.2	4
383	FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 3873-3890	4	7
382	Evaluation of SCIAMACHY Oxygen A band cloud heights using Cloudnet measurements. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 1331-1350	4	13
381	Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 3233-3246	4	38
380	Radiation budget biases in AMIP5 models over the East Asian monsoon region. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 13,400	4.4	15
379	Entering the Era of +30-Year Satellite Cloud Climatologies: A North American Case Study. <i>Journal of Climate</i> , 2014 , 27, 6687-6697	4.4	8
378	Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties. <i>Journal of Climate</i> , 2014 , 27, 4189-42	2 0 8 ⁴	37
377	Radiometric stability of the Multi-angle Imaging SpectroRadiometer (MISR) following 15 years on-orbit. 2014 ,		10
376	The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. <i>Bulletin of the American Meteorological Society</i> , 2014 , 95, 1431-1443	6.1	451
375	The Pathfinder Atmospheres E xtended AVHRR Climate Dataset. <i>Bulletin of the American Meteorological Society</i> , 2014 , 95, 909-922	6.1	152
374	Where and when will we observe cloud changes due to climate warming?. 2014 , 41, 8387-8395		39
373	Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. 2014 , 6, 141-18	4	482
372	Systematic land cover bias in Collection 5 MODIS cloud mask and derived products [A global overview. <i>Remote Sensing of Environment</i> , 2014 , 141, 149-154	13.2	40
371	Evaluation of cloud vertical structure simulated by recent BCC_AGCM versions through comparison with CALIPSO-GOCCP data. 2014 , 31, 721-733		11
370	A Global Climatology of Outgoing Longwave Spectral Cloud Radiative Effect and Associated Effective Cloud Properties. <i>Journal of Climate</i> , 2014 , 27, 7475-7492	4.4	14

369	Improved Representation of Marine Stratocumulus Cloud Shortwave Radiative Properties in the CMIP5 Climate Models. <i>Journal of Climate</i> , 2014 , 27, 6175-6188	4.4	16
368	Estimates of net heat fluxes over the Atlantic Ocean. 2014 , 119, 410-427		20
367	Comparisons between VIIRS cloud mask performance results from manually generated cloud masks of VIIRS imagery and CALIOP-VIIRS match-ups. <i>International Journal of Remote Sensing</i> , 2014 , 35, 4905-	-4 9 22	13
366	Trends in U.S. Total Cloud Cover from a Homogeneity-Adjusted Dataset. <i>Journal of Climate</i> , 2014 , 27, 4959-4969	4.4	11
365	Observational evidence for human impact on aerosol cloud-mediated processes in the Baltic region. 2014 , 56, 205-222		1
364	First observations of polarized scattering over ice clouds at close-to-millimeter wavelengths (157 GHz) with MADRAS on board the Megha-Tropiques mission. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 12,301-12,316	4.4	23
363	Linear trends in cloud top height from passive observations in the oxygen A-band. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5679-5692	6.8	26
362	Rapid and highly variable warming of lake surface waters around the globe. 2015 , 42, 10,773		549
361	Pixel-scale assessment and uncertainty analysis of AIRS and MODIS ice cloud optical thickness and effective radius. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 11,669-11,689	4.4	20
360	Modeling atmospheric longwave radiation at the surface during overcast skies: The role of cloud base height. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 199-214	4.4	28
359	Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 6500-6514	4.4	73
358	A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009. 2015 , 2, 150008		116
357	Multimodel evaluation of cloud phase transition using satellite and reanalysis data. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 7871-7892	4.4	85
356	Bias in MODIS cloud drop effective radius for oceanic water clouds as deduced from optical thickness variability across scattering angles. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 7661-7681	4.4	26
355	Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data set over Southern India. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13833-13848	6.8	17
354	Dehydration effects from contrails in a coupled contraillimate model. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11179-11199	6.8	37
353	The vertical structure of cloud radiative heating over the Indian subcontinent during summer monsoon. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11557-11570	6.8	13
352	Evaluation against CALIPSO lidar observations of the multi-geostationary cloud cover and type dataset assembled in the framework of the Megha-Tropiques mission. 2015 , 141, 774-797		24

351	WRF multi-physics simulation of clouds in the African region. 2015 , 141, 2737-2749		14
350	An early clear sky record from Eastern Spain: 1837¶879. <i>International Journal of Climatology</i> , 2015 , 35, 999-1006	3.5	1
349	Impact of Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask interpretation on cloud amount estimation. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 8971-8986	4.4	9
348	Impact of cloud horizontal inhomogeneity and directional sampling on the retrieval of cloud droplet size by the POLDER instrument. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 4931-4945	4	12
347	A One Year Landsat 8 Conterminous United States Study of Cirrus and Non-Cirrus Clouds. <i>Remote Sensing</i> , 2015 , 7, 564-578	5	31
346	A Framework for Defining Spatially Explicit Earth Observation Requirements for a Global Agricultural Monitoring Initiative (GEOGLAM). <i>Remote Sensing</i> , 2015 , 7, 1461-1481	5	83
345	Overview of the HAIC Space-borne Observation and Nowcasting of High Ice Water Content Regions Bub-Project and Mid-Term Results. 2015 ,		0
344	Aerosolfiloud Interactions. 2015 , 193-226		
343	Radiative flux and forcing parameterization error in aerosol-free clear skies. 2015 , 42, 5485-5492		46
342	The albedo of Earth. 2015 , 53, 141-163		138
342	The albedo of Earth. 2015, 53, 141-163 Evaluating the potential of database technology for documenting environmental change in China's deserts. 2015, 134, 87-97		138 7
	Evaluating the potential of database technology for documenting environmental change in China's	4.4	
341	Evaluating the potential of database technology for documenting environmental change in China's deserts. 2015 , 134, 87-97	4.4	7
341	Evaluating the potential of database technology for documenting environmental change in China's deserts. 2015 , 134, 87-97 External Influences on Modeled and Observed Cloud Trends. <i>Journal of Climate</i> , 2015 , 28, 4820-4840 Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to		7 29
341 340 339	Evaluating the potential of database technology for documenting environmental change in China's deserts. 2015 , 134, 87-97 External Influences on Modeled and Observed Cloud Trends. <i>Journal of Climate</i> , 2015 , 28, 4820-4840 Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations. <i>Journal of Climate</i> , 2015 , 28, 4373-4389 Patterns of Diurnal Marine Stratocumulus Cloud Fraction Variability. <i>Journal of Applied Meteorology</i>	4.4	7 29 26
341 340 339 338	Evaluating the potential of database technology for documenting environmental change in China's deserts. 2015, 134, 87-97 External Influences on Modeled and Observed Cloud Trends. <i>Journal of Climate</i> , 2015, 28, 4820-4840 Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations. <i>Journal of Climate</i> , 2015, 28, 4373-4389 Patterns of Diurnal Marine Stratocumulus Cloud Fraction Variability. <i>Journal of Applied Meteorology and Climatology</i> , 2015, 54, 847-866 Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and	2.7	7 29 26
341 340 339 338 337	Evaluating the potential of database technology for documenting environmental change in China's deserts. 2015, 134, 87-97 External Influences on Modeled and Observed Cloud Trends. Journal of Climate, 2015, 28, 4820-4840 Variability and Trends in U.S. Cloud Cover: ISCCP, PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather Observations. Journal of Climate, 2015, 28, 4373-4389 Patterns of Diurnal Marine Stratocumulus Cloud Fraction Variability. Journal of Applied Meteorology and Climatology, 2015, 54, 847-866 Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and application to AATSR. 2015, Analysis of surface incident shortwave radiation from four satellite products. Remote Sensing of	2.7	7 29 26 15

(2016-2015)

A new k-interval optimization technique for atmospheric upwelling radiance calculation in infrared absorption bands. 2015 , 160, 75-84		1
An Intercomparison of the Spatiotemporal Variability of Satellite- and Ground-Based Cloud Datasets Using Spectral Analysis Techniques. <i>Journal of Climate</i> , 2015 , 28, 5716-5736	4.4	1
Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. 2015 , 115, 4259-334		326
A Comparison of MODIS-Derived Cloud Fraction with Surface Observations at Five SURFRAD Sites. Journal of Applied Meteorology and Climatology, 2015 , 54, 1009-1020	2.7	17
How Has Subtropical Stratocumulus and Associated Meteorology Changed since the 1980s?*. Journal of Climate, 2015 , 28, 8396-8410	4.4	35
Arctic Radiative Fluxes: Present-Day Biases and Future Projections in CMIP5 Models. <i>Journal of Climate</i> , 2015 , 28, 6019-6038	4.4	36
AIRS, IASI, and CrIS Retrieval Records at Climate Scales: An Investigation into the Propagation of Systematic Uncertainty. <i>Journal of Applied Meteorology and Climatology</i> , 2015 , 54, 1465-1481	2.7	22
MODELING THE SURFACE TEMPERATURE OF EARTH-LIKE PLANETS. 2015 , 804, 50		30
The Clouds Climate Change Initiative: Assessment of state-of-the-art cloud property retrieval schemes applied to AVHRR heritage measurements. <i>Remote Sensing of Environment</i> , 2015 , 162, 363-375	9 ^{13.2}	24
Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. <i>Remote Sensing of Environment</i> , 2015 , 156, 438-447	13.2	95
Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 793-815	4	5
Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and application to AATSR. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 909-928	4	7
Evaluation of SCIAMACHY ESA/DLR Cloud Parameters Version 5.02 by Comparisons to Ground-Based and Other Satellite Data. 2016 , 4,		5
Cloud Fraction of Liquid Water Clouds above Switzerland over the Last 12 Years. 2016 , 4, 48		4
Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas. <i>Remote Sensing</i> , 2016 , 8, 219	5	25
PATMOS-x Cloud Climate Record Trend Sensitivity to Reanalysis Products. <i>Remote Sensing</i> , 2016 , 8, 424	15	5
Using the NASA EOS A-Train to Probe the Performance of the NOAA PATMOS-x Cloud Fraction CDR. <i>Remote Sensing</i> , 2016 , 8, 511	5	14
On the Detection of Robust Multidecadal Changes in Earth Outgoing Longwave Radiation Spectrum. <i>Journal of Climate</i> , 2016 , 29, 4939-4947	4.4	10
	absorption bands. 2015, 160, 75-84 An Intercomparison of the Spatiotemporal Variability of Satellite- and Ground-Based Cloud Datasets Using Spectral Analysis Techniques. <i>Journal of Climate</i> , 2015, 28, 5716-5736 Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. 2015, 115, 4259-334 A Comparison of MODIS-Derived Cloud Fraction with Surface Observations at Five SURFRAD Sites. <i>Journal of Applied Meteorology and Climatology</i> , 2015, 54, 1009-1020 How Has Subtropical Stratocumulus and Associated Meteorology Changed since the 1980s?*. <i>Journal of Climate</i> , 2015, 28, 8396-8410 Arctic Radiative Fluxes: Present-Day Biases and Future Projections in CMIP5 Models. <i>Journal of Climate</i> , 2015, 28, 6019-6038 AIRS, IASI, and CrIS Retrieval Records at Climate Scales: An Investigation into the Propagation of Systematic Uncertainty. <i>Journal of Applied Meteorology and Climatology</i> , 2015, 54, 1465-1481 MODELING THE SURFACE TEMPERATURE OF EARTH-LIKE PLANETS. 2015, 804, 50 The Clouds Climate Change Initiative: Assessment of state-of-the-art cloud property retrieval schemes applied to AVHRR heritage measurements. <i>Remote Sensing of Environment</i> , 2015, 162, 363-37. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. <i>Remote Sensing of Environment</i> , 2015, 156, 438-447 Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results. <i>Atmospheric Measurement Techniques</i> , 2016, 9, 793-815 Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and application to AATSR. <i>Atmospheric Measurement Techniques</i> , 2016, 9, 909-928 Evaluation of SCIAMACHY ESA/DLR Cloud Parameters Version 5.02 by Comparisons to Ground-Based and Other Satellite Data. 2016, 4, Cloud Fraction of Liquid Water Clouds above Switzerland over the Last 12 Years. 2016, 4, 48 Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas. <i>Remote Sensing</i> , 2016, 8, 219 PATMOS-x	An Intercomparison of the Spatiotemporal Variability of Satellite- and Ground-Based Cloud Datasets Using Spectral Analysis Techniques. <i>Journal of Climate</i> , 2015, 28, 5716-5736. 4.4 Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. 2015, 115, 4259-334. A Comparison of MODIS-Derived Cloud Fraction with Surface Observations at Five SURFRAD Sites. <i>Journal of Applied Meteorology and Climatology</i> , 2015, 54, 1009-1020. How Has Subtropical Stratocumulus and Associated Meteorology Changed since the 1980s?*. Journal of Climate, 2015, 28, 8396-8410. Arctic Radiative Fluxes: Present-Day Biases and Future Projections in CMIP5 Models. <i>Journal of Climate</i> , 2015, 28, 6019-6038. AIRS, IASI, and CrIS Retrieval Records at Climate Scales: An Investigation into the Propagation of Systematic Uncertainty. <i>Journal of Applied Meteorology and Climatology</i> , 2015, 54, 1465-1481. MODELING THE SURFACE TEMPERATURE OF EARTH-LIKE PLANETS. 2015, 804, 50. The Clouds Climate Change Initiative: Assessment of state-of-the-art cloud property retrieval schemes applied to AVHRR heritage measurements. <i>Remote Sensing of Environment</i> , 2015, 162, 363-379. 13-2. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. <i>Remote Sensing of Environment</i> , 2015, 166, 438-447. Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results. <i>Atmospheric Measurement Techniques</i> , 2016, 9, 793-815. Synergy of stereo cloud top height and ORAC optimal estimation cloud retrieval: evaluation and application to AATSR. <i>Atmospheric Measurement Techniques</i> , 2016, 9, 909-928. Evaluation of SCIAMACHY ESA/DLR Cloud Parameters Version 5.02 by Comparisons to Ground-Based and Other Satellite Data. 2016, 4, Cloud Fraction of Liquid Water Clouds above Switzerland over the Last 12 Years. 2016, 4, 48. Cloud Cover Assessment for Operational Crop Monitoring Systems in Tropical Areas. <i>Remote Sensing</i> , 2016, 8, 219. PATMOS-x Cloud Climat

315	Daytime Cirrus Cloud Top-of-Atmosphere Radiative Forcing Properties at a Midlatitude Site and their Global Consequence. <i>Journal of Applied Meteorology and Climatology</i> , 2016 , 55, 1667-1679	2.7	39
314	A low-cost digital holographic imager for calibration and validation of cloud microphysics remote sensing. 2016 ,		2
313	Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 5788-5808	4.4	53
312	Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 4162-4176	4.4	68
311	Climatology and changes in cloud cover in the area of the Black, Caspian, and Aral seas (1991\(1010\)): a comparison of surface observations with satellite and reanalysis products. International Journal of Climatology, 2016, 36, 1428-1443	3.5	8
310	A multisatellite climatology of clouds, radiation, and precipitation in southern West Africa and comparison to climate models. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 10,857-10,87	g 1 ·4	22
309	River ice monitoring with MODIS: Application over Lower Susquehanna River. 2016 , 131, 116-128		9
308	Macroscale Hydrological Modeling and Global Water Balance. 2016 , 1-16		1
307	Cloud glaciation temperature estimation from passive remote sensing data with evolutionary computing. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 13,591-13,608	4.4	11
306	Secondary organic aerosol formation from isoprene photooxidation during cloud condensation approached condensation are condensation as a condensation are conde	6.8	23
305	The Long-term Variation in Surface Shortwave Irradiance in China and Japan: A Review. 2016 , 94, 393-47	14	6
304	Factors Controlling Cloud Albedo in Marine Subtropical Stratocumulus Regions in Climate Models and Satellite Observations. <i>Journal of Climate</i> , 2016 , 29, 3559-3587	4.4	25
303	Comparison of differences between MODIS 250 m and 1 km cloud masks. <i>Atmospheric Research</i> , 2016 , 181, 54-62	5.4	
302	3D reconstruction of tropospheric cirrus clouds. 2016 , 58, 1362-1375		1
301	. 2016 , 54, 4240-4249		8
300	Comparison of Radiative Energy Flows in Observational Datasets and Climate Modeling. <i>Journal of Applied Meteorology and Climatology</i> , 2016 , 55, 93-117	2.7	9
299	Cloud cover climatologies in the Mediterranean obtained from satellites, surface observations, reanalyses, and CMIP5 simulations: validation and future scenarios. 2016 , 47, 249-269		13
298	Cloud-radiation-precipitation associations over the Asian monsoon region: an observational analysis. 2017 , 49, 3237-3255		14

297	Inconsistency of surface-based (SYNOP) and satellite-based (MODIS) cloud amount estimations due to the interpretation of cloud detection results. <i>International Journal of Climatology</i> , 2017 , 37, 4092-47	10¾·5	5
296	Daytime Top-of-the-Atmosphere Cirrus Cloud Radiative Forcing Properties at Singapore. <i>Journal of Applied Meteorology and Climatology</i> , 2017 , 56, 1249-1257	2.7	31
295	High-resolution photography of clouds from the surface: Retrieval of optical depth of thin clouds down to centimeter scales. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 2898-2928	4.4	8
294	Uncertainty quantification of network availability for networks of optical ground stations. 2017,		1
293	Optimization and throughput estimation of optical ground networks for LEO-downlinks, GEO-feeder links and GEO-relays. 2017 ,		1
292	Observed Variability of Cloud Frequency and Cloud-Base Height within 3600 m above the Surface over the Contiguous United States. <i>Journal of Climate</i> , 2017 , 30, 3725-3742	4.4	12
291	High cloud variations with surface temperature from 2002 to 2015: Contributions to atmospheric radiative cooling rate and precipitation changes. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 5457-5471	4.4	12
290	A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Cloud radiative effects. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4550-4564	4.4	18
289	The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. 2017 , 55, 502-525		335
288	Fewer clouds in the Mediterranean: consistency of observations and climate simulations. <i>Scientific Reports</i> , 2017 , 7, 41475	4.9	33
287	Evaluation of Hemispheric Asymmetries in Marine Cloud Radiative Properties. <i>Journal of Climate</i> , 2017 , 30, 4131-4147	4.4	11
286	Variability and Change in Climate. 2017 , 27-60		
285	Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites?. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 329-343	4.4	42
284	Climatology and Interannual Variability of Cloudiness in the Atlantic Arctic from Surface Observations since the Late Nineteenth Century. <i>Journal of Climate</i> , 2017 , 30, 2103-2120	4.4	26
283	Using Space Lidar Observations to Decompose Longwave Cloud Radiative Effect Variations Over the Last Decade. 2017 , 44, 11,994-12,003		8
282	Clearing clouds of uncertainty. 2017 , 7, 674-678		53
281	Quantifying CO2 Emissions From Individual Power Plants From Space. 2017 , 44, 10,045		114
280	Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 8079-8100	4.4	7

279	Quantifying the Uncertainties of Reanalyzed Arctic Cloud and Radiation Properties Using Satellite Surface Observations. <i>Journal of Climate</i> , 2017 , 30, 8007-8029	4.4	24
278	Evaluation of Cloud Liquid Water Path Trends Using a Multi-Decadal Record of Passive Microwave Observations. <i>Journal of Climate</i> , 2017 , 30, 5871-5884	4.4	12
277	Greenland Clouds Observed in CALIPSO-GOCCP: Comparison with Ground-Based Summit Observations. <i>Journal of Climate</i> , 2017 , 30, 6065-6083	4.4	13
276	Mixed-Phase Clouds: Progress and Challenges. 2017 , 58, 5.1-5.50		100
275	Observational characteristics of cloud radiative effects over three arid regions in the Northern Hemisphere. 2017 , 31, 654-664		5
274	The Surface UV Environment on Planets Orbiting M Dwarfs: Implications for Prebiotic Chemistry and the Need for Experimental Follow-up. 2017 , 843, 110		66
273	A revisit to decadal change of aerosol optical depth and its impact on global radiation over China. <i>Atmospheric Environment</i> , 2017 , 150, 106-115	5.3	22
272	Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere. 2017 ,		
271	Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence. 2017 , 9, 1542-1571		29
270	EURECA: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation. 2017 , 38, 1529-1568		82
269	Scaling properties of observed and simulated satellite visible radiances. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 9413-9429	4.4	9
268	Upper tropospheric cloud systems derived from IR sounders: properties of cirrus anvils in the tropics. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 3845-3859	6.8	14
267	Cloud climatologies from the infrared sounders AIRS and IASI: strengths and applications. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 13625-13644	6.8	14
266	Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 3317-3338	6.8	24
265	Evaluating the diurnal cycle in cloud top temperature from SEVIRI. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7035-7053	6.8	10
264	Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 3547-3573	4	23
263	The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 4659-4685	4	8
262	Automated detection of cloud and aerosol features with SACOL micro-pulse lidar in northwest China. 2017 , 25, 30732-30753		16

261	Recent advancements in the numerical simulation of surface irradiance for solar energy applications. 2017 ,		2
260	Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 4317-4339	4	11
259	Transmission spectroscopy with the ACE-FTS infrared spectral atlas of Earth: A model validation and feasibility study. 2018 , 11, 1-22		14
258	Insights on Chemistry of Mercury Species in Clouds over Northern China: Complexation and Adsorption. 2018 , 52, 5125-5134		12
257	Isolating the Liquid Cloud Response to Recent Arctic Sea Ice Variability Using Spaceborne Lidar Observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 473-490	4.4	41
256	Probability Distribution for the Visually Observed Fractional Cloud Cover over the Ocean. <i>Journal of Climate</i> , 2018 , 31, 3207-3232	4.4	10
255	Infrared dust aerosol optical depth retrieved daily from IASI and comparison with AERONET over the period 2007\(\textbf{Q} 016. \) Remote Sensing of Environment, 2018, 206, 15-32	13.2	19
254	Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 4439-4462	6.8	9
253	Response to marine cloud brightening in a multi-model ensemble. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 621-634	6.8	22
252	Negative Aerosol-Cloud re Relationship From Aircraft Observations Over Hebei, China. <i>Earth and Space Science</i> , 2018 , 5, 19-29	3.1	63
251	Vertical profile of cloud amount over Poland: Variability and uncertainty based on CloudSat©ALIPSO observations. <i>International Journal of Climatology</i> , 2018 , 38, 4142-4154	3.5	4
250	Intercomparison of Cloud Amount Datasets in the Kuroshio Region over the East China Sea. 2018 , 96, 127-145		1
249	Optimum Monthly Based Selection of Ground Stations for Optical Satellite Networks. 2018 , 22, 1192-11	95	15
248	Can CFMIP2 models reproduce the leading modes of cloud vertical structure in the CALIPSO-GOCCP observations?. 2018 , 131, 1465-1477		
247	Unusually Deep Wintertime Cirrus Clouds Observed over the Alaskan Sub-Arctic. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, 27-32	6.1	8
246	Cross-validation of two liquid water path retrieval algorithms applied to ground-based microwave radiation measurements by the RPG-HATPRO instrument. <i>International Journal of Remote Sensing</i> , 2018 , 39, 1321-1342	3.1	4
245	An Overview of European Efforts in Generating Climate Data Records. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, 349-359	6.1	21
244	An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification. 2018 , 51, 1639-1658		11

243	A Review of Ice Cloud Optical Property Models for Passive Satellite Remote Sensing. <i>Atmosphere</i> , 2018 , 9, 499	2.7	19
242	CALIPSO (IIR-CALIOP) Retrievals of Cirrus Cloud Ice Particle Concentrations. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 17325-17354	6.8	17
241	Neural network cloud top pressure and height for MODIS. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 3177-3196	4	26
240	Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic. <i>Remote Sensing</i> , 2018 , 10, 1882	5	3
239	The chemistryfilimate model ECHAM6.3-HAM2.3-MOZ1.0. <i>Geoscientific Model Development</i> , 2018 , 11, 1695-1723	6.3	33
238	Insensitivity of the Cloud Response to Surface Warming Under Radical Changes to Boundary Layer Turbulence and Cloud Microphysics: Results From the Ultraparameterized CAM. 2018 , 10, 3139-3158		13
237	Vertical Profiles of Ice Cloud Microphysical Properties and Their Impacts on Cloud Retrieval Using Thermal Infrared Measurements. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 5301-5319	9 4.4	9
236	Surface Incident Shortwave Radiation. 2018 , 114-139		
235	Satellite Remote Sensing of Cloud Vertical Structure. 2018 , 97-136		
234	Fast Cloud Segmentation Using Convolutional Neural Networks. <i>Remote Sensing</i> , 2018 , 10, 1782	5	48
233	Space lidar observations constrain longwave cloud feedback. <i>Scientific Reports</i> , 2018 , 8, 16570	4.9	8
232	Characterizing Exoplanet Habitability. 2018 , 3137-3157		3
231	CALIPSO lidar level 3 aerosol profile product: version 3 algorithm design. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 4129-4152	4	64
230	The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosoldlimate model ECHAM6-HAM2. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 8807-8828	6.8	35
229	How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet. <i>Journal of Climate</i> , 2018 , 31, 9293-9312	4.4	7
228	Earth Top-of-Atmosphere Radiation Budget. 2018 , 67-84		6
227	Representation of aerosol optical properties using a chemistry transport model to improve solar irradiance modelling. <i>Solar Energy</i> , 2018 , 176, 439-452	6.8	3
226	Calibration Changes to Terra MODIS Collection-5 Radiances for CERES Edition 4 Cloud Retrievals. 2018 , 56, 6016-6032		8

225	JAXA High-Resolution Land Use/Land Cover Map for Central Vietnam in 2007 and 2017. <i>Remote Sensing</i> , 2018 , 10, 1406	5	14
224	Ice cloud microphysical trends observed by the Atmospheric Infrared Sounder. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10715-10739	6.8	11
223	Inter-Comparison and Evaluation of the Four Longest Satellite-Derived Cloud Climate Data Records: CLARA-A2, ESA Cloud CCI V3, ISCCP-HGM, and PATMOS-x. <i>Remote Sensing</i> , 2018 , 10, 1567	5	18
222	Cloud Properties Observed From the Surface and by Satellite at the Northern Edge of the Southern Ocean. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 443-456	4.4	18
221	The Potential of a Multidecade Spaceborne Lidar Record to Constrain Cloud Feedback. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 5433-5454	4.4	9
220	Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 633-649	4	23
219	Drivers of the Low-Cloud Response to Poleward Jet Shifts in the North Pacific in Observations and Models. <i>Journal of Climate</i> , 2018 , 31, 7925-7947	4.4	18
218	Merging Satellite Retrievals and Reanalyses to Produce Global Long-Term and Consistent Surface Incident Solar Radiation Datasets. <i>Remote Sensing</i> , 2018 , 10, 115	5	18
217	Retrieval of Reflected Shortwave Radiation at the Top of the Atmosphere Using Himawari-8/AHI Data. <i>Remote Sensing</i> , 2018 , 10, 213	5	11
216	Characterizing Earth Analogs in Reflected Light: Atmospheric Retrieval Studies for Future Space Telescopes. 2018 , 155, 200		60
215	Performance Estimation of Optical LEO Downlinks. 2018 , 36, 1074-1085		10
214	. 2019 , 57, 9410-9449		25
213	A global record of single-layered ice cloud properties and associated radiative heating rate profiles from an A-Train perspective. 2019 , 53, 3069-3088		4
212	The Response of Tropical Organized Convection to El Nië Warming. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 8481-8500	4.4	6
211	Spatial and seasonal variability of clouds over the southwest Indian Ocean based on the DARDAR mask product. 2019 , 145, 3561-3576		0
210	Multi-decade global gas flaring change inventoried using the ATSR-1, ATSR-2, AATSR and SLSTR data records. <i>Remote Sensing of Environment</i> , 2019 , 232, 111298	13.2	18
209	Impacts of Partly Cloudy Pixels on Shortwave Broadband Irradiance Computations. 2019, 36, 369-386		1
208	The global aerosoldlimate model ECHAM6.3HAM2.3 Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity. <i>Geoscientific Model Development</i> , 2019 , 12, 3609-3639	6.3	24

207	The impact of recent changes in Asian anthropogenic emissions of SO₂ on sulfate loading in the upper troposphere and lower stratosphere and the associated radiative changes. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 9989-10008	6.8	12
206	A Relationship Between Blue and Near-IR Global Spectral Reflectance and the Response of Global Average Reflectance to Change in Cloud Cover Observed From EPIC. <i>Earth and Space Science</i> , 2019 , 6, 1416-1429	3.1	4
205	ENSO and Teleconnections Observed Using MISR Cloud Height Anomalies. <i>Remote Sensing</i> , 2019 , 11, 32	5	1
204	Cellular Statistical Models of Broken Cloud Fields. Part IV: Effects of Pixel Size on Idealized Satellite Observations. 2019 , 76, 1329-1348		O
203	A Global View of 3D Cloud Structure from a Decade of Space-borne Radar Measurements. 2019 ,		
202	Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. <i>Atmospheric Research</i> , 2019 , 221, 27-33	5.4	39
201	Clouds Classification from Sentinel-2 Imagery with Deep Residual Learning and Semantic Image Segmentation. <i>Remote Sensing</i> , 2019 , 11, 119	5	25
200	An algorithm to retrieve ice water content profiles in cirrus clouds from the synergy of ground-based lidar and thermal infrared radiometer measurements. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 1545-1568	4	
199	Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 1697-1716	4	7
198	Calibration of a 35 GHz airborne cloud radar: lessons learned and intercomparisons with 94 GHz cloud radars. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 1815-1839	4	19
197	A statistical and process-oriented evaluation of cloud radiative effects in high-resolution global models. <i>Geoscientific Model Development</i> , 2019 , 12, 1679-1702	6.3	4
196	Changes of summer cloud water content in China from ERA-Interim reanalysis. 2019 , 175, 201-210		5
195	Net Cloud Thinning, Low-Level Cloud Diminishment, and Hadley Circulation Weakening of Precipitating Clouds with Tropical West Pacific SST Using MISR and Other Satellite and Reanalysis Data. <i>Remote Sensing</i> , 2019 , 11, 1250	5	2
194	An improved algorithm of cloud droplet size distribution from POLDER polarized measurements. <i>Remote Sensing of Environment</i> , 2019 , 228, 61-74	13.2	10
193	Application of high-dimensional fuzzy <i>k</i>-means cluster analysis to CALIOP/CALIPSO version 4.1 cloudlerosol discrimination. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 2261-2285	4	7
192	Development of a high spatiotemporal resolution cloud-type classification approach using Himawari-8 and CloudSat. <i>International Journal of Remote Sensing</i> , 2019 , 40, 6464-6481	3.1	7
191	Assessment of seasonal cloud properties in the United Arab Emirates and adjoining regions from geostationary satellite data. <i>Remote Sensing of Environment</i> , 2019 , 228, 90-104	13.2	10
190	Fifteen-year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations. <i>International Journal of Climatology</i> , 2019 , 39, 26	512-262	935

189	Cloud Cover in the Australian Region: Development and Validation of a Cloud Masking, Classification and Optical Depth Retrieval Algorithm for the Advanced Himawari Imager. 2019 , 7,		8
188	Assessment and improvement of the Cloud Emission and Scattering Index (CESI) han algorithm for cirrus detection. <i>International Journal of Remote Sensing</i> , 2019 , 40, 5366-5387	3.1	3
187	Counting efficiency determination from quantitative intercomparison between expansion and laminar flow type condensation particle counter. 2019 , 53, 344-354		7
186	In-situ aerosol nanoparticle characterization by small angle X-ray scattering at ultra-low volume fraction. 2019 , 10, 1122		19
185	Improving meteorological drought monitoring capability over tropical and subtropical water-limited ecosystems: evaluation and ensemble of the Microwave Integrated Drought Index. <i>Environmental Research Letters</i> , 2019 , 14, 044025	6.2	21
184	Relationships among Intermodel Spread and Biases in Tropical Atlantic Sea Surface Temperatures. Journal of Climate, 2019 , 32, 3615-3635	4.4	4
183	An Assessment of the Impacts of Cloud Vertical Heterogeneity on Global Ice Cloud Data Records From Passive Satellite Retrievals. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 1578-1595	; 4.4	7
182	Radiative Heating Rates Computed With Clouds Derived From Satellite-Based Passive and Active Sensors and their Effects on Generation of Available Potential Energy. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 1720-1740	4.4	6
181	Exploring aerosols near clouds with high-spatial-resolution aircraft remote sensing during SEACRS. Journal of Geophysical Research D: Atmospheres, 2019 , 124, 2148-2173	4.4	10
180	Surface premelting of water ice. 2019 , 3, 172-188		77
179	New Cloud System Metrics to Assess Bulk Ice Cloud Schemes in a GCM. 2019 , 11, 3212-3234		2
178	From Cold to Hot Irradiated Gaseous Exoplanets: Fingerprints of Chemical Disequilibrium in Atmospheric Spectra. 2019 , 883, 194		24
177	Diurnal variation of high-level clouds from the synergy of AIRS and IASI space-borne infrared sounders. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 13957-13972	6.8	6
176	A module to convert spectral to narrowband snow albedo for use in climate models: SNOWBAL v1.2. <i>Geoscientific Model Development</i> , 2019 , 12, 5157-5175	6.3	10
175	Generative Adversarial Training for Weakly Supervised Cloud Matting. 2019,		7
174	Regional Biases in MODIS Marine Liquid Water Cloud Drop Effective Radius Deduced Through Fusion With MISR. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 13182-13196	4.4	4
173	The Atmospheric Imaging Mission for Northern Regions: AIM-North. 2019 , 45, 423-442		10
172	A Comparative Study of Bulk Parameterization Schemes for Estimating Cloudy-Sky Surface Downward Longwave Radiation. <i>Remote Sensing</i> , 2019 , 11, 528	5	14

171	Retrieval and Validation of Cloud Top Temperature from the Geostationary Satellite INSAT-3D. <i>Remote Sensing</i> , 2019 , 11, 2811	5	4
170	Satellites See the World® Atmosphere. 2019 , 59, 4.1-4.53		25
169	Isoprene hotspots at the Western Coast of Antarctic Peninsula during MASEC?16. 2019 , 20, 63-74		5
168	Local Attention Networks for Occluded Airplane Detection in Remote Sensing Images. 2020 , 17, 381-38	35	25
167	Synoptic climatology of tropical and subtropical South America and adjoining seas as inferred from Geostationary Operational Environmental Satellite imagery. <i>International Journal of Climatology</i> , 2020 , 40, 378-399	3.5	6
166	Evaluation of cloud base height in the North American Regional Reanalysis using ceilometer observations. <i>International Journal of Climatology</i> , 2020 , 40, 3161-3178	3.5	4
165	ABI Cloud Products from the GOES-R Series. 2020 , 43-62		5
164	Space-Based Observations for Understanding Changes in the Arctic-Boreal Zone. 2020 , 58, e2019RG00	0652	23
163	Assessment of CMIP6 Cloud Fraction and Comparison with Satellite Observations. <i>Earth and Space Science</i> , 2020 , 7, e2019EA000975	3.1	22
162	ENSO-driven reverse coupling in interannual variability of pantropical water availability and global atmospheric CO2 growth rate. <i>Environmental Research Letters</i> , 2020 , 15, 034006	6.2	2
161	Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAM-HAM. 2020 , 12, e2019MS001824		6
160	The Reduction in Near-Global Cloud Cover After Correcting for Biases Caused by Finite Resolution Measurements. 2020 , 47, e2020GL090313		1
159	GISS-E2.1: Configurations and Climatology. 2020 , 12, e2019MS002025		98
158	Preface. 2020 , ix-x		
157	Cloudy Perspectives. 2020 , 1-32		
156	Clouds as Fluids. 2020 , 35-73		2
155	Clouds as Particles. 2020 , 74-98		
¹ 54	Clouds as Light. 2020 , 99-122		

(2020-2020)

153	Conceptualising Clouds. 2020 , 125-169		
152	Parameterising Clouds. 2020 , 170-217		1
151	Evaluating Clouds. 2020 , 218-248		
150	Tropical and Subtropical Cloud Systems. 2020 , 251-278		
149	Midlatitude Cloud Systems. 2020 , 279-296		
148	Arctic Cloud Systems. 2020 , 297-310		
147	Clouds and Aerosols. 2020 , 313-328		
146	Clouds and Land. 2020 , 329-355		
145	Clouds andWarming. 2020 , 356-388		
144	Index. 2020 , 401-410		
143	Case studies on the parameterization schemes of sea ice fragmentation for ocean waves. 2020 , 70, 158	7-1601	Ιο
142	How surfaces shape the climate of habitable exoplanets. 2020 , 495, 1-11		9
141	Deep Matting for Cloud Detection in Remote Sensing Images. 2020 , 58, 8490-8502		21
140	Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data. <i>Remote Sensing of Environment</i> , 2020 , 247, 111931	13.2	46
139	Improving middle and high latitude cloud liquid water path measurements from MODIS. <i>Atmospheric Research</i> , 2020 , 243, 105033	5.4	6
138	Cirrus-induced shortwave radiative effects depending on their optical and physical properties: Case studies using simulations and measurements. <i>Atmospheric Research</i> , 2020 , 246, 105095	5.4	1
137	Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 1777-1796	4	8
136	Estimation of cloud optical thickness, single scattering albedo and effective droplet radius using a shortwave radiative closure study in Payerne. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 907-923	4	1

135	A General Parameterization Scheme for the Estimation of Incident Photosynthetically Active Radiation Under Cloudy Skies. 2020 , 58, 6255-6265		7
134	Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations. 2020 , 721, 137699		18
133	Impact of Cloud Ice Particle Size Uncertainty in a Climate Model and Implications for Future Satellite Missions. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032119	4.4	1
132	Construction of Nighttime Cloud Layer Height and Classification of Cloud Types. <i>Remote Sensing</i> , 2020 , 12, 668	5	2
131	A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 2257-2277	4	23
130	The New Potential of Deep Convective Clouds as a Calibration Target for a Geostationary UV/VIS Hyperspectral Spectrometer. <i>Remote Sensing</i> , 2020 , 12, 446	5	2
129	Seasonal and annual segregation of liquid water and ice clouds in Iran and their relation to geographic components and precipitation. 2020 , 140, 963-982		0
128	Cloud Cover over the Arabian Peninsula from Global Remote Sensing and Reanalysis Products. <i>Atmospheric Research</i> , 2020 , 238, 104866	5.4	9
127	Delineation of possible influence of solar variability and galactic cosmic rays on terrestrial climate parameters. 2020 , 65, 1831-1842		7
126	Cloud Characteristics and Radiation Forcing in the Global Land Monsoon Region From Multisource Satellite Data Sets. <i>Earth and Space Science</i> , 2020 , 7, e2019EA001027	3.1	3
125	GISS Model E2.2: A Climate Model Optimized for the Middle Atmosphere Model Structure, Climatology, Variability, and Climate Sensitivity. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD032204	4.4	16
124	Diurnal (24lh) cycle and seasonal variability of cloud fraction retrieved from a Whole Sky Imager over a complex terrain in the Western Ghats and comparison with MODIS. <i>Atmospheric Research</i> , 2021 , 248, 105180	5.4	3
123	. 2021 , 59, 2744-2780		29
122	CERES MODIS Cloud Product Retrievals for Edition 4Part II: Comparisons to CloudSat and CALIPSO. 2021 , 59, 3695-3724		5
121	3D radiative heating of tropical upper tropospheric cloud systems derived from synergistic A-Train observations and machine learning. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 1015-1034	6.8	2
120	Robust Semisupervised Land-use Classification using Remote Sensing Data with Weak Labels. 2021 , 1-1		1
119	An evaluation of the Arctic clouds and surface radiative fluxes in CMIP6 models. 2021 , 40, 85-102		2
118	Uncertainty Assessment of the Vertically-Resolved Cloud Amount for Joint CloudSat©ALIPSO Radar Didar Observations. <i>Remote Sensing</i> , 2021 , 13, 807	5	O

Cloudiness over the oceans at subarctic latitudes as a visible part of atmospheric moisture transport. **2021**, 21, 1-10

116	National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm. <i>Remote Sensing</i> , 2021 , 13, 846	5	11
115	Cloud Cover over the Sahara during the Summer and Associated Circulation Features. <i>Atmosphere</i> , 2021 , 12, 428	2.7	
114	Impact of the variability in vertical separation between biomass burning aerosols and marine stratocumulus on cloud microphysical properties over the Southeast Atlantic. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 4615-4635	6.8	5
113	Representativity of cloud-profiling radar observations for data assimilation in numerical weather prediction. 2021 , 147, 1801-1822		
112	Changes in HIRS Detection of Cloud over Australia from 1985 to 2001. Remote Sensing, 2021 , 13, 917	5	1
111	Control of a phytoplankton bloom by wind-driven vertical mixing and light availability. 2021 , 66, 1926-1	949	6
110	Global Analysis of Atmospheric Transmissivity Using Cloud Cover, Aridity and Flux Network Datasets. <i>Remote Sensing</i> , 2021 , 13, 1716	5	7
109	Evaluation of Cloud Mask and Cloud Top Height from Fengyun-4A with MODIS Cloud Retrievals over the Tibetan Plateau. <i>Remote Sensing</i> , 2021 , 13, 1418	5	3
108	Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties Part II: Results over oceans. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 3277-3299	4	2
107	SimCloud version 1.0: a simple diagnostic cloud scheme for idealized climate models. <i>Geoscientific Model Development</i> , 2021 , 14, 2801-2826	6.3	1
106	Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties [Part I: The retrieval algorithms. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 3253-3276	4	3
105	Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. 2021 , 11, 501-507		23
104	Assessment and Error Analysis of Terra-MODIS and MISR Cloud-Top Heights Through Comparison With ISS-CATS Lidar. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD034281	4.4	6
103	Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 3371-3394	4	4
102	Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. 2021 , 216, 103574		34
101	Estimating CO2 Emissions from Large Scale Coal-Fired Power Plants Using OCO-2 Observations and Emission Inventories. <i>Atmosphere</i> , 2021 , 12, 811	2.7	4
100	Review of synergic meteor observations: linking the results from cameras, ionosondes, infrasound and seismic detectors. 2021 , 506, 3629-3640		O

99	Cloud Cover throughout All the Paddy Rice Fields in Guangdong, China: Impacts on Sentinel 2 MSI and Landsat 8 OLI Optical Observations. <i>Remote Sensing</i> , 2021 , 13, 2961	5	3
98	Vertical structure of cloud radiative heating in the tropics: confronting the EC-Earth v3.3.1/3P model with satellite observations. <i>Geoscientific Model Development</i> , 2021 , 14, 4087-4101	6.3	
97	Application of cloud particle sensor sondes for estimating the number concentration of cloud water droplets and liquid water content: case studies in the Arctic region. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 4971-4987	4	2
96	The Global Meteor Network IMethodology and first results. 2021 , 506, 5046-5074		5
95	International Satellite Cloud Climatology Project: Extending the Record. <i>Journal of Climate</i> , 2021 , 1-62	4.4	2
94	Landfast ice properties over the Beaufort Sea region in 2000-2019 from MODIS and Canadian Ice Service data.		1
93	Ice and mixed-phase cloud statistics on the Antarctic Plateau. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 13811-13833	6.8	3
92	Top-of-atmosphere albedo bias from neglecting three-dimensional cloud radiative effects. 2021,		O
91	A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery. <i>Remote Sensing of Environment</i> , 2021 , 264, 112586	13.2	13
90	COVID-19 mortality: positive correlation with cloudiness and sunlight but no correlation with latitude in Europe.		
89	On the Generalization Ability of Data-Driven Models in the Problem of Total Cloud Cover Retrieval. <i>Remote Sensing</i> , 2021 , 13, 326	5	2
88	EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation. 2017 , 357-396		2
87	Clouds and Climate: Climate Science's Greatest Challenge. 2020 ,		6
86	The cloudbow of planet Earth observed in polarisation. <i>Astronomy and Astrophysics</i> , 2020 , 639, A89	5.1	1
85	Long-term analysis of clear nights using satellite data considering astronomical sites in western China. <i>Research in Astronomy and Astrophysics</i> , 2020 , 20, 081	1.5	9
84	Detection of single and multilayer clouds in an artificial neural network approach. 2017,		2
83	Simulation and assessment of solar background noise for spaceborne lidar. <i>Applied Optics</i> , 2018 , 57, 94	71 ./9 47	94
82	The NASA MODIS-VIIRS Continuity Cloud Optical Properties Products. <i>Remote Sensing</i> , 2021 , 13, 2	5	8

(2018-2020)

81	Confinement of air in the Asian monsoon anticyclone and pathways of convective air to the stratosphere during the summer season. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 11045-11064	6.8	14
80	Ice-supersaturated air masses in the northern mid-latitudes from regular in situ observations by passenger aircraft: vertical distribution, seasonality and tropospheric fingerprint. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8157-8179	6.8	6
79	Differences in tropical high clouds among reanalyses: origins and radiative impacts. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 8989-9030	6.8	8
78	Secondary Organic Aerosol formation from isoprene photooxidation during cloud condensation approaches.		2
77	Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing.		1
76	Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results.		6
75	The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses. <i>Earth System Science Data</i> , 2018 , 10, 1093-1117	10.5	27
74	The International Satellite Cloud Climatology Project H-Series climate data record product. <i>Earth System Science Data</i> , 2018 , 10, 583-593	10.5	80
73	FROGS: a daily 1½ 🛮 🖟 🖺 gridded precipitation database of rain gauge, satellite and reanalysis products. <i>Earth System Science Data</i> , 2019 , 11, 1017-1035	10.5	40
7 ²	Statistical downscaling of water vapour satellite measurements from profiles of tropical ice clouds. <i>Earth System Science Data</i> , 2020 , 12, 1-20	10.5	2
71	Global Land High-Resolution Cloud Climatology Based on an Improved MOD09 Cloud Mask. <i>Remote Sensing</i> , 2021 , 13, 3997	5	1
70	Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 6633-6646	4	2
69	16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations.		
68	Dehydration effects from contrails in a coupled contraildlimate model.		
67	A better understanding of POLDER's cloud droplet size retrieval: impact of cloud horizontal inhomogeneity and directional sampling.		
66	Characterizing Exoplanet Habitability. 2018 , 1-21		
65	Simulation of the brightness temperatures observed by the visible infrared imaging radiometer suite instrument. <i>Journal of Applied Remote Sensing</i> , 2018 , 12, 1	1.4	
64	Effects of thermal and exozodiacal background on space telescope observations of exoEarths. 2018 ,		1

63 HydrosphereThe Water Realm Which Supports Human Life. Advances in Geological Science, 2020, 39-46 0.1

62	Comparing three satellite retrieval cloud fraction data over Tibet Plateau. 2019,		
61	Superparameterised cloud effects in the EMAC general circulation model (v2.50) Influences of model configuration. <i>Geoscientific Model Development</i> , 2020 , 13, 2671-2694	6.3	
60	In Situ Measurements of Cirrus Clouds on a Global Scale. <i>Atmosphere</i> , 2021 , 12, 41	2.7	2
59	Life Cycle of Shallow Marine Cumulus Clouds From Geostationary Satellite Observations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035577	4.4	O
58	Subpixel Analysis of Primary and Secondary Infrared Emitters with Nighttime VIIRS Data. <i>Fire</i> , 2021 , 4, 83	2.4	3
57	Multilayer cloud conditions in trade wind shallow cumulus Leonfronting two ICON model derivatives with airborne observations. <i>Geoscientific Model Development</i> , 2020 , 13, 5757-5777	6.3	1
56	ENTICE Satellite Orbital Simulator to Study Ice Clouds.		
55	Measurement report: Molecular characteristics of cloud water in southern China and insights into aqueous-phase processes from Fourier transform ion cyclotron resonance mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 16631-16644	6.8	0
54	Quantifying CO emission rates of industrial point sources from TROPOMI observations. Environmental Research Letters,	6.2	O
53	Requirements for a global lidar system: spaceborne lidar with wall-to-wall coverage. <i>Royal Society Open Science</i> , 2021 , 8, 211166	3.3	4
52	Improvement of solar irradiance modelling during cloudy-sky days using measurements. <i>Solar Energy</i> , 2021 , 230, 1175-1188	6.8	1
51	Evaluating the Nature and Extent of Changes to Climate Sensitivity Between FGOALS-g2 and FGOALS-g3. <i>Journal of Geophysical Research D: Atmospheres</i> , 2022 , 127,	4.4	0
50	Farmland parcel-based crop classification in cloudy/rainy mountains using Sentinel-1 and Sentinel-2 based deep learning. <i>International Journal of Remote Sensing</i> , 2022 , 43, 1054-1073	3.1	1
49	Arctic cloud properties and associated radiative effects in the three newer reanalysis datasets (ERA5, MERRA-2, JRA-55): Discrepancies and possible causes. <i>Atmospheric Research</i> , 2022 , 270, 106080	5.4	О
48	A Flexible Multi-Temporal and Multi-Modal Framework for Sentinel-1 and Sentinel-2 Analysis Ready Data. <i>Remote Sensing</i> , 2022 , 14, 1120	5	1
47	Assessment of Nighttime Cloud Cover Products from MODIS and Himawari-8 Data with Ground-Based Camera Observations. <i>Remote Sensing</i> , 2022 , 14, 960	5	1
46	Applying self-supervised learning for semantic cloud segmentation of all-sky images. <i>Atmospheric Measurement Techniques</i> , 2022 , 15, 797-809	4	1

45	What is a cloud? Toward a more precise definition?. <i>Bulletin of the American Meteorological Society</i> , 2022 ,	6.1	1
44	Comparison of scattering ratio profiles retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations and preliminary estimates of cloud fraction profiles. <i>Atmospheric Measurement Techniques</i> , 2022 , 15, 1055-1074	4	O
43	ENTICE Satellite Orbital Simulator to Study Ice Clouds. Earth and Space Science,	3.1	
42	Diurnal variations of cloud optical properties during day-time over China based on Himawari-8 satellite retrievals. <i>Atmospheric Environment</i> , 2022 , 277, 119065	5.3	1
41	Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1. <i>Geoscientific Model Development</i> , 2022 , 15, 2881-2916	6.3	О
40	Machine learning-based retrieval of day and night cloud macrophysical parameters over East Asia using Himawari-8 data. <i>Remote Sensing of Environment</i> , 2022 , 273, 112971	13.2	2
39	Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. <i>Remote Sensing of Environment</i> , 2022 , 274, 112990	13.2	4
38	The contribution of Saharan dust to the ice-nucleating particle concentrations at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 18029-18	3053	1
37	Investigation of ice cloud modeling capabilities for the irregularly shaped Voronoi ice scattering models in climate simulations. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4809-4825	6.8	1
36	Introduction. Springer Remote Sensing/photogrammetry, 2022, 3-6	0.2	
36 35	Introduction. Springer Remote Sensing/photogrammetry, 2022, 3-6 Global Datasets of Clouds and Precipitation. Springer Remote Sensing/photogrammetry, 2022, 269-281	0.2	
·			
35	Global Datasets of Clouds and Precipitation. Springer Remote Sensing/photogrammetry, 2022, 269-281 Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from	0.2	0
35	Global Datasets of Clouds and Precipitation. Springer Remote Sensing/photogrammetry, 2022, 269-281 Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets. Remote Sensing, 2022, 14, 2173 How Accurately Can Warm Rain Realistically Be Retrieved with Satellite Sensors? Part 1: DSD	0.2	0
35 34 33	Global Datasets of Clouds and Precipitation. Springer Remote Sensing/photogrammetry, 2022, 269-281 Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets. Remote Sensing, 2022, 14, 2173 How Accurately Can Warm Rain Realistically Be Retrieved with Satellite Sensors? Part 1: DSD Uncertainties. Journal of Applied Meteorology and Climatology, 2022, A Cloud Classification Method Based on a Convolutional Neural Network for FY-4A Satellites.	0.252.7	
35 34 33 32	Global Datasets of Clouds and Precipitation. Springer Remote Sensing/photogrammetry, 2022, 269-281 Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets. Remote Sensing, 2022, 14, 2173 How Accurately Can Warm Rain Realistically Be Retrieved with Satellite Sensors? Part 1: DSD Uncertainties. Journal of Applied Meteorology and Climatology, 2022, A Cloud Classification Method Based on a Convolutional Neural Network for FY-4A Satellites. Remote Sensing, 2022, 14, 2314 First Observations of Cirrus Clouds Using the UZ Mie Lidar over uMhlathuze City, South Africa.	0.252.75	
35 34 33 32 31	Global Datasets of Clouds and Precipitation. Springer Remote Sensing/photogrammetry, 2022, 269-281 Comparison of the Spatial and Temporal Variability of Cloud Amounts over China Derived from Different Satellite Datasets. Remote Sensing, 2022, 14, 2173 How Accurately Can Warm Rain Realistically Be Retrieved with Satellite Sensors? Part 1: DSD Uncertainties. Journal of Applied Meteorology and Climatology, 2022, A Cloud Classification Method Based on a Convolutional Neural Network for FY-4A Satellites. Remote Sensing, 2022, 14, 2314 First Observations of Cirrus Clouds Using the UZ Mie Lidar over uMhlathuze City, South Africa. Applied Sciences (Switzerland), 2022, 12, 4631 Comparative assessment of a near-global view of individual cloud types from space-borne active	0.252.752.6	

27	Diverse cloud radiative effects and global surface temperature simulations induced by different ice cloud optical property parameterizations. <i>Scientific Reports</i> , 2022 , 12,	4.9	1
26	Analysis of Daytime Cloud Fraction Spatiollemporal Variation over the Arctic During 2000 2 019 from Multiple Satellite Products. <i>Journal of Climate</i> , 2022 , 1-53	4.4	
25	Radiative closure and cloud effects on the radiation budget based on satellite and shipborne observations during the Arctic summer research cruise, PS106. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 9313-9348	6.8	0
24	Combining Cloud Properties from CALIPSO, CloudSat, and MODIS for Top-of-Atmosphere (TOA) Shortwave Broadband Irradiance Computations: Impact of Cloud Vertical Profiles. 2022 ,		O
23	The changing nature of Earth's reflected sunlight. 2022 , 478,		2
22	Distinct response of near surface air temperature to clouds in North China.		
21	A Positive Low Cloud-Sea Surface Temperature Feedback in the East Asian Marginal Seas during El Nið Mature Winters and their Following Spring. 2022 , 1-54		0
20	Reconstruction of land surface temperature under cloudy conditions from Landsat 8 data using annual temperature cycle model. 2022 , 281, 113261		3
19	Global Distribution of Clouds over Six Years: A Review Using Multiple Sensors and Reanalysis Data. 2022 , 13, 1514		O
18	Response of Cloud and Precipitation Properties to Seeding at a Supercooled Cloud-Top Layer. 2022 , 9,		O
17	Remote Sensing of Cloudiness: Challenges and Way Forward. 2023, 157-170		0
16	Can DSD Assumptions Explain the Differences in Satellite Estimates of Warm Rain?. 2022,		O
15	Retrieval of ice water path from the Microwave Humidity Sounder (MWHS) aboard FengYun-3B (FY-3B) satellite polarimetric measurements based on a deep neural network. 2022 , 15, 6489-6506		0
14	Climate feedback with latitude diagnosed from radiation budgets, temperatures and cloudiness.		O
13	Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications.		4
12	Radiative contributions of different cloud types to regional energy budget over the SACOL site.		O
11	Computation of the Attenuated Backscattering Coefficient by the Backscattering Lidar Signal Simulator (BLISS) in the Framework of the CALIOP/CALIPSO Observations. 2023 , 14, 249		0
10	Quantification of Global Cloud Properties with Use of Spherical Harmonic Functions.		O

CITATION REPORT

9	VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results. 2023, 15, 578	1
8	Distributions and Trends of the Aerosol Direct Radiative Effect in the 21 st Century: Aerosol and Environmental Contributions.	O
7	Cloud Removal from Satellite Images Using a Deep Learning Model with the Cloud-Matting Method. 2023 , 15, 904	0
6	Molecular characteristics, sources and transformation of water-insoluble organic matter in cloud water. 2023 , 325, 121430	O
5	Global Radiative Flux Profile Data Set: Revised and Extended. 2023 , 128,	0
4	Estimating Hourly All-Weather Land Surface Temperature From FY-4A/AGRI Imagery Using the Surface Energy Balance Theory. 2023 , 61, 1-18	O
3	Short-Term Variability of the Single-Layer Cloud-Field Structure over Western Siberia from MODIS and VIIRS Satellite Data. 2022 , 58, 1619-1626	O
2	Cloud Top Thermodynamic Phase from Synergistic Lidar-Radar Cloud Products from Polar Orbiting Satellites: Implications for Observations from Geostationary Satellites. 2023 , 15, 1742	O
1	A review and comparison of surface incident shortwave radiation from multiple data sources: satellite retrievals, reanalysis data and GCM simulations. 2023 , 16, 1332-1357	0