MicroRNA Function in Human Diseases

Medical Epigenetics 1, 106-115

DOI: 10.1159/000356447

Citation Report

#	Article	IF	CITATIONS
1	MicroRNAs in Cholangiopathies. Current Pathobiology Reports, 2014, 2, 133-142.	3.4	27
2	Role of microRNAs in Alcohol-Induced Multi-Organ Injury. Biomolecules, 2015, 5, 3309-3338.	4.0	44
3	Evaluation of inhibition of miRNA expression induced by anti-miRNA oligonucleotides. Analytical and Bioanalytical Chemistry, 2016, 408, 4829-4833.	3.7	3
4	MicroRNA-122 regulates caspase-8 and promotes the apoptosis of mouse cardiomyocytes. Brazilian Journal of Medical and Biological Research, 2017, 50, e5760.	1.5	24
5	Circulating MicroRNA Profile Associated with Obstructive Sleep Apnea in Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 4363-4372.	4.0	10
6	Role of microRNA in forming breast carcinoma. Life Sciences, 2020, 259, 118256.	4.3	13
7	Pre-micro RNA polymorphism detection in small versus large vessel disease in stroke Egyptian patients. Metabolic Brain Disease, 2021, 36, 1361-1367.	2.9	0
8	A comprehensive review of online resources for microRNA–diseases associations: the state of the art. Briefings in Bioinformatics, 2022, 23, .	6.5	7
9	HT-SELEX-based identification of binding pre-miRNA hairpin-motif for small molecules. Molecular Therapy - Nucleic Acids, 2022, 27, 165-174.	5.1	4
10	Molecular mechanisms of isoflavone puerarin against cardiovascular diseases: What we know and where we go. Chinese Herbal Medicines, 2022, 14, 234-243.	3.0	8
11	Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimerâ \in TM s disease. Frontiers in Aging Neuroscience, 0, 14, .	3.4	9
12	Identification of repurposed drugs targeting significant long non-coding RNAs in the cross-talk between diabetes mellitus and Alzheimer's disease. Scientific Reports, 2022, 12, .	3.3	O
13	The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers, 2022, 14, 5118.	3.7	10
14	On the origin and nature of nongenetic information in eumetazoans. Annals of the New York Academy of Sciences, 0, , .	3.8	O
15	Cancer stem cells, signalling pathways and chemopreventive effects of phytochemicals in androgen-regulated cancers., 2024,, 409-437.		0
16	Association between miR-138-5p, miR-132-3p, SIRT1, STAT3, and CD36 and atherogenic indices in blood mononuclear cells from patients with atherosclerosis. Egyptian Journal of Medical Human Genetics, 2023, 24, .	1.0	1