Pipecolic Acid, an Endogenous Mediator of Defense Am Regulator of Inducible Plant Immunity

Plant Cell 24, 5123-5141 DOI: 10.1105/tpc.112.103564

Citation Report

#	Article	IF	Citations
1	Systemic signaling during plant defense. Current Opinion in Plant Biology, 2013, 16, 527-533.	3.5	199
2	Systemic Acquired Resistance (50 Years after Discovery): Moving from the Lab to the Field. Journal of Agricultural and Food Chemistry, 2013, 61, 12473-12491.	2.4	162
3	<i>Arabidopsis thaliana FLOWERING LOCUS D</i> Is Required for Systemic Acquired Resistance. Molecular Plant-Microbe Interactions, 2013, 26, 1079-1088.	1.4	80
4	A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues. Amino Acids, 2013, 45, 613-689.	1.2	79
5	A Feedback Regulatory Loop between G3P and Lipid Transfer Proteins DIR1 and AZI1 Mediates Azelaic-Acid-Induced Systemic Immunity. Cell Reports, 2013, 3, 1266-1278.	2.9	171
6	Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 2013, 4, 30.	1.7	268
7	Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New Phytologist, 2013, 199, 908-915.	3.5	107
8	New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell and Environment, 2013, 36, 2085-2103.	2.8	296
9	Metabolic Profiling Framework for Discovery of Candidate Diagnostic Markers of Malaria. Scientific Reports, 2013, 3, 2769.	1.6	22
10	Acclimation responses of Arabidopsis thaliana to sustained phosphite treatments. Journal of Experimental Botany, 2013, 64, 1731-1743.	2.4	42
11	Reprogramming of plants during systemic acquired resistance. Frontiers in Plant Science, 2013, 4, 252.	1.7	100
12	Significance of the Natural Occurrence of L―Versus Dâ€Pipecolic Acid: A Review. Chirality, 2013, 25, 823-831.	1.3	37
13	Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco. Plant Signaling and Behavior, 2013, 8, e26366.	1.2	68
16	Lysine catabolism, amino acid transport, and systemic acquired resistance. Plant Signaling and Behavior, 2014, 9, e28933.	1.2	29
17	Exogenous application of histone demethylase inhibitor trans-2-phenylcyclopropylamine mimics <i>FLD</i> loss-of-function phenotype in terms of systemic acquired resistance in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2014, 9, e29658.	1.2	13
18	Priming of plant resistance by natural compounds. Hexanoic acid as a model. Frontiers in Plant Science, 2014, 5, 488.	1.7	200
19	Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. Journal of Experimental Botany, 2014, 65, 5919-5931.	2.4	60
20	Preparing to fight back: generation and storage of priming compounds. Frontiers in Plant Science, 2014, 5, 295.	1.7	104

ATION RED

#	Article	IF	CITATIONS
21	Arabidopsis Triphosphate Tunnel Metalloenzyme2 Is a Negative Regulator of the Salicylic Acid-Mediated Feedback Amplification Loop for Defense Responses Â. Plant Physiology, 2014, 166, 1009-1021.	2.3	21
22	<i>N</i> -Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway. Plant Cell, 2014, 26, 2708-2723.	3.1	166
23	Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nature Communications, 2014, 5, 5372.	5.8	128
24	Altered growth and improved resistance of <i><scp>A</scp>rabidopsis</i> against <i><scp>P</scp>seudomonas syringae</i> by overexpression of the basic amino acid transporter <scp><i>AtCAT1</i></scp> . Plant, Cell and Environment, 2014, 37, 1404-1414.	2.8	49
25	Knockdown of <i>LjALD1</i> , AGD2â€like defense response protein 1, influences plant growth and nodulation in <i>Lotus japonicus</i> . Journal of Integrative Plant Biology, 2014, 56, 1034-1041.	4.1	6
26	Molecular Reprogramming of <i>Arabidopsis</i> in Response to Perturbation of Jasmonate Signaling. Journal of Proteome Research, 2014, 13, 5751-5766.	1.8	29
27	Insect eggs induce a systemic acquired resistance in Arabidopsis. Plant Journal, 2014, 80, 1085-1094.	2.8	73
28	Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, <i>ENHANCED DISEASE SUSCEPTIBILITY1</i> -DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance Â, Â Â. Plant Physiology, 2014, 165, 791-809.	2.3	151
29	Polycomb and Trithorax group protein-mediated control of stress responses in plants. Biological Chemistry, 2014, 395, 1291-1300.	1.2	43
30	Human pyrrolineâ€5â€carboxylate reductase (PYCR1) acts on Δ ¹ â€piperideineâ€6â€carboxylate generating Lâ€pipecolic acid. Journal of Inherited Metabolic Disease, 2014, 37, 327-332.	1.7	25
31	Targeting novel chemical and constitutive primed metabolites against <i><scp>P</scp>lectosphaerella cucumerina</i> . Plant Journal, 2014, 78, 227-240.	2.8	56
32	Arabidopsis FLOWERING LOCUS D influences systemic-acquired-resistance-induced expression and histone modifications of WRKY genes. Journal of Biosciences, 2014, 39, 119-126.	0.5	71
33	Context of action of Proline Dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis. BMC Plant Biology, 2014, 14, 21.	1.6	61
34	Signaling by small metabolites in systemic acquired resistance. Plant Journal, 2014, 79, 645-658.	2.8	126
35	Chemical inducers of systemic immunity in plants. Journal of Experimental Botany, 2014, 65, 1849-1855.	2.4	54
36	The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO Journal, 2014, 33, 62-75.	3.5	128
37	Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 2014, 10, 450-456.	3.9	128
38	Molecular and physiological stages of priming: how plants prepare for environmental challenges. Plant Cell Reports, 2014, 33, 1935-1949.	2.8	61

#	Article	IF	CITATIONS
39	Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid. Plant Physiology, 2014, 166, 2133-2151.	2.3	76
40	Stitching together the Multiple Dimensions of Autophagy Using Metabolomics and Transcriptomics Reveals Impacts on Metabolism, Development, and Plant Responses to the Environment in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 1857-1877.	3.1	134
41	Salicylic Acid and Jasmonic Acid Are Essential for Systemic Resistance Against <i>Tobacco mosaic virus</i> in <i>Nicotiana benthamiana</i> . Molecular Plant-Microbe Interactions, 2014, 27, 567-577.	1.4	173
43	Nitrogen metabolism meets phytopathology. Journal of Experimental Botany, 2014, 65, 5643-5656.	2.4	185
44	Metabolomic insights into the bioconversion of isonitrosoacetophenone in Arabidopsis thaliana and its effects on defense-related pathways. Plant Physiology and Biochemistry, 2014, 84, 87-95.	2.8	8
45	Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC Plant Biology, 2014, 14, 155.	1.6	70
46	Environmental History Modulates <i>Arabidopsis</i> Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1–Dependent Manner Â. Plant Cell, 2014, 26, 2676-2688.	3.1	133
47	Spatial H2O2 Signaling Specificity: H2O2 from Chloroplasts and Peroxisomes Modulates the Plant Transcriptome Differentially. Molecular Plant, 2014, 7, 1191-1210.	3.9	167
48	β-Aminobutyric Acid (BABA)-Induced Resistance in <i>Arabidopsis thaliana</i> : Link with Iron Homeostasis. Molecular Plant-Microbe Interactions, 2014, 27, 1226-1240.	1.4	38
49	Mitochondrial 2-hydroxyglutarate metabolism. Mitochondrion, 2014, 19, 275-281.	1.6	38
50	Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Science, 2014, 228, 135-149.	1.7	95
51	Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology, 2014, 20, 127-134.	3.5	116
52	A Metabolic Profiling Strategy for the Dissection of Plant Defense against Fungal Pathogens. PLoS ONE, 2014, 9, e111930.	1.1	101
53	ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nature Communications, 2015, 6, 10159.	5.8	178
54	An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in <i>SolanumÂlycopersicum</i> , and identifies 1â€methyltryptophan as a metabolite involved in plant responses to <i>BotrytisÂcinerea</i> and <i>PseudomonasÂsyringae</i> . Plant lournal, 2015, 84, 125-139.	2.8	71
55	Visualizing the relevance of bacterial blue―and redâ€light receptors during plant–pathogen interaction. Environmental Microbiology Reports, 2015, 7, 795-802.	1.0	20
56	Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N-Limited, P-Rich Field Conditions. PLoS ONE, 2015, 10, e0129591.	1.1	69
57	Signal regulators of systemic acquired resistance. Frontiers in Plant Science, 2015, 06, 228.	1.7	218

	CITATION	Report	
#	Article	IF	CITATIONS
58	Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Frontiers in Plant Science, 2015, 6, 435.	1.7	43
59	Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline. Insect Biochemistry and Molecular Biology, 2015, 63, 34-46.	1.2	48
60	Investigation of the Chemical Interface in the Soybean–Aphid and Rice–Bacteria Interactions Using MALDI-Mass Spectrometry Imaging. Analytical Chemistry, 2015, 87, 5294-5301.	3.2	61
61	What the transcriptome does not tell — proteomics and metabolomics are closer to the plants' patho-phenotype. Current Opinion in Plant Biology, 2015, 26, 26-31.	3.5	124
62	The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus. Journal of Plant Physiology, 2015, 178, 27-34.	1.6	21
63	Systemic Immunity Requires SnRK2.8-Mediated Nuclear Import of NPR1 in Arabidopsis. Plant Cell, 2015, 27, 3425-3438.	3.1	104
64	ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2015, 28, 455-466.	1.4	56
65	Phospholipase D and phosphatidic acid in plant defence response: from protein–protein and lipid–protein interactions to hormone signalling. Journal of Experimental Botany, 2015, 66, 1721-1736.	2.4	146
66	Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 2015, 33, 994-1004.	6.0	196
67	Aspiperidine oxide, a piperidine N-oxide from the filamentous fungus Aspergillus indologenus. Tetrahedron Letters, 2015, 56, 1847-1850.	0.7	5
68	The synthetic cationic lipid <scp>diC14</scp> activates a sector of the <scp>A</scp> rabidopsis defence network requiring endogenous signalling components. Molecular Plant Pathology, 2015, 16, 963-972.	2.0	8
69	Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming. Nature Communications, 2015, 6, 7658.	5.8	107
70	Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9166-9173.	3.3	181
71	Priming for Enhanced Defense. Annual Review of Phytopathology, 2015, 53, 97-119.	3.5	733
72	Analysis of the roles of the Arabidopsis peroxisomal isocitrate dehydrogenase in leaf metabolism and oxidative stress. Environmental and Experimental Botany, 2015, 114, 22-29.	2.0	19
73	Interconnection between flowering time control and activation of systemic acquired resistance. Frontiers in Plant Science, 2015, 6, 174.	1.7	34
74	Plasmodesmataâ€located protein overexpression negatively impacts the manifestation of systemic acquired resistance and the longâ€distance movement of Defective in Induced Resistance1 in <i><scp>A</scp>rabidopsis</i>). Plant Biology, 2015, 17, 395-401.	1.8	56
75	Amino Acid Catabolism in Plants. Molecular Plant, 2015, 8, 1563-1579.	3.9	898

#	Article	IF	CITATIONS
76	Hybrid mimics and hybrid vigor in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4959-67.	3.3	51
77	2-Hydroxy Acids in Plant Metabolism. The Arabidopsis Book, 2015, 13, e0182.	0.5	69
78	The metabolomics of oxidative stress. Phytochemistry, 2015, 112, 33-53.	1.4	199
79	Folic acid induces salicylic acidâ€dependent immunity in <scp>A</scp> rabidopsis and enhances susceptibility to <i><scp>A</scp>Iternaria brassicicola</i> . Molecular Plant Pathology, 2015, 16, 616-622.	2.0	41
80	Jasmonate Signaling System in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 123-194.	0.5	4
82	Gibberellin Signaling in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 383-401.	0.5	2
83	Salicylic Acid Signaling in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 27-122.	0.5	15
84	Defense Mechanisms in Plants. , 2016, , 389-396.		1
85	Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles. Frontiers in Plant Science, 2016, 7, 495.	1.7	32
86	Orthology Analysis and In Vivo Complementation Studies to Elucidate the Role of DIR1 during Systemic Acquired Resistance in Arabidopsis thaliana and Cucumis sativus. Frontiers in Plant Science, 2016, 7, 566.	1.7	18
87	Profiling of Altered Metabolomic States in Nicotiana tabacum Cells Induced by Priming Agents. Frontiers in Plant Science, 2016, 7, 1527.	1.7	44
88	Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia. Plant Physiology, 2016, 172, 141-153.	2.3	82
89	Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 2016, 91, 1118-1133.	4.7	388
90	Epigenetic Mechanisms: An Emerging Player in Plant-Microbe Interactions. Molecular Plant-Microbe Interactions, 2016, 29, 187-196.	1.4	72
91	The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid. Horticulture Research, 2016, 3, 16007.	2.9	49
92	Two redundant receptor-like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis in Arabidopsis. Plant Physiology, 2016, 171, pp.01954.2015.	2.3	44
93	Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions. Trends in Plant Science, 2016, 21, 781-791.	4.3	76
94	The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by <i>Pseudomonas</i> Type III Effectors. Plant Physiology, 2016, 172, 1941-1958.	2.3	94

#	Article	IF	CITATIONS
95	Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance. Plant Cell, 2016, 28, 2603-2615.	3.1	121
96	Systemic resistance in citrus to <i>Tetranychus urticae</i> induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. Journal of Experimental Botany, 2016, 67, 5711-5723.	2.4	43
97	<i>Rhynchophorus ferrugineus</i> attack affects a group of compounds rather than rearranging <i>Phoenix canariensis</i> metabolic pathways. Journal of Integrative Plant Biology, 2016, 58, 388-396.	4.1	15
98	Role of plasmodesmata and plasmodesmata localizing proteins in systemic immunity. Plant Signaling and Behavior, 2016, 11, e1219829.	1.2	14
100	The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism. Cell Discovery, 2016, 2, 16027.	3.1	55
101	Comparative Proteomics Analysis of Arabidopsis Phloem Exudates Collected During the Induction of Systemic Acquired Resistance. Plant Physiology, 2016, 171, pp.00269.2016.	2.3	64
102	The Arabidopsis Malectin-Like/LRR-RLK IOS1 is Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity. Plant Cell, 2016, 28, tpc.00313.2016.	3.1	126
103	Innate immune memory in plants. Seminars in Immunology, 2016, 28, 319-327.	2.7	105
104	Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC Plant Biology, 2016, 16, 60.	1.6	68
105	Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space. Plant Journal, 2016, 87, 442-454.	2.8	44
106	Mycorrhizal Association and Their Role in Plant Disease Protection. , 2016, , 95-143.		5
107	Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground. Annual Review of Phytopathology, 2016, 54, 499-527.	3.5	88
108	Engineering Corynebacterium glutamicum for fast production of l-lysine and l-pipecolic acid. Applied Microbiology and Biotechnology, 2016, 100, 8075-8090.	1.7	84
109	ROS, Calcium, and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. Plant Physiology, 2016, 171, 1606-1615.	2.3	455
110	Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. Molecular Plant, 2016, 9, 662-681.	3.9	62
111	The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection. Plant Science, 2016, 243, 105-114.	1.7	27
112	Differential metabolomic responses of PAMP-triggered immunity and effector-triggered immunity in Arabidopsis suspension cells. Metabolomics, 2016, 12, 1.	1.4	23
113	Rapid, Long-Distance Electrical and Calcium Signaling in Plants. Annual Review of Plant Biology, 2016, 67, 287-307.	8.6	277

#	Article	IF	CITATIONS
114	Nitric Oxide-Mediated Chemical Signaling during Systemic Acquired Resistance. Advances in Botanical Research, 2016, 77, 245-261.	0.5	5
115	Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N -acyl homoserine lactone group. Plant Molecular Biology, 2016, 90, 605-612.	2.0	140
116	Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell, 2016, 28, 102-129.	3.1	246
117	Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Molecular Biology, 2016, 91, 703-711.	2.0	68
118	Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 2017, 68, 485-512.	8.6	692
119	Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC Plant Biology, 2017, 17, 46.	1.6	53
120	Fermentative production of Lâ€pipecolic acid from glucose and alternative carbon sources. Biotechnology Journal, 2017, 12, 1600646.	1.8	58
121	iTRAQâ€based proteomics of sunflower cultivars differing in resistance to parasitic weed <i>Orobanche cumana</i> . Proteomics, 2017, 17, 1700009.	1.3	30
122	Secrets of the Forest: Volatiles First Discovered in Pine Trees Propagate Defense Signals within and between Plants. Plant Cell, 2017, 29, 1181-1182.	3.1	1
123	Monoterpenes Support Systemic Acquired Resistance within and between Plants. Plant Cell, 2017, 29, 1440-1459.	3.1	184
124	Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied?. Phytopathology, 2017, 107, 1452-1461.	1.1	20
125	Azelaic acid accumulates in phloem exudates of TMV-infected tobacco leaves, but its application does not induce local or systemic resistance against selected viral and bacterial pathogens. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	7
126	Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity. Plant Physiology, 2017, 174, 124-153.	2.3	111
127	Exploring the role of DIR1, DIR1-like and other lipid transfer proteins during systemic immunity in Arabidopsis. Physiological and Molecular Plant Pathology, 2017, 97, 49-57.	1.3	11
128	Gaining Insight into Plant Responses to Beneficial and Pathogenic Microorganisms Using Metabolomic and Transcriptomic Approaches. , 2017, , 113-140.		4
129	Postharvest β-aminobutyric-acid–primed resistance is not effective in the control of Penicillium expansum Link. on â€~Golden delicious' apple fruit. Crop Protection, 2017, 102, 43-48.	1.0	6
130	Transcriptome and proteome analysis reveal new insight into proximal and distal responses of wheat to foliar infection by Xanthomonas translucens. Scientific Reports, 2017, 7, 10157.	1.6	25
131	<i>Botrytis cinerea</i> B05.10 promotes disease development in <i>Arabidopsis</i> by suppressing WRKY33â€mediated host immunity. Plant, Cell and Environment, 2017, 40, 2189-2206.	2.8	60

#	Article	IF	Citations
132	Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. Phytochemistry, 2017, 143, 19-28.	1.4	19
133	Climate Change, CO 2 , and Defense: The Metabolic, Redox, and Signaling Perspectives. Trends in Plant Science, 2017, 22, 857-870.	4.3	74
134	Emerging Trends in Physiological and Biochemical Responses of Salicylic Acid. , 2017, , 47-75.		1
135	Functional Genomic Approaches in Plant Research. , 2017, , 215-239.		4
136	Identification and comparative analysis of Brassica juncea pathogenesis-related genes in response to hormonal, biotic and abiotic stresses. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	65
137	Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice. Scientific Reports, 2017, 7, 2474.	1.6	35
138	The priming molecule <i>β</i> â€aminobutyric acid is naturally present in plants and is induced by stress. New Phytologist, 2017, 213, 552-559.	3.5	124
140	Similar, but different: structurally related azelaic acid and hexanoic acid trigger differential metabolomic and transcriptomic responses in tobacco cells. BMC Plant Biology, 2017, 17, 227.	1.6	25
141	Innate immune memory: An evolutionary perspective. Immunological Reviews, 2018, 283, 21-40.	2.8	165
142	A critical role for Arabidopsis <scp>MILDEW RESISTANCE LOCUS</scp> O2 in systemic acquired resistance. Plant Journal, 2018, 94, 1064-1082.	2.8	28
143	Pipped at the Post: Pipecolic Acid Derivative Identified as SAR Regulator. Cell, 2018, 173, 286-287.	13.5	16
144	Explorations of Plant's Chemodiversity: Role of Nitrogen-Containing Secondary Metabolites in Plant Defense. , 2018, , 309-332.		8
145	MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infection in potato. Journal of Experimental Botany, 2018, 69, 2023-2036.	2.4	67
146	Priming plant resistance by activation of redox-sensitive genes. Free Radical Biology and Medicine, 2018, 122, 171-180.	1.3	85
147	Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Management Science, 2018, 74, 1286-1296.	1.7	48
148	Primed primary metabolism in systemic leaves: a functional systems analysis. Scientific Reports, 2018, 8, 216.	1.6	64
149	STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1. Plant Physiology, 2018, 176, 1773-1792.	2.3	31
150	Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 2018, 212-213, 29-37.	2.5	433

		CITATION R	EPORT	
#	Article		IF	CITATIONS
151	Insights into Pipecolic Acid Biosynthesis in <i>Huperzia serrata</i> . Organic Letters, 2018	20, 2195-2198.	2.4	37
152	Phytochemical variation in treetops: causes and consequences for tree-insectÂherbivore ir Oecologia, 2018, 187, 377-388.	iteractions.	0.9	44
153	Flavin Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Sy Immunity. Cell, 2018, 173, 456-469.e16.	rstemic	13.5	297
154	<i>Arabidopsis thaliana</i> GLUTATHIONEâ€ <i>S</i> â€TRANSFERASE THETA 2 interacts v activate systemic acquired resistance. Molecular Plant Pathology, 2018, 19, 464-475.	vith RSI1/FLD to	2.0	39
155	Studies on the constituents of Helleborus purpurascens: analysis and biological activity of aqueous and organic extracts. Amino Acids, 2018, 50, 163-188.	the	1.2	7
156	Mapping the Arabidopsis Metabolic Landscape by Untargeted Metabolomics at Different B Conditions. Molecular Plant, 2018, 11, 118-134.	Invironmental	3.9	116
157	<pre><scp>TGACG</scp>â<<scp>BINDING FACTOR</scp>1 (<scp>TGA</scp>1) and <scp>TGA salicylic acid and pipecolic acid biosynthesis by modulating the expression of <i>SYSTEMIC RESISTANCE <scp>DEFICIENT</scp>1</i> (<i><scp>SARD</scp>1</i>) and <i><scp>CALMODULIN</scp>ã<<scp>BINDING PROTEIN</scp> 60g</i> (<i><scp>CBP</scp></i></scp></pre>	4 regulate CACQUIRED cp>60g). New	3.5	126
158	Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 20 1652-1704.	018, 47,	18.7	149
159	Recent Advances in Synthetic Chemical Inducers of Plant Immunity. Frontiers in Plant Scie 1613.	nce, 2018, 9,	1.7	72
160	Proline synthesis in developing microspores is required for pollen development and fertilit Plant Biology, 2018, 18, 356.	y. BMC	1.6	46
161	Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition. C 252.	:ells, 2018, 7,	1.8	84
162	Arabidopsis thaliana Immunity-Related Compounds Modulate Disease Susceptibility in Bar Agronomy, 2018, 8, 142.	ley.	1.3	14
163	Review: Functional linkages between amino acid transporters and plant responses to path Science, 2018, 277, 79-88.	ogens. Plant	1.7	31
164	Assessment of the impact of PS3-induced resistance to downy mildew on grapevine physic Physiology and Biochemistry, 2018, 133, 134-141.	blogy. Plant	2.8	4
165	Time-course metabolic profiling in alfalfa leaves under Phoma medicaginis infection. PLoS 13, e0206641.	ONE, 2018,	1.1	11
166	Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevi Physiology, 2018, 178, 1187-1206.	ne. Plant	2.3	84
167	A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquire Plant Cell, 2018, 30, 2480-2494.	d Resistance.	3.1	119
168	Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Molecular Plan Interactions, 2018, 31, 871-888.	:-Microbe	1.4	350

#	Article	IF	CITATIONS
169	Pipecolic acid confers systemic immunity by regulating free radicals. Science Advances, 2018, 4, eaar4509.	4.7	115
170	Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. Plant and Cell Physiology, 2018, 59, 1592-1607.	1.5	31
171	Role of benzoic and salicylic acids in the immunization of oil palm seedlings-challenged by Ganoderma boninense. Industrial Crops and Products, 2018, 122, 358-365.	2.5	17
172	The Defense-Related Isoleucic Acid Differentially Accumulates in Arabidopsis Among Branched-Chain Amino Acid-Related 2-Hydroxy Carboxylic Acids. Frontiers in Plant Science, 2018, 9, 766.	1.7	23
173	Metabolomics in Plant Priming Research: The Way Forward?. International Journal of Molecular Sciences, 2018, 19, 1759.	1.8	83
174	<scp>l</scp> â€lysine metabolism to <i>N</i> â€hydroxypipecolic acid: an integral immuneâ€activating pathway in plants. Plant Journal, 2018, 96, 5-21.	2.8	88
175	Functional Analogues of Salicylic Acid and Their Use in Crop Protection. Agronomy, 2018, 8, 5.	1.3	66
176	Signals of Systemic Immunity in Plants: Progress and Open Questions. International Journal of Molecular Sciences, 2018, 19, 1146.	1.8	59
177	Dynamic modeling of subcellular phenylpropanoid metabolism in Arabidopsis lignifying cells. Metabolic Engineering, 2018, 49, 36-46.	3.6	16
178	Molecular networks in plant–pathogen holobiont. FEBS Letters, 2018, 592, 1937-1953.	1.3	38
179	Plants Pack a Quiver Full of Arrows. Cell Host and Microbe, 2018, 23, 573-575.	5.1	8
180	<i>N</i> -hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4920-E4929.	3.3	187
181	A Connection between Lysine and Serotonin Metabolism in Rice Endosperm. Plant Physiology, 2018, 176, 1965-1980.	2.3	56
182	Tricarboxylates Induce Defense Priming Against Bacteria in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 1221.	1.7	45
183	Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoS ONE, 2018, 13, e0197919.	1.1	74
184	Stressed Out About Hormones: How Plants Orchestrate Immunity. Cell Host and Microbe, 2019, 26, 163-172.	5.1	172
185	Chloroplasts as mediators of plant biotic interactions over short and long distances. Current Opinion in Plant Biology, 2019, 50, 148-155.	3.5	16
186	Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nature Communications, 2019, 10, 4810.	5.8	65

#	Article	IF	CITATIONS
187	A Microbial Fermentation Mixture Primes for Resistance Against Powdery Mildew in Wheat. Frontiers in Plant Science, 2019, 10, 1241.	1.7	13
188	A new strategy to control Cucumber mosaic virus using fabricated NiO-nanostructures. Journal of Biotechnology, 2019, 306, 134-141.	1.9	38
189	An engineered pathway for <i>N</i> -hydroxy-pipecolic acid synthesis enhances systemic acquired resistance in tomato. Science Signaling, 2019, 12, .	1.6	46
190	Systemic acquired resistance networks amplify airborne defense cues. Nature Communications, 2019, 10, 3813.	5.8	85
191	Pipecolic Acid Is Induced in Barley upon Infection and Triggers Immune Responses Associated with Elevated Nitric Oxide Accumulation. Molecular Plant-Microbe Interactions, 2019, 32, 1303-1313.	1.4	24
192	Oxidative post-translational modifications controlling plant-pathogen interaction. Plant Physiology and Biochemistry, 2019, 144, 110-117.	2.8	27
193	Fluctuating Light Interacts with Time of Day and Leaf Development Stage to Reprogram Gene Expression. Plant Physiology, 2019, 179, 1632-1657.	2.3	53
194	Ammonium mediated changes in carbon and nitrogen metabolisms induce resistance against Pseudomonas syringae in tomato plants. Journal of Plant Physiology, 2019, 239, 28-37.	1.6	23
195	Folate Metabolism Interferes with Plant Immunity through 1C Methionine Synthase-Directed Genome-wide DNA Methylation Enhancement. Molecular Plant, 2019, 12, 1227-1242.	3.9	39
196	Cell Death Triggered by the YUCCA-like Bs3 Protein Coincides with Accumulation of Salicylic Acid and Pipecolic Acid But Not of Indole-3-Acetic Acid. Plant Physiology, 2019, 180, 1647-1659.	2.3	8
197	The Emergence of a Mobile Signal for Systemic Acquired Resistance. Plant Cell, 2019, 31, 1414-1415.	3.1	14
198	Cold stress activates disease resistance in <scp><i>Arabidopsis thaliana</i></scp> through a salicylic acid dependent pathway. Plant, Cell and Environment, 2019, 42, 2645-2663.	2.8	58
199	Bacterial infection systemically suppresses stomatal density. Plant, Cell and Environment, 2019, 42, 2411-2421.	2.8	37
200	Arabidopsis mlo3 mutant plants exhibit spontaneous callose deposition and signs of early leaf senescence. Plant Molecular Biology, 2019, 101, 21-40.	2.0	16
201	<i>NbALD1</i> mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in <i>Nicotiana benthamiana</i> . Molecular Plant Pathology, 2019, 20, 990-1004.	2.0	23
202	Nodulation Induces Systemic Resistance of <i>Medicago truncatula</i> and <i>Pisum sativum</i> Against <i>Erysiphe pisi</i> and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation. Molecular Plant-Microbe Interactions, 2019, 32, 1243-1255.	1.4	25
203	Transcriptional Reprogramming of Arabidopsis thaliana Defence Pathways by the Entomopathogen Beauveria bassiana Correlates With Resistance Against a Fungal Pathogen but Not Against Insects. Frontiers in Microbiology, 2019, 10, 615.	1.5	37
204	Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 2019, 50, 29-36.	3.5	334

#	Article	IF	CITATIONS
205	Plant immune responses - from guard cells and local responses to systemic defense against bacterial pathogens. Plant Signaling and Behavior, 2019, 14, e1588667.	1.2	24
206	Methyl Salicylate Glucosylation Regulates Plant Defense Signaling and Systemic Acquired Resistance. Plant Physiology, 2019, 180, 2167-2181.	2.3	62
207	N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Current Opinion in Plant Biology, 2019, 50, 44-57.	3.5	107
208	Transgenic Arabidopsis plants expressing CsBCATs affect seed germination under abiotic stress conditions. Plant Biotechnology Reports, 2019, 13, 95-101.	0.9	4
209	Induced, Imprinted, and Primed Responses to Changing Environments: Does Metabolism Store and Process Information?. Frontiers in Plant Science, 2019, 10, 106.	1.7	63
210	Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs. Scientific Reports, 2019, 9, 2097.	1.6	203
211	The NAC family transcription factor GmNAC42–1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean. BMC Genomics, 2019, 20, 149.	1.2	25
212	Abiotic Stresses and Non-Protein Amino Acids in Plants. Critical Reviews in Plant Sciences, 2019, 38, 411-430.	2.7	33
213	Gene expression and evidence of coregulation of the production of some metabolites of chilli pepper inoculated with Pectobacterium carotovorum ssp. carotovorum. Functional Plant Biology, 2019, 46, 1114.	1.1	6
214	A Role for Tocopherol Biosynthesis in Arabidopsis Basal Immunity to Bacterial Infection. Plant Physiology, 2019, 181, 1008-1028.	2.3	49
215	Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nature Communications, 2019, 10, 5303.	5.8	31
216	Protein kinaseâ€mediated signalling in priming: Immune signal initiation, propagation, and establishment of longâ€term pathogen resistance in plants. Plant, Cell and Environment, 2019, 42, 904-917.	2.8	34
217	Underground Azelaic Acid–Conferred Resistance to <i>Pseudomonas syringae</i> in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2019, 32, 86-94.	1.4	35
218	Protective Effect of Colla corii asini against Lung Injuries Induced by Intratracheal Instillation of Artificial Fine Particles in Rats. International Journal of Molecular Sciences, 2019, 20, 55.	1.8	22
219	Suppression of tryptophan synthase activates cotton immunity by triggering cell death via promoting <scp>SA</scp> synthesis. Plant Journal, 2019, 98, 329-345.	2.8	69
220	Bio-Boron Fertilizer Applications Affect Amino Acid and Organic Acid Content and Physiological Properties of Strawberry Plant. Erwerbs-Obstbau, 2019, 61, 129-137.	0.5	5
221	Plant Primary Metabolism Regulated by Nitrogen Contributes to Plant–Pathogen Interactions. Plant and Cell Physiology, 2019, 60, 329-342.	1.5	45
222	Biostimulant and fungicidal effects of phosphite assessed by GC-TOF-MS analysis of potato leaf metabolome. Physiological and Molecular Plant Pathology, 2019, 106, 49-56.	1.3	32

#	Article	IF	CITATIONS
223	Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Science, 2019, 279, 81-86.	1.7	121
224	Genome-wide identification and characterization of Chitinase gene family in Brassica juncea and Camelina sativa in response to Alternaria brassicae. Genomics, 2020, 112, 749-763.	1.3	28
225	Metabolic engineering advances and prospects for amino acid production. Metabolic Engineering, 2020, 58, 17-34.	3.6	177
226	Translational Regulation of Metabolic Dynamics during Effector-Triggered Immunity. Molecular Plant, 2020, 13, 88-98.	3.9	68
227	Redundant CAMTA Transcription Factors Negatively Regulate the Biosynthesis of Salicylic Acid and N-Hydroxypipecolic Acid by Modulating the Expression of SARD1 and CBP60g. Molecular Plant, 2020, 13, 144-156.	3.9	88
228	Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. Molecular Plant, 2020, 13, 157-168.	3.9	78
229	Calciumâ€dependent protein kinase 5 links calcium signaling with <i>N</i> â€hydroxyâ€ <scp>l</scp> â€pipecolic acidâ€and <i><scp>SARD</scp>1</i> â€dependent immune memory in systemic acquired resistance. New Phytologist, 2020, 225, 310-325.	3.5	46
230	Construction and applications of a B vitamin genetic resource for investigation of vitaminâ€dependent metabolism in maize. Plant Journal, 2020, 101, 442-454.	2.8	9
231	<i>JMJ14</i> encoded H3K4 demethylase modulates immune responses by regulating defence gene expression and pipecolic acid levels. New Phytologist, 2020, 225, 2108-2121.	3.5	29
232	Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. Molecular Plant, 2020, 13, 31-41.	3.9	98
233	Antagonism between SA- and JA-signaling conditioned by saccharin in Arabidopsis thaliana renders resistance to a specific pathogen. Journal of General Plant Pathology, 2020, 86, 86-99.	0.6	7
234	Studies on the constituents of Helleborus purpurascens: use of derivatives from calix[6]arene, homooxacalix[3]arene and homoazacalix[3]arene as extractant agents for amino acids from the aqueous extract. Amino Acids, 2020, 52, 55-72.	1.2	6
235	Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity. Plant Cell, 2020, 32, 4002-4016.	3.1	87
236	Cell-free biocatalytic syntheses of <scp>l</scp> -pipecolic acid: a dual strategy approach and process intensification in flow. Green Chemistry, 2020, 22, 5310-5316.	4.6	39
237	Acibenzolar-S-Methyl Activates Stomatal-Based Defense Systemically in Japanese Radish. Frontiers in Plant Science, 2020, 11, 565745.	1.7	7
238	Mobile signals in systemic acquired resistance. Current Opinion in Plant Biology, 2020, 58, 41-47.	3.5	41
239	CYP720A1 function in roots is required for flowering time and systemic acquired resistance in the foliage of Arabidopsis. Journal of Experimental Botany, 2020, 71, 6612-6622.	2.4	1
240	Functions of pipecolic acid on induced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato plants. Journal of Phytopathology, 2020, 168, 591-600.	0.5	4

#	Article	IF	CITATIONS
241	N-hydroxypipecolic acid: a general and conserved activator of systemic plant immunity. Journal of Experimental Botany, 2020, 71, 6193-6196.	2.4	3
242	Inheritance and metabolomics of the resistance of two F2 populations of Phaseolus spp. to Acanthoscelides obtectus. Arthropod-Plant Interactions, 2020, 14, 641-651.	0.5	3
243	Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. Journal of Experimental Botany, 2020, 71, 6444-6459.	2.4	36
244	Putrescine elicits <scp>ROS</scp> â€dependent activation of the salicylic acid pathway in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2020, 43, 2755-2768.	2.8	40
245	Local Responses and Systemic Induced Resistance Mediated by Ectomycorrhizal Fungi. Frontiers in Plant Science, 2020, 11, 590063.	1.7	43
246	Priming by Timing: Arabidopsis thaliana Adjusts Its Priming Response to Lepidoptera Eggs to the Time of Larval Hatching. Frontiers in Plant Science, 2020, 11, 619589.	1.7	20
247	A Specific and Sensitive Enzymatic Assay for the Quantitation of L-Proline. Frontiers in Plant Science, 2020, 11, 582026.	1.7	20
248	Plant Dynamic Metabolic Response to Bacteriophage Treatment After Xanthomonas campestris pv. campestris Infection. Frontiers in Microbiology, 2020, 11, 732.	1.5	25
249	The Lifecycle of the Plant Immune System. Critical Reviews in Plant Sciences, 2020, 39, 72-100.	2.7	68
250	The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Science Advances, 2020, 6, eaaz0478.	4.7	63
251	The isoleucic acid triad: distinct impacts on plant defense, root growth, and formation of reactive oxygen species. Journal of Experimental Botany, 2020, 71, 4258-4270.	2.4	12
252	Salicylic acid: transport and long-distance immune signaling. Current Opinion in Virology, 2020, 42, 53-57.	2.6	30
253	Metabolomic Fingerprinting of Potato Cultivars Differing in Susceptibility to Spongospora subterranea f. sp. subterranea Root Infection. International Journal of Molecular Sciences, 2020, 21, 3788.	1.8	7
254	An iron (II) dependent oxygenase performs the last missing step of plant lysine catabolism. Nature Communications, 2020, 11, 2931.	5.8	11
255	Primary Metabolite Responses to Oxidative Stress in Early-Senescing and Paraquat Resistant Arabidopsis thaliana rcd1 (Radical-Induced Cell Death1). Frontiers in Plant Science, 2020, 11, 194.	1.7	20
256	The rice/maize pathogenCochliobolusspp. infect and reproduce on Arabidopsis revealing differences in defensive phytohormone function between monocots and dicots. Plant Journal, 2020, 103, 412-429.	2.8	12
257	Getting ready with the priming: Innovative weapons against biotic and abiotic crop enemies in a global changing scenario. , 2020, , 35-56.		11
258	Genome-wide association study of grain mold resistance in sorghum association panel as affected by inoculation with Alternaria alternata alone and Alternaria alternata, Fusarium thapsinum, and Curvularia lunata combined. European Journal of Plant Pathology, 2020, 157, 783-798.	0.8	11

#	Article	IF	CITATIONS
259	The "Green―FMOs: Diversity, Functionality and Application of Plant Flavoproteins. Catalysts, 2020, 10, 329.	1.6	26
260	Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis. New Phytologist, 2020, 228, 1652-1661.	3.5	11
261	Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in Arabidopsis thaliana Challenged With Phytophthora cinnamomi. Frontiers in Plant Science, 2020, 11, 852.	1.7	30
262	Flashes of UV-C light: An innovative method for stimulating plant defences. PLoS ONE, 2020, 15, e0235918.	1.1	18
263	<i>Arabidopsis</i> Response Regulator 6 (ARR6) Modulates Plant Cell-Wall Composition and Disease Resistance. Molecular Plant-Microbe Interactions, 2020, 33, 767-780.	1.4	46
264	β-Aminobutyric Acid Pretreatment Confers Salt Stress Tolerance in Brassica napus L. by Modulating Reactive Oxygen Species Metabolism and Methylglyoxal Detoxification. Plants, 2020, 9, 241.	1.6	17
265	Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. International Journal of Molecular Sciences, 2020, 21, 572.	1.8	100
266	The priming fingerprint on the plant transcriptome investigated through meta-analysis of RNA-Seq data. European Journal of Plant Pathology, 2020, 156, 779-797.	0.8	12
267	Dissection of flag leaf metabolic shifts and their relationship with those occurring simultaneously in developing seed by application of non-targeted metabolomics. PLoS ONE, 2020, 15, e0227577.	1.1	6
268	DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2 of Arabidopsis thaliana is a negative regulator of local and systemic acquired resistance. Journal of Plant Research, 2020, 133, 409-417.	1.2	9
269	Effect of pulsed light on postharvest disease control-related metabolomic variation in melon (Cucumis melo) artificially inoculated with Fusarium pallidoroseum. PLoS ONE, 2020, 15, e0220097.	1.1	10
270	A holistic view on plant effector-triggered immunity presented as an iceberg model. Cellular and Molecular Life Sciences, 2020, 77, 3963-3976.	2.4	58
271	Short―and longâ€distance signaling in plant defense. Plant Journal, 2021, 105, 505-517.	2.8	34
272	Reticine A, a new potent natural elicitor: isolation from the fruit peel of <scp><i>Citrus reticulate</i></scp> and induction of systemic resistance against tobacco mosaic virus and other plant fungal diseases. Pest Management Science, 2021, 77, 354-364.	1.7	26
273	Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. Journal of Hazardous Materials, 2021, 404, 124155.	6.5	17
274	Systemic propagation of immunity in plants. New Phytologist, 2021, 229, 1234-1250.	3.5	193
275	Priming for enhanced <i>ARGONAUTE2</i> activation accompanies induced resistance to cucumber mosaic virus in <i>Arabidopsis thaliana</i> . Molecular Plant Pathology, 2021, 22, 19-30.	2.0	21
276	Untangling plant immune responses through metabolomics. Advances in Botanical Research, 2021, 98, 73-105.	0.5	4

#	ARTICLE	IF	CITATIONS
277	by priming callose deposition in Nicotiana benthamiana. Physiological and Molecular Plant Pathology, 2021, 113, 101569.	1.3	4
278	Penicillium expansum – Induced release of branched-chain volatile compounds in apple fruit by increasing amino acids accumulation. Postharvest Biology and Technology, 2021, 173, 111432.	2.9	8
279	Exploring the metabolic changes in sweet potato during postharvest storage using a widely targeted metabolomics approach. Journal of Food Processing and Preservation, 2021, 45, e15118.	0.9	6
280	Systemic acquired resistance (SAR)-associated molecules induce resistance in lab- and greenhouse-grown cucumber. Physiological and Molecular Plant Pathology, 2021, 113, 101592.	1.3	0
281	Kinases and protein motifs required for AZI1 plastid localization and trafficking during plant defense induction. Plant Journal, 2021, 105, 1615-1629.	2.8	11
282	Plant defense priming in the field: a review. , 2021, , 87-124.		9
283	Comparative transcriptomics and metabolomics in Vitis vinifera â€~Malvasia' and Vitis rupestris â€~Du Lot' cultured cells provide insights in possible innate resistance against pathogens. Plant Biosystems, 2021, 155, 557-566.	0.8	0
285	How to achieve immune balance and harmony: glycosyltransferase UGT76B1 inactivates <i>N</i> -hydroxy-pipecolic acid to suppress defense responses. Plant Cell, 2021, 33, 453-454.	3.1	3
287	UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell, 2021, 33, 714-734.	3.1	47
288	ALD1 accumulation in Arabidopsis epidermal plastids confers local and non-autonomous disease resistance. Journal of Experimental Botany, 2021, 72, 2710-2726.	2.4	18
289	Increased Expression of UMAMIT Amino Acid Transporters Results in Activation of Salicylic Acid Dependent Stress Response. Frontiers in Plant Science, 2020, 11, 606386.	1.7	9
290	Metabolomics by UHPLC-HRMS reveals the impact of heat stress on pathogen-elicited immunity in maize. Metabolomics, 2021, 17, 6.	1.4	14
291	The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility. Plant Cell, 2021, 33, 1728-1747.	3.1	27
292	Isoprene and βâ€caryophyllene confer plant resistance via different plant internal signalling pathways. Plant, Cell and Environment, 2021, 44, 1151-1164.	2.8	70
293	More stories to tell: <scp>NONEXPRESSOR OF PATHOGENESISâ€RELATED GENES1</scp> , a salicylic acid receptor. Plant, Cell and Environment, 2021, 44, 1716-1727.	2.8	38
294	Exogenous pipecolic acid modulates plant defence responses against <i>Podosphaera xanthii</i> and <i>Pseudomonas syringae</i> pv. <i>lachrymans</i> in cucumber (<i>Cucumis sativus</i> L.). Plant Biology, 2021, 23, 473-484.	1.8	7
295	A quest for long-distance signals: the epidermis as central regulator of pipecolic acid-associated systemic acquired resistance. Journal of Experimental Botany, 2021, 72, 2266-2268.	2.4	2
296	Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Molecular Plant, 2021, 14, 440-455.	3.9	44

#	Article	IF	CITATIONS
297	Chicken Feather Waste Hydrolysate as a Superior Biofertilizer in Agroindustry. Current Microbiology, 2021, 78, 2212-2230.	1.0	36
298	Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nature Plants, 2021, 7, 403-412.	4.7	191
299	The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. Plant Physiology, 2021, 186, 1679-1705.	2.3	39
300	Signals in systemic acquired resistance of plants against microbial pathogens. Molecular Biology Reports, 2021, 48, 3747-3759.	1.0	21
301	Imine chemistry in plant metabolism. Current Opinion in Plant Biology, 2021, 60, 101999.	3.5	7
302	Priming Soybean cv. Primus Leads to Successful Systemic Defense Against the Root-Lesion Nematode, Pratylenchus penetrans. Frontiers in Plant Science, 2021, 12, 651943.	1.7	9
304	Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future. Microorganisms, 2021, 9, 1056.	1.6	23
305	The bacterial effector HopZ1a acetylates MKK7 to suppress plant immunity. New Phytologist, 2021, 231, 1138-1156.	3.5	19
306	Metabolomic Response of Tomatoes (Solanum lycopersicum L.) against Bacterial Wilt (Ralstonia) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50
307	Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites, 2021, 11, 457.	1.3	28
308	The jasmonoylâ€isoleucine receptor CORONATINE INSENSITIVE1 suppresses defense gene expression in Arabidopsis roots independently of its ligand. Plant Journal, 2021, 107, 1119-1130.	2.8	7
309	WIND transcription factors orchestrate woundâ€induced callus formation, vascular reconnection and defense response in Arabidopsis. New Phytologist, 2021, 232, 734-752.	3.5	32
310	Proline metabolism as regulatory hub. Trends in Plant Science, 2022, 27, 39-55.	4.3	109
311	Unravelling Plant Responses to Stress—The Importance of Targeted and Untargeted Metabolomics. Metabolites, 2021, 11, 558.	1.3	21

312	Chromatin accessibility landscapes activated by cell-surface and intracellular immune receptors. Journal of Experimental Botany, 2021, 72, 7927-7941.	2.4	14
313	Metabolic regulation of systemic acquired resistance. Current Opinion in Plant Biology, 2021, 62, 102050.	3.5	69
314	An Emerging Role for Chloroplasts in Disease and Defense. Annual Review of Phytopathology, 2021, 59, 423-445.	3.5	30

#	Article	IF	CITATIONS
316	N-hydroxypipecolic acid-induced transcription requires the salicylic acid signaling pathway at basal SA levels. Plant Physiology, 2021, 187, 2803-2819.	2.3	12
317	Plant immune networks. Trends in Plant Science, 2022, 27, 255-273.	4.3	140
319	Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. New Phytologist, 2021, 232, 2491-2505.	3.5	9
320	Arabidopsis UGT76B1 glycosylates <i>N</i> -hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell, 2021, 33, 750-765.	3.1	48
321	The glycosyltransferase UGT76B1 modulates <i>N</i> -hydroxy-pipecolic acid homeostasis and plant immunity. Plant Cell, 2021, 33, 735-749.	3.1	71
322	Metabolic profiling reveals local and systemic responses of kiwifruit to <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> . Plant Direct, 2020, 4, e00297.	0.8	20
323	The role of microbial signals in plant growth and development: Current status and future prospects. , 2020, , 225-242.		5
334	N-3-oxo-octanoyl-homoserine lactone-mediated priming of resistance to Pseudomonas syringae requires the salicylic acid signaling pathway in Arabidopsis thaliana. BMC Plant Biology, 2020, 20, 38.	1.6	29
335	Expression of an Engineered Heterologous Antimicrobial Peptide in Potato Alters Plant Development and Mitigates Normal Abiotic and Biotic Responses. PLoS ONE, 2013, 8, e77505.	1.1	39
336	Functional Characterization of CYP94-Genes and Identification of a Novel Jasmonate Catabolite in Flowers. PLoS ONE, 2016, 11, e0159875.	1.1	43
337	Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato. PLoS ONE, 2017, 12, e0176978.	1.1	14
338	Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles. Molecules and Cells, 2018, 41, 724-732.	1.0	13
339	Multi-Omics Revealed Molecular Mechanisms Underlying Guard Cell Systemic Acquired Resistance. International Journal of Molecular Sciences, 2021, 22, 191.	1.8	15
340	Metabolomics Profile of Potato Tubers after Phosphite Treatment. American Journal of Plant Sciences, 2018, 09, 845-864.	0.3	4
342	A Rice Gene Homologous to Arabidopsis AGD2-LIKE DEFENSE1 Participates in Disease Resistance Response against Infection with Magnaporthe oryzae. Plant Pathology Journal, 2016, 32, 357-362.	0.7	30
343	Metabolomics analysis identifies metabolites associated with systemic acquired resistance in Arabidopsis. PeerJ, 2020, 8, e10047.	0.9	9
344	A Valsa mali Effector Protein 1 Targets Apple (Malus domestica) Pathogenesis-Related 10 Protein to Promote Virulence. Frontiers in Plant Science, 2021, 12, 741342.	1.7	9
345	Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry, 2021, 168, 381-397.	2.8	78

#	Article	IF	CITATIONS
346	Long-Distance Signaling in Systemic Acquired Resistance. Signaling and Communication in Plants, 2013, , 1-21.	0.5	0
348	Salicylic Acid: Molecular Basis of Stress Resistance in Plants. , 2017, , 163-199.		1
349	Role of salicylic acid in formation of system acquired resistance of plants at pathogenesis. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu SerA¬Ã¢ Bìologiâ, 2018, 2018, 31-48.	0.1	2
350	Biotic Stress. , 2019, , 257-299.		1
354	Metabolomic approach to search for fungal resistant forms of <i>Aegilops tauschii</i> Coss. from the VIR collection. Vavilovskii Zhurnal Genetiki I Selektsii, 2020, 24, 252-258.	0.4	4
357	Bioengineering and Molecular Manipulation of Salicylic Acid Signaling System to Activate Plant Immune Responses for Crop Disease Management. Signaling and Communication in Plants, 2020, , 169-221.	0.5	1
359	Bioengineering and Molecular Manipulation of Jasmonate Signaling System to Activate Plant Immune System for Crop Disease Management. Signaling and Communication in Plants, 2020, , 223-248.	0.5	0
360	Pipecolic Acid Quantification Using Gas Chromatography-coupled Mass Spectrometry. Bio-protocol, 2020, 10, e3841.	0.2	3
362	Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase. Molecules and Cells, 2018, 41, 331-341.	1.0	2
363	Metabolite profiles of brown planthopper-susceptible and resistant rice (Oryza sativa) varieties associated with infestation and mechanical stimuli. Phytochemistry, 2022, 194, 113044.	1.4	2
364	A Novel Role of Pipecolic Acid Biosynthetic Pathway in Drought Tolerance through the Antioxidant System in Tomato. Antioxidants, 2021, 10, 1923.	2.2	19
365	Protein Phosphorylation Changes During Systemic Acquired Resistance in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 748287.	1.7	11
367	Immunity-associated volatile emissions of β-ionone and nonanal propagate defence responses in neighbouring barley plants. Journal of Experimental Botany, 2022, 73, 615-630.	2.4	25
368	Reduction of the canonical function of a glycolytic enzyme enolase triggers immune responses that further affect metabolism and growth in Arabidopsis. Plant Cell, 2022, 34, 1745-1767.	3.1	15
369	Comparative Omics Analysis of Endophyte-Infected and Endophyte-Free Achnatherum Sibiricum in Response to Pathogenic Fungi. SSRN Electronic Journal, 0, , .	0.4	0
370	Linking plant metabolism and immunity through methionine biosynthesis. Molecular Plant, 2022, 15, 6-8.	3.9	3
371	Plant immunity inducers: from discovery to agricultural application. Stress Biology, 2022, 2, 1.	1.5	15
372	Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots. Plant Molecular Biology, 2022, 108, 225-239	2.0	3

#	ARTICLE	IF	CITATIONS
373	Plant Responses Underlying Timely Specialized Metabolites Induction of Brassica Crops. Frontiers in Plant Science, 2021, 12, 807710.	1.7	7
374	Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in <i>Camellia sinensis</i> . Plant Physiology, 2022, 188, 1507-1520.	2.3	34
375	Secondary Metabolites: The Natural Remedies. , 0, , .		0
376	Comparative Transcriptomic and Metabolomic Profiling of Grapevine Leaves (cv. Kyoho) upon Infestation of Grasshopper and Botrytis cinerea. Plant Molecular Biology Reporter, 2022, 40, 539-555.	1.0	3
377	Secondary Metabolites from Natural Products. , 0, , .		3
378	Chiral secondary amino acids, their importance, and methods of analysis. Amino Acids, 2022, 54, 687-719.	1.2	3
380	Heat stress leads to rapid lipid remodeling and transcriptional adaptations in <i>Nicotiana tabacum</i> pollen tubes. Plant Physiology, 2022, , .	2.3	5
381	â€~ <i>Candidatus</i> Liberibacter asiaticus'-Encoded BCP Peroxiredoxin Suppresses Lipopolysaccharide-Mediated Defense Signaling and Nitrosative Stress In Planta. Molecular Plant-Microbe Interactions, 2022, 35, 257-273.	1.4	5
382	Salicylic Acid and N-Hydroxypipecolic Acid at the Fulcrum of the Plant Immunity-Growth Equilibrium. Frontiers in Plant Science, 2022, 13, 841688.	1.7	17
383	Extracellular vesicles: Their functions in plant–pathogen interactions. Molecular Plant Pathology, 2022, 23, 760-771.	2.0	22
384	Jujube metabolome selection determined the edible properties acquired during domestication. Plant Journal, 2022, 109, 1116-1133.	2.8	25
385	A plastidial retrograde signal potentiates biosynthesis of systemic stress response activators. New Phytologist, 2022, 233, 1732-1749.	3.5	4
386	DspA/E-Triggered Non-Host Resistance against E. amylovora Depends on the Arabidopsis GLYCOLATE OXIDASE 2 Gene. International Journal of Molecular Sciences, 2022, 23, 4224.	1.8	5
431	Use of microbial inoculants against biotic stress in vegetable crops: physiological and molecular aspect. , 2022, , 263-332.		2
432	Lipids associated with plant-bacteria interaction identified using a metabolomics approach in an <i>Arabidopsis thaliana</i> model. PeerJ, 2022, 10, e13293.	0.9	3
433	Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes. Frontiers in Microbiology, 2022, 13, 867392.	1.5	6
434	Multiâ€omics analysis of xylem sap uncovers dynamic modulation of poplar defenses by ammonium and nitrate. Plant Journal, 2022, 111, 282-303.	2.8	11
435	The Kelchâ€Fâ€box protein SMALL AND GLOSSY LEAVES 1 (SAGL1) negatively influences salicylic acid biosynthesis in <i>Arabidopsis thaliana</i> by promoting the turnâ€over of transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1). New Phytologist, 2022, 235, 885-897.	3.5	11

#	Article	IF	CITATIONS
436	Natural variation in the long-distance transport of nutrients and photoassimilates in response to N availability. Journal of Plant Physiology, 2022, 273, 153707.	1.6	5
437	Activation of NLR-Mediated Autoimmunity in Arabidopsis Early in Short Days 4 Mutant. Frontiers in Plant Science, 2022, 13, .	1.7	1
438	Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. International Journal of Biological Macromolecules, 2022, 212, 381-392.	3.6	5
442	Phased small RNA–mediated systemic signaling in plants. Science Advances, 2022, 8, .	4.7	19
443	N-Methyltransferase CaASHH3 Acts as a Positive Regulator of Immunity against Bacterial Pathogens in Pepper. International Journal of Molecular Sciences, 2022, 23, 6492.	1.8	3
444	New Insight into Aspartate Metabolic Pathways in Populus: Linking the Root Responsive Isoenzymes with Amino Acid Biosynthesis during Incompatible Interactions of Fusarium solani. International Journal of Molecular Sciences, 2022, 23, 6368.	1.8	4
445	Rootstock rescues watermelon from Fusarium wilt disease by shaping protective root-associated microbiomes and metabolites in continuous cropping soils. Plant and Soil, 2022, 479, 423-442.	1.8	10
446	Infection by endophytic Epichloë sibirica was associated with activation of defense hormone signal transduction pathways and enhanced pathogen resistance in the grass Achnatherum sibiricum. Phytopathology, 0, , .	1.1	2
447	New molecules in plant defence against pathogens. Essays in Biochemistry, O, , .	2.1	11
448	Recent advancements on the synthesis and biological significance of pipecolic acid and its derivatives. Journal of Molecular Structure, 2022, 1268, 133719.	1.8	5
449	Metabolome Study of Oil Palm (Elaeis guineensis Jacq.) Planted in Different Environment Conditions. Tropical Plant Biology, 2022, 15, 211-232.	1.0	6
450	Transcriptional Analysis on Resistant and Susceptible Kiwifruit Genotypes Activating Different Plant-Immunity Processes against Pseudomonas syringae pv. actinidiae. International Journal of Molecular Sciences, 2022, 23, 7643.	1.8	4
451	Therapeutic Delivery of Nanoscale Sulfur to Suppress Disease in Tomatoes: In Vitro Imaging and Orthogonal Mechanistic Investigation. ACS Nano, 2022, 16, 11204-11217.	7.3	28
452	Characterisation of LC-MS-based low molecular weight compounds and fatty acids of four wild edible mushrooms. , 2021, 28, 1009-1019.		1
453	α-Aminoadipic acid metabolism is controlled by the glutathione-dependent redox environment in Arabidopsis. Journal of Plant Biochemistry and Biotechnology, 0, , .	0.9	0
454	News about amino acid metabolism in plant–microbe interactions. Trends in Biochemical Sciences, 2022, 47, 839-850.	3.7	38
455	Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate. Essays in Biochemistry, 2022, 66, 673-681.	2.1	6
456	Amino acids and their derivatives mediating defense priming and growth tradeoff. Current Opinion in Plant Biology, 2022, 69, 102288.	3.5	18

#	Article	IF	CITATIONS
457	The role of methyl salicylate in plant growth under stress conditions. Journal of Plant Physiology, 2022, 277, 153809.	1.6	15
458	Comparative omics analysis of endophyte-infected and endophyte-free Achnatherum sibiricum in response to pathogenic fungi. Biological Control, 2022, 175, 105040.	1.4	0
460	<i>In vivo</i> Imaging Enables Understanding of Seamless Plant Defense Responses to Wounding and Pathogen Attack. Plant and Cell Physiology, 2022, 63, 1391-1404.	1.5	2
461	Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. Frontiers in Plant Science, 0, 13, .	1.7	0
462	Transgenics and Crop Improvement. , 2022, , 131-347.		0
463	Coastal Wild Grapevine Accession (Vitis vinifera L. ssp. sylvestris) Shows Distinct Late and Early Transcriptome Changes under Salt Stress in Comparison to Commercial Rootstock Richter 110. Plants, 2022, 11, 2688.	1.6	11
464	<i>N</i> -Hydroxy pipecolic acid methyl ester is involved in Arabidopsis immunity. Journal of Experimental Botany, 2023, 74, 458-471.	2.4	5
465	<scp>PBS3</scp> : a versatile player in and beyond salicylic acid biosynthesis in <i>Arabidopsis</i> . New Phytologist, 0, , .	3.5	1
466	OXIDATIVE SIGNALâ€INDUCIBLE1 induces immunity by coordinating Nâ€hydroxypipecolic acid, salicylic acid, and camalexin synthesis. New Phytologist, 2023, 237, 1285-1301.	3.5	3
467	Early-stage responses to <i>Plasmodiophora brassicae</i> at the transcriptome and metabolome levels in clubroot resistant and susceptible oilseed <i>Brassica napus</i> . Molecular Omics, 2022, 18, 991-1014.	1.4	4
468	Glutathione and neodiosmin feedback sustain plant immunity. Journal of Experimental Botany, 2023, 74, 976-990.	2.4	6
469	Surface Coated Sulfur Nanoparticles Suppress <i>Fusarium</i> Disease in Field Grown Tomato: Increased Yield and Nutrient Biofortification. Journal of Agricultural and Food Chemistry, 2022, 70, 14377-14385.	2.4	9
470	Genetic requirements for infection-specific responses in conferring disease resistance in Arabidopsis. Frontiers in Plant Science, 0, 13, .	1.7	2
471	Promotion of Arabidopsis immune responses by a rhizosphere fungus via supply of pipecolic acid to plants and selective augment of phytoalexins. Science China Life Sciences, 2023, 66, 1119-1133.	2.3	7
472	Hrip1 enhances tomato resistance to yellow leaf curl virus by manipulating the phenylpropanoid biosynthesis and plant hormone pathway. 3 Biotech, 2023, 13, .	1.1	2
473	Interconnected Set of Enzymes Provide Lysine Biosynthetic Intermediates and Ornithine Derivatives as Key Precursors for the Biosynthesis of Bioactive Secondary Metabolites. Antibiotics, 2023, 12, 159.	1.5	0
474	Effects of Poty-Potexvirus Synergism on Growth, Photosynthesis and Metabolite Status of Nicotiana benthamiana. Viruses, 2023, 15, 121.	1.5	3
475	Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic Acquired Resistance. Plant Pathology Journal, 2023, 39, 21-27.	0.7	2

#	Article	IF	CITATIONS
476	Hydroxy proline and gamma-aminobutyric acid: markers of susceptibility to vine decline disease caused by the fungus <i>Monosporascus cannonballus</i> in melons (<i>Cucumis melo</i> L.). PeerJ, 0, 11, e14932.	0.9	2
477	Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens. Current Biology, 2023, 33, 697-710.e6.	1.8	5
478	β-D-XYLOSIDASE 4 modulates systemic immune signaling in Arabidopsis thaliana. Frontiers in Plant Science, 0, 13, .	1.7	4
479	Root metabolites remodeling regulated by \hat{I}^3 -aminobutyric acid (GABA) improves adaptability to high temperature in creeping bentgrass. Plant and Soil, 0, , .	1.8	2
480	Plant Immunity: A Plastic System Operated Through Cell-Fate Transition. Journal of Plant Biology, 2023, 66, 193-206.	0.9	1
481	Nâ€hydroxypipecolic acid induces systemic acquired resistance and transcriptional reprogramming via TGA transcription factors. Plant, Cell and Environment, 2023, 46, 1900-1920.	2.8	8
482	Salicylic Acid and Mobile Regulators of Systemic Immunity in Plants: Transport and Metabolism. Plants, 2023, 12, 1013.	1.6	8
483	Plant Protection against Viruses: An Integrated Review of Plant Immunity Agents. International Journal of Molecular Sciences, 2023, 24, 4453.	1.8	5
484	A Jasmonic Acid–Related Mechanism Affects <i>ARGONAUTE5</i> Expression and Antiviral Defense Against Potato Virus X in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2023, 36, 425-433.	1.4	3
485	Pipecolic acid synthesis is required for systemic acquired resistance and plant-to-plant-induced immunity in barley. Journal of Experimental Botany, 0, , .	2.4	3
486	Induction of defense responses related to scavenging reactive oxygen species in Ampelopsis species inoculated with Rhizobium vitis. Horticulture Environment and Biotechnology, 0, , .	0.7	0
487	Secondary Metabolites: Alkaloids and Flavonoids in Medicinal Plants. , 0, , .		1
510	Editorial: Systemic resistance and defense priming against pathogens. Frontiers in Plant Science, 0, 14, .	1.7	0
512	Microbial Production of Amine Chemicals from Sustainable Substrates. Biofuels and Biorefineries, 2023, , 189-248.	0.5	0
518	Molecular Events and Defence Mechanism Against Biotic Stress Induced by Bio-Priming of Beneficial Microbes. Microorganisms for Sustainability, 2023, , 61-87.	0.4	0