Atmospheric component of the MPIâ€M Earth System

Journal of Advances in Modeling Earth Systems 5, 146-172 DOI: 10.1002/jame.20015

Citation Report

#	Article	IF	CITATIONS
1	A Generalized Urban Air Pollution Model and Its Application to the Study of SO2 Distributions in the St. Louis Metropolitan Area. Journal of Applied Meteorology, 1974, 13, 185-204.	1.1	87
2	Meteorological Modeling on High-Ozone Days in Perth, Western Australia. Journal of Applied Meteorology and Climatology, 1995, 34, 1643-1652.	1.7	9
3	Development and Testing of a Surface Flux and Planetary Boundary Layer Model for Application in Mesoscale Models. Journal of Applied Meteorology and Climatology, 1995, 34, 16-32.	1.7	259
4	Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO ₂ : climate responses simulated by four earth system models. Earth System Dynamics, 2012, 3, 63-78.	2.7	132
5	Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 8320-8332.	1.2	226
6	Climate feedback efficiency and synergy. Climate Dynamics, 2013, 41, 2539-2554.	1.7	54
7	Predictability of large interannual Arctic sea-ice anomalies. Climate Dynamics, 2013, 41, 2511-2526.	1.7	43
8	The respective roles of surface temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 transient climate simulations. Climate Dynamics, 2013, 41, 3103-3126.	1.7	21
9	Future Climate in the Tibetan Plateau from a Statistical Regional Climate Model. Journal of Climate, 2013, 26, 10125-10138.	1.2	49
10	Impact of soil moistureâ€elimate feedbacks on CMIP5 projections: First results from the GLACE MIP5 experiment. Geophysical Research Letters, 2013, 40, 5212-5217.	1.5	314
11	GPU acceleration experience with RRTMG long wave radiation model. Proceedings of SPIE, 2013, , .	0.8	10
12	The Brewer–Dobson Circulation in a Changing Climate: Impact of the Model Configuration. Journals of the Atmospheric Sciences, 2013, 70, 1437-1455.	0.6	33
13	A Global and Hemispherical Analysis of the Lorenz Energetics Based on the Representative Concentration Pathways Used in CMIP5. Advances in Meteorology, 2013, 2013, 1-13.	0.6	13
14	Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models. Journal of Climate, 2013, 26, 5289-5314.	1.2	576
15	Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5*. Journal of Climate, 2013, 26, 5007-5027.	1.2	235
16	Controls on and impacts of the diurnal cycle of deep convective precipitation. Journal of Advances in Modeling Earth Systems, 2013, 5, 801-815.	1.3	22
17	CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. Journal of Advances in Modeling Earth Systems, 2013, 5, 826-842.	1.3	140
18	Tropical precipitation and convection changes in the Max Planck Institute Earth system model (MPIâ€ESM) in response to CO ₂ forcing. Journal of Advances in Modeling Earth Systems, 2013, 5, 85-97.	1.3	4

#	Article	IF	CITATIONS
19	Representation of natural and anthropogenic land cover change in MPIâ€ESM. Journal of Advances in Modeling Earth Systems, 2013, 5, 459-482.	1.3	360
20	Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPIâ€Earth system model. Journal of Advances in Modeling Earth Systems, 2013, 5, 422-446.	1.3	574
21	Seasonal aspects of the quasiâ€biennial oscillation in the Max Planck Institute Earth System Model and ERAâ€40. Journal of Advances in Modeling Earth Systems, 2013, 5, 406-421.	1.3	33
22	Paths to accuracy for radiation parameterizations in atmospheric models. Journal of Advances in Modeling Earth Systems, 2013, 5, 225-233.	1.3	77
23	Climate and carbon cycle changes from 1850 to 2100 in MPIâ€ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 2013, 5, 572-597.	1.3	1,280
24	Evaluation of vegetation cover and landâ€surface albedo in <scp>MPI</scp> â€ <scp>ESM CMIP5</scp> simulations. Journal of Advances in Modeling Earth Systems, 2013, 5, 48-57.	1.3	130
25	Combined evaluation of MPIâ€ESM land surface water and energy fluxes. Journal of Advances in Modeling Earth Systems, 2013, 5, 259-286.	1.3	60
27	Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes?. Earth System Dynamics, 2013, 4, 409-424.	2.7	7
28	Arctic seaâ€ice evolution as modeled by Max Planck Institute for Meteorology's Earth system model. Journal of Advances in Modeling Earth Systems, 2013, 5, 173-194.	1.3	110
29	Forcing and feedback in the MPIâ€ESM‣R coupled model under abruptly quadrupled CO ₂ . Journal of Advances in Modeling Earth Systems, 2013, 5, 676-691.	1.3	143
30	Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model. Journal of Advances in Modeling Earth Systems, 2013, 5, 98-116.	1.3	66
31	On the "well-mixed" assumption and numerical 2-D tracing of atmospheric moisture. Atmospheric Chemistry and Physics, 2013, 13, 5567-5585.	1.9	65
32	Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,905.	1.2	122
33	Robust increase in equilibrium climate sensitivity under global warming. Geophysical Research Letters, 2013, 40, 5944-5948.	1.5	117
34	Evaluating statistical cloud schemes: What can we gain from groundâ€based remote sensing?. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,507.	1.2	12
35	Robust elements of Snowball Earth atmospheric circulation and oases for life. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6017-6027.	1.2	39
36	Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1329-1342.	1.2	195
37	Impact of CO ₂ and climate on Last Glacial maximum vegetation – a factor separation. Biogeosciences, 2013, 10, 3593-3604.	1.3	26

#	Article	IF	CITATIONS
38	Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method. Biogeosciences, 2013, 10, 1799-1813.	1.3	36
39	Temperatureâ€dependent remineralization in a warming ocean increases surface pCO ₂ through changes in marine ecosystem composition. Global Biogeochemical Cycles, 2013, 27, 1214-1225.	1.9	44
40	Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophysical Research Letters, 2013, 40, 5798-5802.	1.5	77
41	How Does a Regional Climate Model Modify the Projected Climate Change Signal of the Driving GCM: A Study over Different CORDEX Regions Using REMO. Atmosphere, 2013, 4, 214-236.	1.0	104
42	Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies. Hydrology and Earth System Sciences, 2013, 17, 3523-3542.	1.9	107
43	Model–data comparison and data assimilation of mid-Holocene Arctic sea ice concentration. Climate of the Past, 2014, 10, 1145-1163.	1.3	7
44	Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model. Geoscientific Model Development, 2014, 7, 631-647.	1.3	109
45	The effects of mixing on age of air. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7015-7034.	1.2	75
46	Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium. Climate of the Past, 2014, 10, 2201-2213.	1.3	71
47	Interactive coupling of regional atmosphere with biosphere in the new generation regional climate system model REMO-iMOVE. Geoscientific Model Development, 2014, 7, 1093-1114.	1.3	22
48	Evaluation of the ECHAM family radiation codes performance in the representation of the solar signal. Geoscientific Model Development, 2014, 7, 2859-2866.	1.3	20
49	A Comparative Study of B-, Γ- and Log-Normal Distributions in a Three-Moment Parameterization for Drop Sedimentation. Atmosphere, 2014, 5, 484-517.	1.0	7
50	Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2014, 119, 8695-8711.	1.2	53
51	Compensation of Hemispheric Albedo Asymmetries by Shifts of the ITCZ and Tropical Clouds. Journal of Climate, 2014, 27, 1029-1045.	1.2	52
52	Wave Forcing of the Quasi-Biennial Oscillation in the Max Planck Institute Earth System Model. Journals of the Atmospheric Sciences, 2014, 71, 1985-2006.	0.6	22
53	GPU-Accelerated Longwave Radiation Scheme of the Rapid Radiative Transfer Model for General Circulation Models (RRTMG). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3660-3667.	2.3	27
54	Low loud optical depth feedback in climate models. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6052-6065.	1.2	80
56	A convectionâ€based gravity wave parameterization in a general circulation model: Implementation and improvements on the QBO. Journal of Advances in Modeling Earth Systems, 2014, 6, 264-279.	1.3	28

ARTICLE IF CITATIONS # Climate and climate sensitivity to changing <scp>CO</scp>₂ on an idealized land planet. 57 1.326 Journal of Advances in Modeling Earth Systems, 2014, 6, 1205-1223. Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. Journal of Advances in Modeling Earth Systems, 2014, 6, 300-314. 1.3 A spectral transform dynamical core option within the Community Atmosphere Model (CAM4). Journal 59 1.3 10 of Advances in Modeling Earth Systems, 2014, 6, 902-922. The atmospheric general circulation model with a hybrid vertical coordinate. Russian Journal of 0.2 Numerical Analysis and Mathematical Modelling, 2014, 29, . An interaction network perspective on the relation between patterns of sea surface temperature 61 2.7 34 variability and global mean surface temperature. Earth System Dynamics, 2014, 5, 1-14. The regional MiKlip decadal forecast ensemble for Europe: the added value of downscaling. Geoscientific Model Development, 2014, 7, 2983-2999. 1.3 Evaluating decadal predictions of northern hemispheric cyclone frequencies. Tellus, Series A: 63 0.8 20 Dynamic Meteorology and Oceanography, 2022, 66, 22830. Evaluation of North Eurasian snow-off dates in the ECHAM5.4 atmospheric general circulation model. 64 1.3 Geoscientific Model Development, 2014, 7, 3037-3057. Evaluation of pan-Arctic melt-freeze onset in CMIP5 climate models and reanalyses using surface 65 1.7 14 observations. Climate Dynamics, 2014, 42, 2239-2257. Intercomparison of the cloud water phase among global climate models. Journal of Geophysical 1.2 Research D: Atmospheres, 2014, 119, 3372-3400 Decadal climate predictions for the period 1901-2010 with a coupled climate model. Geophysical 67 1.5 44 Research Letters, 2014, 41, 2100-2107. Water resources of Cyprus under changing climatic conditions: Modelling approach, validation and limitations. Environmental Modelling and Software, 2014, 60, 202-218. 68 The radiative impact of clouds on the shift of the Intertropical Convergence Zone. Geophysical 69 1.5 61 Research Letters, 2014, 41, 4308-4315. CO2-Induced Sahel Greening in Three CMIP5 Earth System Models. Journal of Climate, 2014, 27, 7163-7184. 1.2 On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. 71 151 1.7 Climate Dynamics, 2014, 42, 2603-2626. Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate 133 Dynamics, 2014, 43, 289-303. Irregularity and decadal variation in ENSO: a simplified model based on Principal Oscillation Patterns. 73 1.7 20 Climate Dynamics, 2014, 43, 3327-3350. Simulating the Role of Subtropical Stratocumulus Clouds in Driving Pacific Climate Variability. 74 1.2 Journal of Climate, 2014, 27, 5119-5131.

ARTICLE IF CITATIONS # Global-mean radiative feedbacks and forcing in atmosphere-only and coupled atmosphere-ocean 75 1.5 76 climate change experiments. Geophysical Research Letters, 2014, 41, 4035-4042. Predictability of the quasiâ€biennial oscillation and its northern winter teleconnection on seasonal to 1.5 124 decadal timéscales. Geophysical Research Letters, 2014, 41, 1752-1758. Anthropogenically induced changes in twentieth century mineral dust burden and the associated 77 1.2 69 impact on radiative forcing. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,526. Influence of stochastic sea ice parametrization on climate and the role of atmosphere–sea ice–ocean interaction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130283. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. Journal 79 1.382 of Geophysical Research C: Biogeosciences, 2014, 119, 312-322. Potential sea ice predictability and the role of stochastic sea ice strength perturbations. Geophysical Research Letters, 2014, 41, 8396-8403. 1.5 Assessing the fidelity of AOGCMâ€simulated relationships between largeâ€scale modes of climate 81 1.2 17 variability and wind speeds. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9719-9734. Impact of the representation of marine stratocumulus clouds on the anthropogenic aerosol effect. 1.9 Atmospheric Chemistry and Physics, 2014, 14, 11997-12022. Technical Note: On the use of nudging for aerosolâ \in 'climate model intercomparison studies. Atmospheric Chemistry and Physics, 2014, 14, 8631-8645. 83 1.9 143 Diagnosing the average spatio-temporal impact of convective systems – Part 2: A model 84 intercomparison using satellite data. Atmospheric Chemistry and Physics, 2014, 14, 8701-8721. Anthropogenic influence on recent circulationâ€driven Antarctic sea ice changes. Geophysical Research 85 1.5 51 Letters, 2014, 41, 8429-8437. Vertical structure and physical processes of the Maddenâ€Julian oscillation: Exploring key model 1.2 86 332 physics in climate simulations. Journal of Geophysical Research D: Atmosphere's, 2015, 120, 4718-4748. Impact of climate change on ice regime in a river regulated for hydropower. Canadian Journal of Civil 87 0.7 17 Engineering, 2015, 42, 634-644. The influence of absorbed solar radiation by Saharan dust on hurricane genesis. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1902-1917. 1.2 The impact of parametrized convection on cloud feedback. Philosophical Transactions Series A, 89 1.6 63 Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140414. Decadal hindcasts initialized using observed surface wind stress: Evaluation and prediction out to 58 2024. Geophysical Research Letters, 2015, 42, 6454-6461. Response of the intertropical convergence zone to zonally asymmetric subtropical surface forcings. 91 1.525 Geophysical Research Letters, 2015, 42, 9961-9969. Randomised multichannel singular spectrum analysis of the 20th century climate data. Tellus, Series A: Dynamic Meteorology and Oceanography, 2015, 67, 28876.

#	Article	IF	CITATIONS
93	The mutual importance of anthropogenically and climateâ€induced changes in global vegetation cover for future land carbon emissions in the MPIâ€ESM CMIP5 simulations. Global Biogeochemical Cycles, 2015, 29, 1816-1829.	1.9	11
94	Eurasian winter cooling in the warming hiatus of 1998–2012. Geophysical Research Letters, 2015, 42, 8131-8139.	1.5	117
95	Simulation of the equatorially asymmetric mode of the Hadley circulation in CMIP5 models. Advances in Atmospheric Sciences, 2015, 32, 1129-1142.	1.9	16
96	Modified climate with long term memory in tree ring proxies. Environmental Research Letters, 2015, 10, 084020.	2.2	21
97	Multimodel evaluation of cloud phase transition using satellite and reanalysis data. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7871-7892.	1.2	100
98	Spatial Variability of Surface-Level State Variables over Arctic Sea Ice. Journal of Climate, 2015, 28, 6360-6380.	1.2	0
99	A stabilityâ€dependent parametrization of transfer coefficients for momentum and heat over polar sea ice to be used in climate models. Journal of Geophysical Research D: Atmospheres, 2015, 120, 552-581.	1.2	46
100	Highâ€resolution projections of 21st century daily precipitation for the contiguous U.S Journal of Geophysical Research D: Atmospheres, 2015, 120, 3029-3042.	1.2	23
101	Fire emission heights in the climate system – Part 1: Global plume height patterns simulated by ECHAM6-HAM2. Atmospheric Chemistry and Physics, 2015, 15, 7155-7171.	1.9	27
102	Fire emission heights in the climate system – Part 2: Impact on transport, black carbon concentrations and radiation. Atmospheric Chemistry and Physics, 2015, 15, 7173-7193.	1.9	32
103	Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmospheric Chemistry and Physics, 2015, 15, 9413-9433.	1.9	145
104	Improving a global model from the boundary layer: Total turbulent energy and the neutral limit <scp>P</scp> randtl number. Journal of Advances in Modeling Earth Systems, 2015, 7, 791-805.	1.3	23
105	The effect of atmospheric radiative heating by clouds on the <scp>M</scp> addenâ€ <scp>J</scp> ulian <scp>O</scp> scillation. Journal of Advances in Modeling Earth Systems, 2015, 7, 854-864.	1.3	54
106	Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry and Physics, 2015, 15, 10529-10566.	1.9	365
107	Climate responses to anthropogenic emissions of short-lived climate pollutants. Atmospheric Chemistry and Physics, 2015, 15, 8201-8216.	1.9	69
108	Attributing the behavior of lowâ€level clouds in largeâ€scale models to subgridâ€scale parameterizations. Journal of Advances in Modeling Earth Systems, 2015, 7, 2029-2043.	1.3	20
109	Internally generated decadal cold events in the northern North Atlantic and their possible implications for the demise of the Norse settlements in Greenland. Geophysical Research Letters, 2015, 42, 908-915.	1.5	19
110	Analysis of diagnostic climate model cloud parametrizations using largeâ€eddy simulations. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2199-2205.	1.0	6

#	Article	IF	CITATIONS
111	Rethinking the Default Construction of Multimodel Climate Ensembles. Bulletin of the American Meteorological Society, 2015, 96, 911-919.	1.7	16
112	The Influence of the Spectral Truncation on the Simulation of Waves in the Tropical Stratosphere. Journals of the Atmospheric Sciences, 2015, 72, 3819-3828.	0.6	2
113	The <scp>ICON</scp> (ICOsahedral Nonâ€hydrostatic) modelling framework of <scp>DWD</scp> and <scp>MPlâ€M</scp> : Description of the nonâ€hydrostatic dynamical core. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 563-579.	1.0	524
114	Impacts of Arctic sea ice and continental snow cover changes on atmospheric winter teleconnections. Geophysical Research Letters, 2015, 42, 2367-2377.	1.5	59
115	Implications of land use change in tropical northern Africa under global warming. Earth System Dynamics, 2015, 6, 769-780.	2.7	1
116	ICON–ART 1.0 – a new online-coupled model system from the global to regional scale. Geoscientific Model Development, 2015, 8, 1659-1676.	1.3	40
117	On-line and off-line data assimilation in palaeoclimatology: a case study. Climate of the Past, 2015, 11, 81-93.	1.3	49
118	Using simulations of the last millennium to understand climate variability seen in palaeo-observations: similar variation of Iceland–Scotland overflow strength and Atlantic Multidecadal Oscillation. Climate of the Past, 2015, 11, 203-216.	1.3	10
119	On double Rossby wave breaking in the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,129.	1.2	32
120	Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching. Earth System Dynamics, 2015, 6, 745-768.	2.7	40
121	lce supersaturation and the potential for contrail formation in a changing climate. Earth System Dynamics, 2015, 6, 555-568.	2.7	15
122	Transitivity of the climate–vegetation system in a warm climate. Climate of the Past, 2015, 11, 1563-1574.	1.3	5
123	Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes. Cryosphere, 2015, 9, 1343-1361.	1.5	41
125	An observational radiative constraint on hydrologic cycle intensification. Nature, 2015, 528, 249-253.	13.7	119
126	The Role of Moisture in Summertime Low-Level Jet Formation and Associated Rainfall over the East Asian Monsoon Region. Journals of the Atmospheric Sciences, 2015, 72, 3871-3890.	0.6	19
127	Assimilation of oceanic observations in a global coupled Earth system model with the SEIK filter. Ocean Modelling, 2015, 96, 254-264.	1.0	27
128	Circulation response to warming shaped by radiative changes of clouds and water vapour. Nature Geoscience, 2015, 8, 102-106.	5.4	153
129	Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Clobal Change Biology, 2015, 21, 3074-3086.	4.2	94

#	Article	IF	CITATIONS
130	Extreme Rainfall of the South American Monsoon System: A Dataset Comparison Using Complex Networks. Journal of Climate, 2015, 28, 1031-1056.	1.2	45
131	Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nature Communications, 2015, 6, 5985.	5.8	82
132	Influence of ENSO on the QBO: Results from an ensemble of idealized simulations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1109-1122.	1.2	28
133	Separation of the Effects of Land and Climate Model Errors on Simulated Contemporary Land Carbon Cycle Trends in the MPI Earth System Model version 1*. Journal of Climate, 2015, 28, 272-291.	1.2	20
134	Initiation of a Runaway Greenhouse in a Cloudy Column. Journals of the Atmospheric Sciences, 2015, 72, 452-471.	0.6	14
135	Effect of horizontal resolution on ECHAM6-AMIP performance. Climate Dynamics, 2015, 45, 185-211.	1.7	39
136	Impact of the soil hydrology scheme on simulated soil moisture memory. Climate Dynamics, 2015, 44, 1731-1750.	1.7	123
137	The quasi-biennial oscillation in a warmer climate: sensitivity to different gravity wave parameterizations. Climate Dynamics, 2015, 45, 825-836.	1.7	36
138	Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate. Climate Dynamics, 2015, 44, 757-780.	1.7	132
139	The Influence of Cloud Feedbacks on Equatorial Atlantic Variability. Journal of Climate, 2015, 28, 2725-2744.	1.2	46
140	Decadal simulation and comprehensive evaluation of <scp>CESM</scp> / <scp>CAM</scp> 5.1 with advanced chemistry, aerosol microphysics, and aerosolâ€cloud interactions. Journal of Advances in Modeling Earth Systems, 2015, 7, 110-141.	1.3	32
141	Future climate change under RCP emission scenarios with GISS <scp>M</scp> odelE2. Journal of Advances in Modeling Earth Systems, 2015, 7, 244-267.	1.3	112
142	Environmental niche variation and evolutionary diversification of the <i>Brachypodium distachyon</i> grass complex species in their native circumâ€Mediterranean range. American Journal of Botany, 2015, 102, 1073-1088.	0.8	73
143	Tug of war on summertime circulation between radiative forcing and sea surface warming. Nature Geoscience, 2015, 8, 560-566.	5.4	135
144	A Systematic Relationship between the Representations of Convectively Coupled Equatorial Wave Activity and the Madden–Julian Oscillation in Climate Model Simulations. Journal of Climate, 2015, 28, 1881-1904.	1.2	29
145	Impacts of CO2 concentration and climate change on the terrestrial carbon flux using six global climate–carbon coupled models. Ecological Modelling, 2015, 304, 69-83.	1.2	24
146	Gravity wave characteristics in the middle atmosphere during the CESAR campaign at Palma de Mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 128, 8-23.	0.6	8
147	The Atlantic ITCZ bias in CMIP5 models. Climate Dynamics, 2015, 45, 1169-1180.	1.7	55

#	Article	IF	CITATIONS
148	The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model. Climate Dynamics, 2015, 44, 2723-2735.	1.7	55
149	On the effect of boundary conditions on the Canadian Regional Climate Model: use of process tendencies. Climate Dynamics, 2015, 45, 2515-2526.	1.7	3
150	Contributions of soil moisture interactions to climate change in the tropics in the GLACE–CMIP5 experiment. Climate Dynamics, 2015, 45, 3275-3297.	1.7	24
151	Heavy precipitation in a changing climate: Does shortâ€ŧerm summer precipitation increase faster?. Geophysical Research Letters, 2015, 42, 1165-1172.	1.5	338
152	Rethinking the Lower Bound on Aerosol Radiative Forcing. Journal of Climate, 2015, 28, 4794-4819.	1.2	175
153	Ocean Heat Uptake Processes: A Model Intercomparison. Journal of Climate, 2015, 28, 887-908.	1.2	55
154	Arctic Radiative Fluxes: Present-Day Biases and Future Projections in CMIP5 Models. Journal of Climate, 2015, 28, 6019-6038.	1.2	42
155	Effect of O3 on the atmospheric temperature structure of early Mars. Icarus, 2015, 257, 406-416.	1.1	15
156	Indian Summer Monsoon Rainfall Processes in Climate Change Scenarios. Journal of Climate, 2015, 28, 5414-5429.	1.2	32
157	The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science, 2015, 350, 320-324.	6.0	287
158	Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy. Agricultural Systems, 2015, 139, 223-237.	3.2	61
159	Finding solutions to water scarcity: Incorporating ecosystem service values into business planning at The Dow Chemical Company's Freeport, TX facility. Ecosystem Services, 2015, 12, 94-107.	2.3	28
160	Seasonal Predictability over Europe Arising from El Niño and Stratospheric Variability in the MPI-ESM Seasonal Prediction System. Journal of Climate, 2015, 28, 256-271.	1.2	100
161	Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal. Agricultural Systems, 2015, 133, 143-157.	3.2	74
162	On the connection between tropical circulation, convective mixing, and climate sensitivity. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1404-1416.	1.0	36
163	The diurnal cycle of marine cloud feedback in climate models. Climate Dynamics, 2015, 44, 1419-1436.	1.7	18
164	Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dynamics, 2015, 44, 1957-1977.	1.7	79
165	The diurnal temperature range in the CMIP5 models. Climate Dynamics, 2015, 44, 405-421.	1.7	83

#	Article	IF	CITATIONS
167	A new estimator of heat periods for decadal climate predictions – a complex network approach. Nonlinear Processes in Geophysics, 2016, 23, 307-317.	0.6	3
168	Lifetime of soil moisture perturbations in a coupled land–atmosphere simulation. Earth System Dynamics, 2016, 7, 1-19.	2.7	12
170	Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling. Astronomy and Astrophysics, 2016, 592, A36.	2.1	25
171	Compound extremes in a changing climate – a Markov chain approach. Nonlinear Processes in Geophysics, 2016, 23, 375-390.	0.6	22
172	Assessing various drought indicators in representing summer drought in boreal forests in Finland. Hydrology and Earth System Sciences, 2016, 20, 175-191.	1.9	36
173	Sustainability of water uses in managed hydrosystems: human- and climate-induced changes for the mid-21st century. Hydrology and Earth System Sciences, 2016, 20, 3129-3147.	1.9	12
174	Comparison of simulated and reconstructed variations in East African hydroclimate over the last millennium. Climate of the Past, 2016, 12, 1499-1518.	1.3	18
175	New developments in the representation of Saharan dust sources in the aerosol–climate model ECHAM6-HAM2. Geoscientific Model Development, 2016, 9, 765-777.	1.3	22
176	The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 3447-3460.	1.3	178
177	Soil-frost-enabled soil-moisture–precipitation feedback over northern high latitudes. Earth System Dynamics, 2016, 7, 611-625.	2.7	15
178	Influence of proxy data uncertainty on data assimilation for the past climate. Climate of the Past, 2016, 12, 1555-1563.	1.3	4
179	Variability of daily winter wind speed distribution over Northern Europe during the past millennium in regional and global climate simulations. Climate of the Past, 2016, 12, 317-338.	1.3	4
180	Why CO ₂ cools the middle atmosphereâ€`â€``â€`a consolidating mod perspective. Earth System Dynamics, 2016, 7, 697-715.	el 2.7	21
181	The importance of external climate forcing for the variability and trends of coastal upwelling in past and future climate. Ocean Science, 2016, 12, 807-823.	1.3	14
182	Searching for an Added Value of Precipitation in Downscaled Seasonal Hindcasts over East Africa: COSMO-CLM Forced by MPI-ESM. Advances in Meteorology, 2016, 2016, 1-17.	0.6	7
183	Decadal predictability of regional scale wind speed and wind energy potentials over Central Europe. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 29199.	0.8	15
184	Seasonality of Precipitation over Himalayan Watersheds in CORDEX South Asia and their Driving CMIP5 Experiments. Atmosphere, 2016, 7, 123.	1.0	22
185	Evaluating Biosphere Model Estimates of the Start of the Vegetation Active Season in Boreal Forests by Satellite Observations. Remote Sensing, 2016, 8, 580.	1.8	17

#	Article	IF	CITATIONS
186	Radiative convective equilibrium as a framework for studying the interaction between convection and its largeâ€scale environment. Journal of Advances in Modeling Earth Systems, 2016, 8, 1330-1344.	1.3	28
187	Land dominates the regional response to CO 2 direct radiative forcing. Geophysical Research Letters, 2016, 43, 11,383.	1.5	18
188	The effect of greenhouse gas concentrations and ice sheets on the glacial AMOC in a coupled climate model. Climate of the Past, 2016, 12, 1829-1846.	1.3	38
189	Explicit Representation of Spatial Subgrid-Scale Heterogeneity in an ESM. Journal of Hydrometeorology, 2016, 17, 1357-1371.	0.7	11
190	A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability. Geophysical Research Letters, 2016, 43, 784-792.	1.5	49
191	Asian irrigation, African rain: Remote impacts of irrigation. Geophysical Research Letters, 2016, 43, 3737-3745.	1.5	93
192	The Variability of the Indian–East Asian Summer Monsoon Interface in Relation to the Spring Seesaw Mode between the Indian Ocean and the Central-Western Pacific. Journal of Climate, 2016, 29, 5027-5040.	1.2	23
193	A Comparison of Two Ensemble Generation Methods Using Oceanic Singular Vectors and Atmospheric Lagged Initialization for Decadal Climate Prediction. Monthly Weather Review, 2016, 144, 2719-2738.	0.5	7
194	The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. Journal of Advances in Modeling Earth Systems, 2016, 8, 1868-1891.	1.3	47
195	Mixedâ€layer ocean responses to anthropogenic aerosol dimming from 1870 to 2000. Journal of Geophysical Research D: Atmospheres, 2016, 121, 49-66.	1.2	8
196	Impact of Regional Atmospheric Cloud Radiative Changes on Shifts of the Extratropical Jet Stream in Response to Global Warming. Journal of Climate, 2016, 29, 8399-8421.	1.2	40
197	Seasonal climate forecasts significantly affected by observational uncertainty of Arctic sea ice concentration. Geophysical Research Letters, 2016, 43, 852-859.	1.5	37
198	Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations. Geophysical Research Letters, 2016, 43, 6493-6502.	1.5	46
199	Projecting changes in regional temperature and precipitation extremes in the United States. Weather and Climate Extremes, 2016, 11, 28-40.	1.6	55
200	A new diagram of Earth's global energy budget. Acta Geodaetica Et Geophysica, 2016, 51, 481-492.	0.7	1
201	The Role of Cloud Radiative Heating in Determining the Location of the ITCZ in Aquaplanet Simulations. Journal of Climate, 2016, 29, 2741-2763.	1.2	47
202	Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate. Geomorphology, 2016, 270, 102-120.	1.1	11
203	The Physics of Drought in the U.S. Central Great Plains. Journal of Climate, 2016, 29, 6783-6804.	1.2	78

#	Article	IF	CITATIONS
204	New observational evidence for a positive cloud feedback that amplifies the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 2016, 43, 9852-9859.	1.5	57
205	Insights from a refined decomposition of cloud feedbacks. Geophysical Research Letters, 2016, 43, 9259-9269.	1.5	134
206	Why cirrus cloud seeding cannot substantially cool the planet. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4877-4893.	1.2	57
207	Thermodynamic control of anvil cloud amount. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8927-8932.	3.3	172
208	A two Turbulence Kinetic Energy model as a scaleâ€adaptive approach to modeling the planetary boundary layer. Journal of Advances in Modeling Earth Systems, 2016, 8, 224-243.	1.3	10
209	Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using Aâ€īrain observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1621-1636.	1.2	26
210	Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophysical Research Letters, 2016, 43, 9324-9332.	1.5	75
211	The impact of stratospheric volcanic aerosol on decadalâ€scale climate predictions. Geophysical Research Letters, 2016, 43, 834-842.	1.5	39
212	Constraining the lowâ€cloud optical depth feedback at middle and high latitudes using satellite observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9696-9716.	1.2	57
213	Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1715-1735.	1.2	29
214	High atmospheric horizontal resolution eliminates the windâ€driven coastal warm bias in the southeastern tropical Atlantic. Geophysical Research Letters, 2016, 43, 10,455.	1.5	34
215	Coupled radiative convective equilibrium simulations with explicit and parameterized convection. Journal of Advances in Modeling Earth Systems, 2016, 8, 1468-1482.	1.3	73
216	On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmospheric Chemistry and Physics, 2016, 16, 2765-2783.	1.9	67
217	Modeling the global bomb tritium transient signal with the AGCM LMDZâ€iso: A method to evaluate aspects of the hydrological cycle. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,612.	1.2	16
218	A stochastic scaleâ€aware parameterization of shallow cumulus convection across the convective gray zone. Journal of Advances in Modeling Earth Systems, 2016, 8, 786-812.	1.3	51
219	Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8472-8492.	1.2	20
220	Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008. Atmospheric Chemistry and Physics, 2016, 16, 10765-10792.	1.9	17
221	Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions. Atmospheric Chemistry and Physics, 2016, 16, 13885-13910.	1.9	17

#	Article	IF	CITATIONS
222	Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering. Atmospheric Chemistry and Physics, 2016, 16, 305-323.	1.9	40
223	Kinematic and diabatic vertical velocity climatologies from aÂchemistry climate model. Atmospheric Chemistry and Physics, 2016, 16, 6223-6239.	1.9	8
224	Limitations of passive remote sensing to constrain global cloud condensation nuclei. Atmospheric Chemistry and Physics, 2016, 16, 6595-6607.	1.9	103
225	Regional emission metrics for short-lived climate forcers from multiple models. Atmospheric Chemistry and Physics, 2016, 16, 7451-7468.	1.9	34
226	Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison. Journal of Advances in Modeling Earth Systems, 2016, 8, 1345-1357.	1.3	43
227	Simulated response of the midâ€Holocene Atlantic meridional overturning circulation in ECHAM6â€FESOM/MPIOM. Journal of Geophysical Research: Oceans, 2016, 121, 6444-6469.	1.0	22
228	Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2130-2145.	1.2	90
229	Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble. Environmental Research Letters, 2016, 11, 034012.	2.2	29
230	Assimilating continental mean temperatures to reconstruct the climate of the late pre-industrial period. Climate Dynamics, 2016, 46, 3547-3566.	1.7	11
231	Understanding the Links between Subtropical and Extratropical Circulation Responses to Climate Change Using Aquaplanet Model Simulations. Journal of Climate, 2016, 29, 6637-6657.	1.2	12
232	Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin. Science of the Total Environment, 2016, 565, 1084-1101.	3.9	55
233	Response of deciduous trees spring phenology to recent and projected climate change in Central Lithuania. International Journal of Biometeorology, 2016, 60, 1589-1602.	1.3	13
234	On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model. Climate Dynamics, 2016, 46, 3499-3515.	1.7	6
235	What are the implications of climate change for trans-Atlantic aircraft routing and flight time?. Transportation Research, Part D: Transport and Environment, 2016, 47, 44-53.	3.2	26
236	Simulation of the interface between the Indian summer monsoon and the East Asian summer monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM. Advances in Atmospheric Sciences, 2016, 33, 294-308.	1.9	17
237	Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Climate Dynamics, 2016, 47, 1881-1898.	1.7	78
238	The Climateâ€system Historical Forecast Project: do stratosphereâ€resolving models make better seasonal climate predictions in boreal winter?. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 1413-1427.	1.0	91
239	The Barbados Cloud Observatory: Anchoring Investigations of Clouds and Circulation on the Edge of the ITCZ. Bulletin of the American Meteorological Society, 2016, 97, 787-801.	1.7	134

#	Article	IF	CITATIONS
240	Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090–2099. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3195-3223.	1.2	37
241	The impact of waveâ€mean flow interaction on the Northern Hemisphere polar vortex after tropical volcanic eruptions. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5281-5297.	1.2	26
242	Climate change reduces warming potential of nitrous oxide by an enhanced Brewerâ€Đobson circulation. Geophysical Research Letters, 2016, 43, 5851-5859.	1.5	5
243	Troposphere–stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model. Climate Dynamics, 2016, 46, 1397-1415.	1.7	36
244	A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin. Archives of Computational Methods in Engineering, 2016, 23, 673-722.	6.0	44
245	Assessing Surface Solar Radiation Fluxes in the CMIP Ensembles. Journal of Climate, 2016, 29, 7231-7246.	1.2	11
246	Spatial Assessment of Land Degradation Risk for the Okavango River Catchment, Southern Africa. Land Degradation and Development, 2016, 27, 281-294.	1.8	21
247	A dataâ€driven method for the stochastic parametrisation of subgridâ€scale tropical convective area fraction. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 349-359.	1.0	26
248	Seasonal Atmospheric Responses to Reduced Arctic Sea Ice in an Ensemble of Coupled Model Simulations. Journal of Climate, 2016, 29, 5893-5913.	1.2	39
249	Uncertainty in Model Climate Sensitivity Traced to Representations of Cumulus Precipitation Microphysics. Journal of Climate, 2016, 29, 543-560.	1.2	109
250	Investigation of gravity wave activity based on operational radiosonde data from 13 years (1997-2009): Climatology and possible induced variability. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 140, 23-33.	0.6	6
251	Tropical Temperature and Precipitation Responses to Large Volcanic Eruptions: Observations and AMIP5 Simulations. Journal of Climate, 2016, 29, 1325-1338.	1.2	3
252	Atmospheric and Oceanic Contributions to Irreducible Forecast Uncertainty of Arctic Surface Climate. Journal of Climate, 2016, 29, 331-346.	1.2	12
253	Transition to a Moist Greenhouse with CO2 and solar forcing. Nature Communications, 2016, 7, 10627.	5.8	71
254	On the Representation of Heterogeneity in Land-Surface–Atmosphere Coupling. Boundary-Layer Meteorology, 2016, 160, 157-183.	1.2	24
255	Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nature Geoscience, 2016, 9, 106-110.	5.4	70
256	Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment. Journal of Hydrology, 2016, 533, 234-249.	2.3	73
257	Understanding the Intermodel Spread in Global-Mean Hydrological Sensitivity*. Journal of Climate, 2016, 29, 801-817.	1.2	79

#	Article	IF	CITATIONS
258	Shallowness of tropical low clouds as a predictor of climate models' response to warming. Climate Dynamics, 2016, 47, 433-449.	1.7	92
259	Nonstationary impact of the winter North Atlantic Oscillation and the response of mid-latitude Eurasian climate. Theoretical and Applied Climatology, 2016, 124, 1-14.	1.3	36
260	Climate change induced by Southern Hemisphere desertification. Physics and Chemistry of the Earth, 2017, 102, 40-47.	1.2	14
261	An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes. Climate Dynamics, 2017, 48, 727-744.	1.7	48
262	Climate change scenarios for Tibetan Plateau summer precipitation based on canonical correlation analysis. International Journal of Climatology, 2017, 37, 1310-1321.	1.5	14
263	Extended predictor screening, application and added value of statistical downscaling of a CMIP5 ensemble for single-site projections in Distrito Federal, Brazil. International Journal of Climatology, 2017, 37, 46-65.	1.5	10
264	The global aerosolâ€cloud first indirect effect estimated using MODIS, MERRA, and AeroCom. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1779-1796.	1.2	81
265	Benchmarking CMIP5 models with a subset of ESA CCI Phase 2 data using the ESMValTool. Remote Sensing of Environment, 2017, 203, 9-39.	4.6	34
266	Evaluation of CMIP5 models over the northern North Atlantic in the context of forthcoming paleoclimatic reconstructions. Climate Dynamics, 2017, 49, 3673-3691.	1.7	4
267	Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change?. Bulletin of the American Meteorological Society, 2017, 98, 79-93.	1.7	253
268	Improved MJOâ€simulation in <scp>ECHAM</scp> 6.3 by coupling a <scp>S</scp> tochastic <scp>M</scp> ulticloud <scp>M</scp> odel to the convection scheme. Journal of Advances in Modeling Earth Systems, 2017, 9, 193-219.	1.3	66
269	Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability. Climate Dynamics, 2017, 49, 3959-3974.	1.7	35
270	Representation of Arctic Moist Intrusions in CMIP5 Models and Implications for Winter Climate Biases. Journal of Climate, 2017, 30, 4083-4102.	1.2	23
271	On the added value of the regional climate model REMO in the assessment of climate change signal over Central Africa. Climate Dynamics, 2017, 49, 3813-3838.	1.7	46
272	Sensitivity of the summertime tropical Atlantic precipitation distribution to convective parameterization and model resolution in ECHAM6. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2579-2594.	1.2	9
273	Ensembleâ€based Reconstructed Forcing (ERF) for regional climate modeling: Attaining the performance at a fraction of cost. Geophysical Research Letters, 2017, 44, 3290-3298.	1.5	8
274	Climate variations on Earth-like circumbinary planets. Nature Communications, 2017, 8, 14957.	5.8	42
275	Using the Moist Static Energy Budget to Understand Storm-Track Shifts across a Range of Time Scales. Journals of the Atmospheric Sciences, 2017, 74, 2427-2446.	0.6	16

#	ARTICLE	IF	Citations
276	Microphysical explanation of the RHâ€dependent water affinity of biogenic organic aerosol and its importance for climate. Geophysical Research Letters, 2017, 44, 5167-5177.	1.5	74
277	Why Do Global Climate Models Struggle to Represent Low-Level Clouds in the West African Summer Monsoon?. Journal of Climate, 2017, 30, 1665-1687.	1.2	56
278	Decadal climate predictions improved by ocean ensemble dispersion filtering. Journal of Advances in Modeling Earth Systems, 2017, 9, 1138-1149.	1.3	15
279	Imprint of the convective parameterization and seaâ€surface temperature on largeâ€scale convective selfâ€aggregation. Journal of Advances in Modeling Earth Systems, 2017, 9, 1488-1505.	1.3	54
280	The effect of radiation parameterization schemes on surface temperature in regional climate simulations over the MENA ORDEX domain. International Journal of Climatology, 2017, 37, 3847-3862.	1.5	32
281	Air mass origin signals in \hat{l}' 180 of tree-ring cellulose revealed by back-trajectory modeling at the monsoonal Tibetan plateau. International Journal of Biometeorology, 2017, 61, 1109-1124.	1.3	17
282	Hindcast skill for the Atlantic meridional overturning circulation at 26.5°N within two MPI-ESM decadal climate prediction systems. Climate Dynamics, 2017, 49, 2975-2990.	1.7	2
283	Assessment of future <scp>ENSO</scp> changes in a <scp>CMIP3</scp> / <scp>CMIP5</scp> multiâ€model and multiâ€index framework. International Journal of Climatology, 2017, 37, 3439-3451.	1.5	6
284	Projecting corn and soybeans yields under climate change in a Corn Belt watershed. Agricultural Systems, 2017, 152, 90-99.	3.2	35
285	Saharan Heat Low Biases in CMIP5 Models. Journal of Climate, 2017, 30, 2867-2884.	1.2	15
286	The Climate-System Historical Forecast Project: Providing Open Access to Seasonal Forecast Ensembles from Centers around the Globe. Bulletin of the American Meteorological Society, 2017, 98, 2293-2301.	1.7	41
287	Can warmer be better? Changing production systems in three Andean ecosystems in the face of environmental change. Journal of Arid Environments, 2017, 147, 144-154.	1.2	13
288	Early snowmelt significantly enhances boreal springtime carbon uptake. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11081-11086.	3.3	84
289	Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED Software. Energy Procedia, 2017, 128, 92-99.	1.8	39
290	Evaluating Model Simulations of Twentieth-Century Sea-Level Rise. Part II: Regional Sea-Level Changes. Journal of Climate, 2017, 30, 8565-8593.	1.2	57
291	Carbon cycle and climate effects of forcing from fire-emitted aerosols. Environmental Research Letters, 2017, 12, 025002.	2.2	13
292	Black carbon indirect radiative effects in a climate model. Tellus, Series B: Chemical and Physical Meteorology, 2017, 69, 1369342.	0.8	19
293	Winter amplification of the European Little Ice Age cooling by the subpolar gyre. Scientific Reports, 2017, 7, 9981.	1.6	38

#	Article	IF	CITATIONS
294	MJO Propagation Shaped by Zonal Asymmetric Structures: Results from 24 GCM Simulations. Journal of Climate, 2017, 30, 7933-7952.	1.2	39
295	Climate variability of heat waves and their associated diurnal temperature range variations in Taiwan. Environmental Research Letters, 2017, 12, 074017.	2.2	25
296	Biomass burning aerosol transport and vertical distribution over the South Africanâ€Atlantic region. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6391-6415.	1.2	59
297	Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model. Dynamics of Atmospheres and Oceans, 2017, 79, 10-30.	0.7	11
298	Contributions of Climate Feedbacks to Changes in Atmospheric Circulation. Journal of Climate, 2017, 30, 9097-9118.	1.2	33
299	Regional reanalysis without local data: Exploiting the downscaling paradigm. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8631-8649.	1.2	14
300	Effects of diabatic and adiabatic processes on relative humidity in a GCM, and relationship between mid-tropospheric vertical wind and cloud-forming and cloud-dissipating processes. Tellus, Series A: Dynamic Meteorology and Oceanography, 2017, 69, 1272753.	0.8	0
302	Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic. Nature Geoscience, 2017, 10, 891-896.	5.4	76
303	Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 2017, 3, e1600983.	4.7	424
304	Could gradual changes in Holocene Saharan landscape have caused the observed abrupt shift in North Atlantic dust deposition?. Earth and Planetary Science Letters, 2017, 473, 104-112.	1.8	9
305	Air–sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components. Climate Dynamics, 2017, 48, 2819-2836.	1.7	5
306	Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific. Climate Dynamics, 2017, 49, 2685-2693.	1.7	14
307	The Influence of Atmospheric Cloud Radiative Effects on the Large-Scale Stratospheric Circulation. Journal of Climate, 2017, 30, 5621-5635.	1.2	5
308	Revising the hygroscopicity of inorganic sea salt particles. Nature Communications, 2017, 8, 15883.	5.8	173
309	Asymmetry in summertime atmospheric circulation anomalies over the northwest Pacific during decaying phase of El Niño and La Niña. Climate Dynamics, 2017, 49, 2007-2023.	1.7	31
310	Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study. Climate Dynamics, 2017, 49, 2061-2075.	1.7	17
311	Climate predictability and prediction skill on seasonal time scales over South America from CHFP models. Climate Dynamics, 2017, 49, 2365-2383.	1.7	19
312	Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Climate Dynamics, 2017, 48, 3425-3440.	1.7	88

#	Article	IF	CITATIONS
313	Singleâ€Column Model Simulations of Subtropical Marine Boundary‣ayer Cloud Transitions Under Weakening Inversions. Journal of Advances in Modeling Earth Systems, 2017, 9, 2385-2412.	1.3	27
314	Impacts of surface boundary conditions on regional climate model simulations of European climate during the Last Glacial Maximum. Geophysical Research Letters, 2017, 44, 5086-5095.	1.5	37
315	Mongolian Mountains Matter Most: Impacts of the Latitude and Height of Asian Orography on Pacific Wintertime Atmospheric Circulation. Journal of Climate, 2017, 30, 4065-4082.	1.2	48
316	Fast and slow shifts of the zonalâ€mean intertropical convergence zone in response to an idealized anthropogenic aerosol. Journal of Advances in Modeling Earth Systems, 2017, 9, 870-892.	1.3	33
317	Local and Remote Impacts of Atmospheric Cloud Radiative Effects Onto the Eddyâ€Đriven Jet. Geophysical Research Letters, 2017, 44, 10,036.	1.5	20
318	Regional temperature change potentials for short-lived climate forcers based on radiative forcing from multiple models. Atmospheric Chemistry and Physics, 2017, 17, 10795-10809.	1.9	24
319	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	1.9	87
320	Potential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation. Atmospheric Chemistry and Physics, 2017, 17, 11637-11654.	1.9	26
321	Unveiling aerosol–cloud interactions – Part 2: Minimising the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data. Atmospheric Chemistry and Physics, 2017, 17, 13165-13185.	1.9	19
322	Impact of the 4ÂAprilÂ2014 Saharan dust outbreak on the photovoltaic power generation in Germany. Atmospheric Chemistry and Physics, 2017, 17, 13391-13415.	1.9	39
323	Dynamic subgrid heterogeneity of convective cloud in a global model: description and evaluation of the Convective Cloud Field Model (CCFM) in ECHAM6–HAM2. Atmospheric Chemistry and Physics, 2017, 17, 327-342.	1.9	21
324	Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?. Atmospheric Chemistry and Physics, 2017, 17, 4871-4885.	1.9	23
325	Effect of anthropogenic aerosol emissions on precipitation in warm conveyor belts in the western North Pacific in winter – a model study with ECHAM6-HAM. Atmospheric Chemistry and Physics, 2017, 17, 6243-6255.	1.9	12
326	Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas. Atmospheric Chemistry and Physics, 2017, 17, 6957-6974.	1.9	26
327	Vertical Resolution Refinement in an Aquaâ€Planet and Its Effect on the ITCZ. Journal of Advances in Modeling Earth Systems, 2017, 9, 2425-2436.	1.3	11
328	On the sensitivity of anthropogenic aerosol forcing to modelâ€internal variability and parameterizing a <scp>T</scp> womey effect. Journal of Advances in Modeling Earth Systems, 2017, 9, 1325-1341.	1.3	35
329	MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6. Geoscientific Model Development, 2017, 10, 433-452.	1.3	130
330	UCLALES–SALSA v1.0: a large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation. Geoscientific Model Development, 2017, 10, 169-188.	1.3	39

#	Article	IF	CITATIONS
331	Sequential Factor Separation for the Analysis of Numerical Model Simulations. Journals of the Atmospheric Sciences, 2017, 74, 1471-1484.	0.6	7
332	Implementation of the MEGAN (v2.1) biogenic emission model in the ECHAM6-HAMMOZ chemistry climate model. Geoscientific Model Development, 2017, 10, 903-926.	1.3	40
333	Changes in the seasonal cycle of the Atlantic meridional heat transport in a RCP 8.5 climate projection in MPI-ESM. Earth System Dynamics, 2017, 8, 129-146.	2.7	3
334	Is Biomass Accumulation in Forests an Option to Prevent Climate Change Induced Increases in Nitrate Concentrations in the North German Lowland?. Forests, 2017, 8, 219.	0.9	19
335	Tree Species Selection in the Face of Drought Risk—Uncertainty in Forest Planning. Forests, 2017, 8, 363.	0.9	20
336	Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations. Hydrology and Earth System Sciences, 2017, 21, 821-837.	1.9	43
337	The COSMO-CLM 4.8 regional climate model coupled to regional ocean, land surface and global earth system models using OASIS3-MCT: description and performance. Geoscientific Model Development, 2017, 10, 1549-1586.	1.3	34
339	Towards More Comprehensive Projections of Urban Heat-Related Mortality: Estimates for New York City under Multiple Population, Adaptation, and Climate Scenarios. Environmental Health Perspectives, 2017, 125, 47-55.	2.8	71
340	Aerosol–radiation interaction modelling using online coupling between the WRF 3.7.1 meteorological model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler. Geoscientific Model Development, 2017, 10, 927-944.	1.3	39
341	Pseudo-proxy evaluation of climate field reconstruction methods of North Atlantic climate based on an annually resolved marine proxy network. Climate of the Past, 2017, 13, 1339-1354.	1.3	8
342	Response of water use efficiency to summer drought in aÂboreal Scots pine forest in Finland. Biogeosciences, 2017, 14, 4409-4422.	1.3	30
343	Projected Changes in the Asianâ€Australian Monsoon Region in 1.5°C and 2.0°C Globalâ€Warming Scenarios. Earth's Future, 2018, 6, 339-358.	2.4	65
344	Urban surface effects on current and future climate. Urban Climate, 2018, 24, 121-138.	2.4	13
345	Ozone impacts of gas–aerosol uptake in global chemistry transport models. Atmospheric Chemistry and Physics, 2018, 18, 3147-3171.	1.9	36
346	CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2968-2992.	1.2	33
347	Impact of Physics Parameterization Ordering in a Global Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 481-499.	1.3	27
348	Sensitivity of the atmospheric water cycle to corrections of the sea surface temperature bias over southern Africa in a regional climate model. Climate Dynamics, 2018, 51, 2841-2855.	1.7	11
349	How Well Can We Represent the Spectrum of Convective Clouds in a Climate Model? Comparisons between Internal Parameterization Variables and Radar Observations. Journals of the Atmospheric Sciences, 2018, 75, 1509-1524.	0.6	15

#	Article	IF	CITATIONS
350	Visualization in Meteorology—A Survey of Techniques and Tools for Data Analysis Tasks. IEEE Transactions on Visualization and Computer Graphics, 2018, 24, 3268-3296.	2.9	77
351	Quantifying and Comparing Effects of Climate Engineering Methods on the Earth System. Earth's Future, 2018, 6, 149-168.	2.4	15
352	Current and Future Decadal Trends in the Oceanic Carbon Uptake Are Dominated by Internal Variability. Geophysical Research Letters, 2018, 45, 916-925.	1.5	41
353	Multiscale Spatial Modeling of Human Exposure from Local Sources to Global Intake. Environmental Science & Technology, 2018, 52, 701-711.	4.6	20
354	Responses of ENSO and NAO to the external radiative forcing during the last millennium: Results from CCSM4 and MPI-ESM-P simulations. Quaternary International, 2018, 487, 99-111.	0.7	7
355	The Influence of Eurasian Snow Extent on the Northern Extratropical Stratosphere in a QBO Resolving Model. Journal of Geophysical Research D: Atmospheres, 2018, 123, 315-328.	1.2	13
356	Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation. Atmospheric Chemistry and Physics, 2018, 18, 1079-1089.	1.9	21
357	Response to marine cloud brightening in a multi-model ensemble. Atmospheric Chemistry and Physics, 2018, 18, 621-634.	1.9	37
358	Impact of 1.5â€ ⁻ °C and 2.0â€ ⁻ °C global warming on aircraft takeoff performance in China. Science Bulletin, 2018, 63, 700-707.	4.3	35
359	Dynamics-oriented diagnostics for the Madden-Julian Oscillation. Journal of Climate, 2018, , .	1.2	12
360	Evaluation of Relationships between Subtropical Marine Low Stratiform Cloudiness and Estimated Inversion Strength in CMIP5 Models Using the Satellite Simulator Package COSP. Scientific Online Letters on the Atmosphere, 2018, 14, 25-32.	0.6	6
361	A Moist Static Energy Framework for Zonal-Mean Storm-Track Intensity. Journals of the Atmospheric Sciences, 2018, 75, 1979-1994.	0.6	20
362	Risks for the global freshwater system at 1.5 °C and 2 °C global warming. Environmental Research Letters, 2018, 13, 044038.	2.2	66
363	Climate and health implications of future aerosol emission scenarios. Environmental Research Letters, 2018, 13, 024028.	2.2	25
364	Dynamical Core in Atmospheric Model Does Matter in the Simulation of Arctic Climate. Geophysical Research Letters, 2018, 45, 2805-2814.	1.5	11
365	ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 2018, 41, 291-307.	2.1	393
366	The role of sea-ice albedo in the climate of slowly rotating aquaplanets. Climate Dynamics, 2018, 50, 2395-2410.	1.7	15
367	Mistral and Tramontane wind systems in climate simulations from 1950 to 2100. Climate Dynamics, 2018, 50, 693-703.	1.7	14

#	Article	IF	CITATIONS
368	Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble. Climate Dynamics, 2018, 50, 777-800.	1.7	19
369	Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European Shelf?. Climate Dynamics, 2018, 50, 2637-2659.	1.7	29
370	Can CFMIP2 models reproduce the leading modes of cloud vertical structure in the CALIPSO-GOCCP observations?. Theoretical and Applied Climatology, 2018, 131, 1465-1477.	1.3	0
371	Compound summer temperature and precipitation extremes over central Europe. Theoretical and Applied Climatology, 2018, 131, 1493-1501.	1.3	59
372	Future impacts of global warming and reforestation on drought patterns over West Africa. Theoretical and Applied Climatology, 2018, 133, 647-662.	1.3	17
373	The dependence on atmospheric resolution of ENSO and related East Asian-western North Pacific summer climate variability in a coupled model. Theoretical and Applied Climatology, 2018, 133, 1207-1217.	1.3	5
374	Reconstructing East African rainfall and Indian Ocean sea surface temperatures over the last centuries using data assimilation. Climate Dynamics, 2018, 50, 3909-3929.	1.7	9
375	Impact of climate change on vector transmission of <i>Trypanosoma cruzi</i> (<scp>C</scp> hagas,) Tj ETQq1 1	0.784314	rgBT /Overld
376	Cirrus Cloud Properties as Seen by the <i>CALIPSO</i> Satellite and ECHAM-HAM Global Climate Model. Journal of Climate, 2018, 31, 1983-2003.	1.2	31
377	Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts. Climate Dynamics, 2018, 51, 1947-1970.	1.7	20
378	Uncertainties in modelling the climate impact of irrigation. Climate Dynamics, 2018, 51, 2023-2038.	1.7	14
379	Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability. Climate Dynamics, 2018, 50, 2369-2394.	1.7	59
380	Large-Scale Modeling of Absorbing Aerosols and Their Semi-Direct Effects. Atmosphere, 2018, 9, 380.	1.0	14
381	Influence of a Salt Plume Parameterization in a Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 2357-2373.	1.3	9
382	Performance Analysis and Projected Changes of Agroclimatological Indices Across West Africa Based on Highâ€Resolution Regional Climate Model Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7950-7973.	1.2	16
383	The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models. Atmospheric Chemistry and Physics, 2018, 18, 5253-5264.	1.9	15
384	Testing the consistency between changes in simulated climate and Alpine glacier length over the past millennium. Climate of the Past, 2018, 14, 1119-1133.	1.3	13
385	Prognostic parameterization of cloud ice with a single category in the aerosol-climate model ECHAM(v6.3.0)-HAM(v2.3). Geoscientific Model Development, 2018, 11, 1557-1576.	1.3	19

#	Article	IF	CITATIONS
386	Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1). Geoscientific Model Development, 2018, 11, 1971-1988.	1.3	33
387	Changes in European wind energy generation potential within a 1.5 °C warmer world. Environmental Research Letters, 2018, 13, 054032.	2.2	31
388	Bias patterns and climate change signals in GCM-RCM model chains. Environmental Research Letters, 2018, 13, 074017.	2.2	98
389	Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene. Climate of the Past, 2018, 14, 1051-1066.	1.3	21
390	Assessing the impact of aÂfuture volcanic eruption on decadal predictions. Earth System Dynamics, 2018, 9, 701-715.	2.7	9
391	Evaluation of NESMv3 and CMIP5 Models' Performance on Simulation of Asian-Australian Monsoon. Atmosphere, 2018, 9, 327.	1.0	12
392	Climate Trends Impact on the Snowfall Regime in Mediterranean Mountain Areas: Future Scenario Assessment in Sierra Nevada (Spain). Water (Switzerland), 2018, 10, 720.	1.2	22
393	How important are future marine and shipping aerosol emissions in a warming Arctic summer and autumn?. Atmospheric Chemistry and Physics, 2018, 18, 10521-10555.	1.9	28
394	Tropical climate–vegetation–fire relationships: multivariate evaluation of the land surface model JSBACH. Biogeosciences, 2018, 15, 5969-5989.	1.3	10
395	Light absorption by marine cyanobacteria affects tropical climate mean state and variability. Earth System Dynamics, 2018, 9, 1283-1300.	2.7	8
396	The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0. Geoscientific Model Development, 2018, 11, 1695-1723.	1.3	51
397	Convectively Generated Gravity Waves in High Resolution Models of Tropical Dynamics. Journal of Advances in Modeling Earth Systems, 2018, 10, 2564-2588.	1.3	20
398	Evaluating and Improving a PDF Cloud Scheme Using Highâ€Resolution Super Large Domain Simulations. Journal of Advances in Modeling Earth Systems, 2018, 10, 2245-2268.	1.3	2
399	ICONâ€A, The Atmosphere Component of the ICON Earth System Model: II. Model Evaluation. Journal of Advances in Modeling Earth Systems, 2018, 10, 1638-1662.	1.3	44
400	Two drastically different climate states on an Earth-like terra-planet. Earth System Dynamics, 2018, 9, 739-756.	2.7	3
401	Quantifying the effect of persistent dryer climates on forest productivity and implications for forest planning: a case study in northern Germany. Forest Ecosystems, 2018, 5, .	1.3	12
402	A Diagnostic <scp>PDF</scp> Cloud Scheme to Improve Subtropical Low Clouds in <scp>NCAR</scp> Community Atmosphere Model (<scp>CAM</scp> 5). Journal of Advances in Modeling Earth Systems, 2018, 10, 320-341.	1.3	29
403	Improving Seasonal Prediction of East Asian Summer Rainfall Using NESM3.0: Preliminary Results. Atmosphere, 2018, 9, 487.	1.0	10

#	Article	IF	CITATIONS
404	Blue skies over China: The effect of pollution-control on solar power generation and revenues. PLoS ONE, 2018, 13, e0207028.	1.1	11
405	Changes in Marine Fog Over the North Pacific Under Different Climates in CMIP5 Multimodel Simulations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,911.	1.2	5
406	Testing Latitudinally Dependent Explanations of the Circulation Response to Increased CO ₂ Using Aquaplanet Models. Geophysical Research Letters, 2018, 45, 9861-9869.	1.5	29
407	The Fast Response of the Tropical Circulation to CO ₂ Forcing. Journal of Climate, 2018, 31, 9903-9920.	1.2	10
408	Assessment of Eutrophication Abatement Scenarios for the Baltic Sea by Multi-Model Ensemble Simulations. Frontiers in Marine Science, 2018, 5, .	1.2	44
409	Subgrid-scale variability in clear-sky relative humidity and forcing by aerosol–radiation interactions in an atmosphere model. Atmospheric Chemistry and Physics, 2018, 18, 8589-8599.	1.9	6
410	Electromagnetic characteristics of ENSO. Ocean Science, 2018, 14, 515-524.	1.3	5
411	The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosol–climate model ECHAM6-HAM2. Atmospheric Chemistry and Physics, 2018, 18, 8807-8828.	1.9	47
412	Scale-Invariant Formulation of Momentum Diffusion for High-Resolution Atmospheric Circulation Models. Monthly Weather Review, 2018, 146, 1045-1062.	0.5	7
413	Closing the energy balance using a canopy heat capacity and storage concept – a physically based approach for the land component JSBACHv3.11. Geoscientific Model Development, 2018, 11, 3465-3479.	1.3	10
414	Modelling Hydrological Components of the Rio Maipo of Chile, and Their Prospective Evolution under Climate Change. Climate, 2018, 6, 57.	1.2	19
415	The climate of a retrograde rotating Earth. Earth System Dynamics, 2018, 9, 1191-1215.	2.7	21
416	SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0. Geoscientific Model Development, 2018, 11, 3833-3863.	1.3	52
417	Isoprene-derived secondary organic aerosol in the global aerosol–chemistry–climate model ECHAM6.3.0–HAM2.3–MOZ1.0. Geoscientific Model Development, 2018, 11, 3235-3260.	1.3	30
418	Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble. Earth System Dynamics, 2018, 9, 299-311.	2.7	29
419	Model Uncertainty in Cloud–Circulation Coupling, and Cloud-Radiative Response to Increasing CO ₂ , Linked to Biases in Climatological Circulation. Journal of Climate, 2018, 31, 10013-10020.	1.2	3
420	Implementing microscopic charcoal particles into a global aerosol–climate model. Atmospheric Chemistry and Physics, 2018, 18, 11813-11829.	1.9	10
421	The Signature of Shallow Circulations, Not Cloud Radiative Effects, in the Spatial Distribution of Tropical Precipitation. Journal of Climate, 2018, 31, 9489-9505.	1.2	11

#	Article	IF	CITATIONS
422	Global relevance of marine organic aerosol as ice nucleating particles. Atmospheric Chemistry and Physics, 2018, 18, 11423-11445.	1.9	29
423	Exploring the biogeophysical limits of global food production under different climate change scenarios. Earth System Dynamics, 2018, 9, 393-412.	2.7	23
424	A model to interpret driftwood transport in the Arctic. Quaternary Science Reviews, 2018, 191, 89-100.	1.4	7
425	Improved Seasonal Prediction of European Summer Temperatures With New Five‣ayer Soilâ€Hydrology Scheme. Geophysical Research Letters, 2018, 45, 346-353.	1.5	14
426	Atlantic Ocean Heat Transport Influences Interannual-to-Decadal Surface Temperature Predictability in the North Atlantic Region. Journal of Climate, 2018, 31, 6763-6782.	1.2	25
427	Plant functional diversity affects climate–vegetation interaction. Biogeosciences, 2018, 15, 1947-1968.	1.3	10
428	Parametric decadal climate forecast recalibration (DeFoReSt 1.0). Geoscientific Model Development, 2018, 11, 351-368.	1.3	19
429	Process-level improvements in CMIP5 models and their impact on tropical variability, the Southern Ocean, and monsoons. Earth System Dynamics, 2018, 9, 33-67.	2.7	13
430	The NUIST Earth System ModelÂ(NESM) versionÂ3: description and preliminary evaluation. Geoscientific Model Development, 2018, 11, 2975-2993.	1.3	135
431	Operation of two major reservoirs of Iran under IPCC scenarios during the XXI century. Hydrological Processes, 2018, 32, 3254-3271.	1.1	12
432	Two AMOC States in Response to Decreasing Greenhouse Gas Concentrations in the Coupled Climate Model MPI-ESM. Journal of Climate, 2018, 31, 7969-7984.	1.2	36
433	Projected Changes of Precipitation IDF Curves for Short Duration under Climate Change in Central Vietnam. Hydrology, 2018, 5, 33.	1.3	8
434	The Effects of the Spatial Distribution of Direct Anthropogenic Aerosols Radiative Forcing on Atmospheric Circulation. Journal of Climate, 2018, 31, 7129-7145.	1.2	14
435	The Global Climate System. , 2018, , 21-26.		0
436	The Last Glacial Maximum and Heinrich event I on the Iberian Peninsula: A regional climate modelling study for understanding human settlement patterns. Global and Planetary Change, 2018, 170, 34-47.	1.6	36
437	The representation of solar cycle signals in stratospheric ozone – PartÂ2: Analysis of global models. Atmospheric Chemistry and Physics, 2018, 18, 11323-11343.	1.9	18
438	Implications of accounting for management intensity on carbon and nitrogen balances of European grasslands. PLoS ONE, 2018, 13, e0201058.	1.1	9
439	The Relative Influence of Atmospheric and Oceanic Model Resolution on the Circulation of the North Atlantic Ocean in a Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 2026-2041.	1.3	50

#	Article	IF	CITATIONS
440	Global Freshwater Availability Below Normal Conditions and Population Impact Under 1.5 and 2°C Stabilization Scenarios. Geophysical Research Letters, 2018, 45, 9803-9813.	1.5	29
442	ICONâ€A, the Atmosphere Component of the ICON Earth System Model: I. Model Description. Journal of Advances in Modeling Earth Systems, 2018, 10, 1613-1637.	1.3	123
443	Assessing the Robustness of Future Extreme Precipitation Intensification in the CMIP5 Ensemble. Journal of Climate, 2018, 31, 6505-6525.	1.2	45
444	Relating Anomaly Correlation to Lead Time: Principal Component Analysis of NMME Forecasts of Summer Precipitation in China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6039-6052.	1.2	6
445	A Higherâ€resolution Version of the Max Planck Institute Earth System Model (MPlâ€ESM1.2â€HR). Journal of Advances in Modeling Earth Systems, 2018, 10, 1383-1413.	1.3	272
446	Simulation of climate characteristics and extremes of the Volta Basin using CCLM and RCA regional climate models. Theoretical and Applied Climatology, 2019, 135, 741-763.	1.3	4
447	Inferring distributional shifts of epidemiologically important North and Central American sandflies from Pleistocene to future scenarios. Medical and Veterinary Entomology, 2019, 33, 31-43.	0.7	12
448	Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations. Climate Dynamics, 2019, 52, 4771-4786.	1.7	46
449	The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector. Climate Dynamics, 2019, 52, 417-438.	1.7	21
450	Improving the simulation of the climatology of the East Asian summer monsoon by coupling the Stochastic Multicloud Model to the ECHAM6.3 atmosphere model. Climate Dynamics, 2019, 53, 2061-2081.	1.7	11
451	A Process Study on Thinning of Arctic Winter Cirrus Clouds With Highâ€Resolution ICONâ€ART Simulations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5860-5888.	1.2	15
452	Sub-cloud moist entropy curvature as a predictor for changes in the seasonal cycle of tropical precipitation. Climate Dynamics, 2019, 53, 3463-3479.	1.7	6
453	Driving mechanisms of the variability and long-term trend of the Brazil–Malvinas confluence during the 21st century. Climate Dynamics, 2019, 53, 6453-6468.	1.7	10
454	Skill and added value of the MiKlip regional decadal prediction system for temperature over Europe. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1618678.	0.8	13
455	Improving MJO simulation by enhancing the interaction between boundary layer convergence and lower tropospheric heating. Climate Dynamics, 2019, 52, 4671-4693.	1.7	26
456	Impact of SST diurnal cycle on ENSO asymmetry. Climate Dynamics, 2019, 52, 2399-2411.	1.7	11
457	Hydropower from the Alpine Cryosphere in the Era of Climate Change: The Case of the Sabbione Storage Plant in Italy. Water (Switzerland), 2019, 11, 1599.	1.2	10
458	Evaluation of CMIP5 ability to reproduce twentieth century regional trends in surface air temperature and precipitation over CONUS. Climate Dynamics, 2019, 53, 5459-5480.	1.7	4

#	Article	IF	CITATIONS
459	Surface Flux Drivers for the Slowdown of the Atlantic Meridional Overturning Circulation in a Highâ€Resolution Global Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 1349-1363.	1.3	11
460	Characterizing uncertainties in the ESA-CCI land cover map of the epoch 2010 and their impacts on MPI-ESM climate simulations. Theoretical and Applied Climatology, 2019, 137, 1587-1603.	1.3	16
461	What was the source of the atmospheric CO ₂ increase during the Holocene?. Biogeosciences, 2019, 16, 2543-2555.	1.3	24
462	Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport. Climate Dynamics, 2019, 53, 4989-5017.	1.7	42
463	Caracterização dos Diferentes Tipos de El Niño e seus Impactos na América do Sul a Partir de Dados Observados e Modelados. Revista Brasileira De Meteorologia, 2019, 34, 43-67.	0.2	11
464	Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0. Geoscientific Model Development, 2019, 12, 2635-2656.	1.3	27
465	Evaluation of FESOM2.0 Coupled to ECHAM6.3: Preindustrial and HighResMIP Simulations. Journal of Advances in Modeling Earth Systems, 2019, 11, 3794-3815.	1.3	38
466	Causes of future Mediterranean precipitation decline depend on the season. Environmental Research Letters, 2019, 14, 114017.	2.2	65
467	Projections of Alpine Snow-Cover in a High-Resolution Climate Simulation. Atmosphere, 2019, 10, 463.	1.0	24
468	The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0). Geoscientific Model Development, 2019, 12, 3541-3569.	1.3	35
469	Snowfall distribution and its response to the Arctic Oscillation: an evaluation of HighResMIP models in the Arctic using CPR/CloudSat observations. Geoscientific Model Development, 2019, 12, 3759-3772.	1.3	9
470	The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity. Geoscientific Model Development, 2019, 12, 3609-3639.	1.3	44
471	In situ constraints on the vertical distribution of global aerosol. Atmospheric Chemistry and Physics, 2019, 19, 11765-11790.	1.9	24
472	A 5 km Resolution Regional Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal, Regional and Elevation-Dependent Variations. Atmosphere, 2019, 10, 682.	1.0	26
473	Evaluation of Surface Radiative Fluxes over the Tropical Oceans in AMIP Simulations. Atmosphere, 2019, 10, 606.	1.0	5
474	Forecastâ€Oriented Assessment of Decadal Hindcast Skill for North Atlantic SST. Geophysical Research Letters, 2019, 46, 11444-11454.	1.5	15
475	Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes. Atmospheric Chemistry and Physics, 2019, 19, 10571-10589.	1.9	10
477	Developing a monthly radiative kernel for surface albedo change from satellite climatologies of Earth's shortwave radiation budget: CACK v1.0. Geoscientific Model Development, 2019, 12, 3975-3990.	1.3	19

#	Article	IF	CITATIONS
478	Testing for Dynamical Dependence: Application to the Surface Mass Balance Over Antarctica. Geophysical Research Letters, 2019, 46, 12125-12135.	1.5	17
479	Freezing Rain Events Related to Atmospheric Rivers and Associated Mechanisms for Western North America. Geophysical Research Letters, 2019, 46, 10541-10550.	1.5	11
480	Modelling mineral dust in the Central Asian region. E3S Web of Conferences, 2019, 99, 02012.	0.2	1
481	Dust impacts on radiative effects of black carbon aerosol in Central Asia. E3S Web of Conferences, 2019, 99, 04005.	0.2	0
482	Elucidating ice formation pathways in the aerosol–climate model ECHAM6-HAM2. Atmospheric Chemistry and Physics, 2019, 19, 9061-9080.	1.9	16
483	Different response of surface temperature and air temperature to deforestation in climate models. Earth System Dynamics, 2019, 10, 473-484.	2.7	46
484	Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development, 2019, 12, 3241-3281.	1.3	201
485	â€~Eastern African Paradox' rainfall decline due to shorter not less intense Long Rains. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	83
486	The Atmospheric Pathway of the Cloud-Radiative Impact on the Circulation Response to Global Warming: Important and Uncertain. Journal of Climate, 2019, 32, 3051-3067.	1.2	26
487	The importance of the representation of air pollution emissions for the modeled distribution and radiative effects of black carbon in the Arctic. Atmospheric Chemistry and Physics, 2019, 19, 11159-11183.	1.9	30
488	Role of climate model dynamics in estimated climate responses to anthropogenic aerosols. Atmospheric Chemistry and Physics, 2019, 19, 9969-9987.	1.9	12
489	Response of Indian monsoon to increase of resolution in NCAR-CAM5. Atmospheric Research, 2019, 221, 12-26.	1.8	6
490	Half a degree and rapid socioeconomic development matter for heatwave risk. Nature Communications, 2019, 10, 136.	5.8	85
491	Temporal and spatial high-resolution climate data from 1961 to 2100 for the German National Forest Inventory (NFI). Annals of Forest Science, 2019, 76, 1.	0.8	23
492	Predictability of Multiyear Trends of the Pacific Decadal Oscillation in an MPIâ€ESM Hindcast Ensemble. Geophysical Research Letters, 2019, 46, 318-325.	1.5	18
493	Monitoring changes in forestry and seasonal snow using surface albedo during 1982–2016 as an indicator. Biogeosciences, 2019, 16, 223-240.	1.3	8
494	Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565, 476-479.	13.7	409
495	Precipitation variability in the north fringe of East Asian Summer Monsoon during the past millennium and its possible driving factors. Climate Dynamics, 2019, 53, 2587-2602.	1.7	9

#	Article	IF	Citations
496	Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal. Agricultural Systems, 2019, 171, 113-125.	3.2	61
497	Clarifying the Relative Role of Forcing Uncertainties and Initial ondition Unknowns in Spreading the Climate Response to Volcanic Eruptions. Geophysical Research Letters, 2019, 46, 1602-1611.	1.5	32
498	Anthropogenic aerosol forcing – insights from multiple estimates from aerosol-climate models with reduced complexity. Atmospheric Chemistry and Physics, 2019, 19, 6821-6841.	1.9	33
499	Assessing the robustness of Antarctic temperature reconstructions over the past 2Âmillennia using pseudoproxy and data assimilation experiments. Climate of the Past, 2019, 15, 661-684.	1.3	21
500	Development and prospects of the regional MiKlip decadal prediction system over Europe: predictive skill, added value of regionalization, and ensemble size dependency. Earth System Dynamics, 2019, 10, 171-187.	2.7	10
501	The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation. Geoscientific Model Development, 2019, 12, 1643-1677.	1.3	103
502	A statistical and process-oriented evaluation of cloud radiative effects in high-resolution global models. Geoscientific Model Development, 2019, 12, 1679-1702.	1.3	6
503	CO ₂ drawdown due to particle ballasting by glacial aeolian dust: an estimate based on the ocean carbon cycle model MPIOM/HAMOCC version 1.6.2p3. Geoscientific Model Development, 2019, 12, 1869-1883.	1.3	4
504	NFIWADS: the water budget, soil moisture, and drought stress indicator database for the German National Forest Inventory (NFI). Annals of Forest Science, 2019, 76, 1.	0.8	11
505	The role of stratospheric ozone for Arctic-midlatitude linkages. Scientific Reports, 2019, 9, 7962.	1.6	28
506	Temperature Changes over the CORDEX-MENA Domain in the 21 st Century Using CMIP5 Data Downscaled with RegCM4: A Focus on the Arabian Peninsula. Advances in Meteorology, 2019, 2019, 1-18.	0.6	25
507	The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability. Journal of Advances in Modeling Earth Systems, 2019, 11, 2050-2069.	1.3	288
508	A bootstrap-based differential split-sample test to assess the transferability of conceptual rainfall-runoff models under past and future climate variability. Journal of Hydrology, 2019, 575, 470-486.	2.3	32
509	Atlantic Inflow to the North Sea Modulated by the Subpolar Gyre in a Historical Simulation With MPIâ€ESM. Journal of Geophysical Research: Oceans, 2019, 124, 1807-1826.	1.0	15
510	Evaluating Climate Model Simulations of the Radiative Forcing and Radiative Response at Earth's Surface. Journal of Climate, 2019, 32, 4089-4102.	1.2	7
511	Performance evaluation of AR5-CMIP5 models for the representation of seasonal and multi-annual variability of precipitation in Brazilian hydropower sector basins under RCP8.5 scenario. Hydrological Sciences Journal, 2019, 64, 1279-1296.	1.2	12
512	Characterization of Air and Ground Temperature Relationships within the CMIP5 Historical and Future Climate Simulations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3903-3929.	1.2	25
513	Developments in the MPIâ€M Earth System Model version 1.2 (MPIâ€ESM1.2) and Its Response to Increasing CO ₂ . Journal of Advances in Modeling Earth Systems, 2019, 11, 998-1038.	1.3	582

#	Article	IF	CITATIONS
514	Bay of Bengalâ€East Asiaâ€Pacific Teleconnection in Boreal Summer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4395-4412.	1.2	13
515	100 Years of Earth System Model Development. Meteorological Monographs, 2019, 59, 12.1-12.66.	5.0	48
516	Tropical rainfall predictions from multiple seasonal forecast systems. International Journal of Climatology, 2019, 39, 974-988.	1.5	45
517	Initialization and Ensemble Generation for Decadal Climate Predictions: A Comparison of Different Methods. Journal of Advances in Modeling Earth Systems, 2019, 11, 149-172.	1.3	28
518	Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. Climate Dynamics, 2019, 52, 6817-6846.	1.7	57
519	Evaluating models' response of tropical low clouds to SST forcings using CALIPSO observations. Atmospheric Chemistry and Physics, 2019, 19, 2813-2832.	1.9	34
520	On the low-frequency variability of wintertime Euro-Atlantic planetary wave-breaking. Climate Dynamics, 2019, 52, 2431-2450.	1.7	4
521	Seasonal predictability of European summer climate re-assessed. Climate Dynamics, 2019, 53, 3039-3056.	1.7	15
522	Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model. Climate Dynamics, 2019, 52, 4305-4328.	1.7	31
523	Estimation of future climate change in cold weather areas with the LARS-WG model under CMIP5 scenarios. Theoretical and Applied Climatology, 2019, 137, 3027-3039.	1.3	33
524	Enhanced North Pacific deep-ocean stratification by stronger intermediate water formation during Heinrich Stadial 1. Nature Communications, 2019, 10, 656.	5.8	37
525	Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations. Climate Dynamics, 2019, 53, 1547-1565.	1.7	54
526	Revisiting the Impact of Stochastic Multicloud Model on the MJO Using Low-Resolution ECHAM6.3 Atmosphere Model. Journal of the Meteorological Society of Japan, 2019, 97, 977-993.	0.7	11
527	Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations. Atmospheric Chemistry and Physics, 2019, 19, 15415-15429.	1.9	16
528	Water isotopes – climate relationships for the mid-Holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM. Climate of the Past, 2019, 15, 1913-1937.	1.3	41
529	A regional atmosphere–ocean climate system model (CCLMv5.0clm7-NEMOv3.3-NEMOv3.6) over Europe including three marginal seas: on its stability and performance. Geoscientific Model Development, 2019, 12, 5077-5095.	1.3	14
530	Uncertainties in Projections of the Baltic Sea Ecosystem Driven by an Ensemble of Global Climate Models. Frontiers in Earth Science, 2019, 6, .	0.8	52
531	Unanticipated Side Effects of Stratospheric Albedo Modification Proposals Due to Aerosol Composition and Phase. Scientific Reports, 2019, 9, 18825.	1.6	5

		CITATION REPORT		
#	Article		IF	CITATIONS
532	No Cookie for Climate Change. Geophysical Research Letters, 2019, 46, 14751-14761.		1.5	8
533	ENSO Modulation of the QBO: Results from MIROC Models with and without Nonorog Wave Parameterization. Journals of the Atmospheric Sciences, 2019, 76, 3893-3917.	raphic Gravity	0.6	11
534	Sea Ice Targeted Geoengineering Can Delay Arctic Sea Ice Decline but not Global Warn Future, 2019, 7, 1296-1306.	ning. Earth's	2.4	13
535	Mechanisms of Future Predicted Changes in the Zonal Mean Mid-Latitude Circulation. Change Reports, 2019, 5, 345-357.	Current Climate	2.8	53
536	The Convection Connection: How Ocean Feedbacks Affect Tropical Mean Moisture and Propagation. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11910-1193	MJO }1.	1.2	28
537	Human and climate global-scale imprint on sediment transfer during the Holocene. Pro National Academy of Sciences of the United States of America, 2019, 116, 22972-229	ceedings of the 76.	3.3	91
538	Evaluation of CMIP5 models for west and southwest Iran using TOPSIS-based method. Applied Climatology, 2019, 137, 533-543.	Theoretical and	1.3	47
539	Nonlocal Effects Dominate the Global Mean Surface Temperature Response to the Biog Effects of Deforestation. Geophysical Research Letters, 2019, 46, 745-755.	çeophysical	1.5	77
540	The Role of Hadley Circulation and Lapse-Rate Changes for the Future European Summ Journal of Climate, 2019, 32, 385-404.	er Climate.	1.2	50
541	Edge directionality properties in complex spherical networks. Physical Review E, 2019,	99, 012301.	0.8	11
542	The Asymmetry of Vertical Velocity in Current and Future Climate. Geophysical Researc 46, 374-382.	h Letters, 2019,	1.5	13
543	An effective drift correction for dynamical downscaling of decadal global climate predic Climate Dynamics, 2019, 52, 1343-1357.	tions.	1.7	8
544	Influences of spawning timing, water temperature, and climatic warming on early life h phenology in western Alaska sockeye salmon. Canadian Journal of Fisheries and Aquati 76, 123-135.		0.7	16
545	Analysis of Alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations. Climate Dynamics, 2020, 55, 61-75.		1.7	42
546	Evaluation and projected changes of precipitation statistics in convection-permitting V simulations over Central Europe. Climate Dynamics, 2020, 55, 325-341.	VRF climate	1.7	59
547	Assessing the accuracy and efficiency of longwave radiative transfer models involving s effect with cloud optical property parameterizations. Journal of Quantitative Spectrosc Radiative Transfer, 2020, 240, 106683.		1.1	10
548	Effects of a stochastic multicloud parameterization on the simulated Asianâ€Australiar rainfall in an AGCM. International Journal of Climatology, 2020, 40, 2580-2598.	ı monsoon	1.5	4
549	A strategy to assess the uncertainty of a climate change impact on extreme hydrologic semi-arid Dehbar catchment in Iran. Theoretical and Applied Climatology, 2020, 139, 3	al events in the 89-402.	1.3	94

#	Article	IF	Citations
" 550	Improved leading modes of interannual variability of the Asian-Australian monsoon in an AGCM via incorporating a stochastic multicloud model. Climate Dynamics, 2020, 54, 759-775.	1.7	3
551	Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations. Climate Dynamics, 2020, 54, 1113-1130.	1.7	24
552	Evaluation of regional climate model simulated rainfall over Indonesia and its application for downscaling future climate projections. International Journal of Climatology, 2020, 40, 2026-2047.	1.5	8
553	Changes in Extreme Climate Events in China Under 1.5 °C–4 °C Global Warming Targets: Projections Using an Ensemble of Regional Climate Model Simulations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031057.	1.2	51
554	Tropical Variability Simulated in ICONâ€A With a Spectral Cumulus Parameterization. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001732.	1.3	10
555	Quantification of the Arctic Sea Iceâ€Driven Atmospheric Circulation Variability in Coordinated Large Ensemble Simulations. Geophysical Research Letters, 2020, 47, e2019GL085397.	1.5	29
556	Atmospheric Diffusivity: A New Energetic Framework for Understanding the Midlatitude Circulation Response to Climate Change. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031206.	1.2	5
557	Flowâ€dependent stochastic coupling for climate models with high oceanâ€ŧoâ€atmosphere resolution ratio. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 284-300.	1.0	5
558	Adapting water resources systems to climate change in tropical areas: Ecuadorian coast. Science of the Total Environment, 2020, 703, 135554.	3.9	13
559	Radiative effects of daily cycle of cloud frequency in past and future climates. Climate Dynamics, 2020, 54, 1625-1637.	1.7	10
560	Hydropower potential in the Kabul River under climate change scenarios in the XXI century. Theoretical and Applied Climatology, 2020, 139, 1415-1434.	1.3	22
561	Modelling European small pelagic fish distribution: Methodological insights. Ecological Modelling, 2020, 416, 108902.	1.2	28
562	Estimating the Effective Radiative Forcing of Contrail Cirrus. Journal of Climate, 2020, 33, 1991-2005.	1.2	26
563	Predictability of Extratropical Upper-Tropospheric Circulation in the Southern Hemisphere by Its Main Modes of Variability. Journal of Climate, 2020, 33, 1405-1421.	1.2	5
564	Reducing Flood Risk in Changing Environments: Optimal Location and Sizing of Stormwater Tanks Considering Climate Change. Water (Switzerland), 2020, 12, 2491.	1.2	16
565	Hydropower Potential of Run of River Schemes in the Himalayas under Climate Change: A Case Study in the Dudh Koshi Basin of Nepal. Water (Switzerland), 2020, 12, 2625.	1.2	9
566	Global temperature modes shed light on the Holocene temperature conundrum. Nature Communications, 2020, 11, 4726.	5.8	71
567	Hydrological Cycle Changes Explain Weak Snowball Earth Storm Track Despite Increased Surface Baroclinicity. Geophysical Research Letters, 2020, 47, e2020GL089866.	1.5	6

#	Article	IF	CITATIONS
568	Multiscale precipitation variability and extremes over South America: analysis of future changes from a set of CORDEX regional climate model simulations. Climate Dynamics, 2020, 55, 2089-2106.	1.7	24
569	The GAMIL3: Model Description and Evaluation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032574.	1.2	13
570	Estimating the malaria transmission over the Indian subcontinent in a warming environment using a dynamical malaria model. Journal of Water and Health, 2020, 18, 358-374.	1.1	4
571	The relative role of glacial refugia and longstanding barriers in the diversification of a fossorial squamate. Systematics and Biodiversity, 2020, 18, 447-463.	0.5	5
572	Developing a Cloud Scheme With Prognostic Cloud Fraction and Two Moment Microphysics for ECHAMâ€HAM. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001824.	1.3	17
573	Simulations for CMIP6 With the AWI Climate Model AWI Mâ€1â€1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002009.	1.3	72
574	Increasing Resolution and Resolving Convection Improve the Simulation of Cloudâ€Radiative Effects Over the North Atlantic. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032667.	1.2	11
575	Testing a Physical Hypothesis for the Relationship Between Climate Sensitivity and Doubleâ€ITCZ Bias in Climate Models. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001999.	1.3	4
576	Detectability of Artificial Ocean Alkalinization and Stratospheric Aerosol Injection in MPlâ€ESM. Earth's Future, 2020, 8, e2020EF001634.	2.4	3
577	Poleward Shift of Northern Subtropics in Winter: Time of Emergence of Zonal Versus Regional Signals. Geophysical Research Letters, 2020, 47, e2020GL089325.	1.5	9
578	Irrigation and hydrometeorological extremes. Climate Dynamics, 2020, 55, 1521-1537.	1.7	8
579	Deep water [CO32â^'] and circulation in the south China sea over the last glacial cycle. Quaternary Science Reviews, 2020, 243, 106499.	1.4	7
580	AMOC Recovery in a Multicentennial Scenario Using a Coupled Atmosphereâ€Oceanâ€ice Sheet Model. Geophysical Research Letters, 2020, 47, e2019GL086810.	1.5	14
581	Improving the ocean and atmosphere in a coupled ocean–atmosphere model by assimilating satellite seaâ€surface temperature and subsurface profile data. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 4014-4029.	1.0	11
582	Projected changes to severe thunderstorm environments as a result of twenty-first century warming from RegCM CORDEX-CORE simulations. Climate Dynamics, 2021, 57, 1595-1613.	1.7	15
583	Abrupt Climate and Weather Changes Across Time Scales. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003782.	1.3	51
584	Horizontal Temperature Fluxes in the Arctic in CMIP5 Model Results Analyzed with Self-Organizing Maps. Atmosphere, 2020, 11, 251.	1.0	4
585	COSMO-CLM Performance and Projection of Daily and Hourly Temperatures Reaching 50 °C or Higher in Southern Iraq. Atmosphere, 2020, 11, 1155.	1.0	0

#	Article	IF	CITATIONS
586	Toward a Data Assimilation System for Seamless Sea Ice Prediction Based on the AWI Climate Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001937.	1.3	16
587	Quantification and uncertainty of the impact of climate change on river discharge and sediment yield in the Dehbar river basin in Iran. Journal of Soils and Sediments, 2020, 20, 2977-2996.	1.5	43
588	Will dairy cattle production in West Africa be challenged by heat stress in the future?. Climatic Change, 2020, 161, 665-685.	1.7	12
589	New Modified and Extended Stability Functions for the Stable Boundary Layer based on SHEBA and Parametrizations of Bulk Transfer Coefficients for Climate Models. Journals of the Atmospheric Sciences, 2020, 77, 2687-2716.	0.6	23
590	The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Climate of the Past, 2020, 16, 117-140.	1.3	41
591	Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Science Advances, 2020, 6, eaaz6433.	4.7	33
592	Tuning the MPlâ€ESM1.2 Global Climate Model to Improve the Match With Instrumental Record Warming by Lowering Its Climate Sensitivity. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002037.	1.3	29
593	Will climate change make Chinese people more comfortable? A scenario analysis based on the weather preference index. Environmental Research Letters, 2020, 15, 084028.	2.2	5
594	Linkage between dust cycle and loess of the Last Glacial Maximum in Europe. Atmospheric Chemistry and Physics, 2020, 20, 4969-4986.	1.9	35
595	Robustness of the Link between Precipitation in North Africa and Standard Modes of Atmospheric Variability during the Last Millennium. Climate, 2020, 8, 62.	1.2	7
596	Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions. Atmospheric Chemistry and Physics, 2020, 20, 1607-1626.	1.9	12
597	Global response of parameterised convective cloud fields to anthropogenic aerosol forcing. Atmospheric Chemistry and Physics, 2020, 20, 4445-4460.	1.9	2
598	Extratropical cyclones over the North Atlantic and western Europe during the Last Glacial Maximum and implications for proxy interpretation. Climate of the Past, 2020, 16, 611-626.	1.3	33
599	Improved historical simulation by enhancing moist physical parameterizations in the climate system model NESM3.0. Climate Dynamics, 2020, 54, 3819-3840.	1.7	18
600	Changes of Decadal SST Variations in the Subpolar North Atlantic under Strong CO2 Forcing as an Indicator for the Ocean Circulation's Contribution to Atlantic Multidecadal Variability. Journal of Climate, 2020, 33, 3213-3228.	1.2	11
601	Impacts of atmosphere–sea ice–ocean interaction on Southern Ocean deep convection in a climate system model. Climate Dynamics, 2020, 54, 4075-4093.	1.7	9
602	On the Time Evolution of the Arctic Oscillation and Related Wintertime Phenomena under Different Forcing Scenarios in an Ensemble Approach. Journal of Climate, 2020, 33, 3107-3124.	1.2	19
603	Early-Holocene simulations using different forcings and resolutions in AWI-ESM. Holocene, 2020, 30, 996-1015.	0.9	29

#	Article	IF	CITATIONS
604	Oceanic CO ₂ outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach. Biogeosciences, 2020, 17, 55-88.	1.3	51
605	Effects of black carbon mitigation on Arctic climate. Atmospheric Chemistry and Physics, 2020, 20, 5527-5546.	1.9	15
606	Simulating future salinity dynamics in a coastal marshland under different climate scenarios. Vadose Zone Journal, 2020, 19, e20008.	1.3	2
607	Impact of ocean-atmosphere coupling on regional climate: the Iberian Peninsula case. Climate Dynamics, 2020, 54, 4441-4467.	1.7	20
608	On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic. Climate Dynamics, 2020, 54, 4733-4757.	1.7	10
609	Initiation of a stable convective hydroclimatic regime in Central America circa 9000 years BP. Nature Communications, 2020, 11, 716.	5.8	29
610	Niche change analysis as a tool to inform management of two invasive species in Eastern Africa. Ecosphere, 2020, 11, e02987.	1.0	26
611	A phase-space consideration of changing climate-PDF. Climate Dynamics, 2020, 54, 2633-2662.	1.7	2
612	Climate models disagree on the sign of total radiative feedback in the Arctic. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1696139.	0.8	25
613	To what extent can cirrus cloud seeding counteract global warming?. Environmental Research Letters, 2020, 15, 054002.	2.2	22
614	Arctic Clouds Simulated by a Multiscale Modeling Framework and Comparisons With Observations and Conventional GCMs. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030522.	1.2	3
615	Evaluation of Adaptation Scenarios for Climate Change Impacts on Agricultural Water Allocation Using Fuzzy MCDM Methods. Water Resources Management, 2020, 34, 1093-1110.	1.9	24
616	Future Scenarios of Soil Erosion in the Alps under Climate Change and Land Cover Transformations Simulated with Automatic Machine Learning. Climate, 2020, 8, 28.	1.2	20
617	Impact of Subgrid Variation of Water Vapor on Longwave Radiation in a General Circulation Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001926.	1.3	1
618	Precipitation over East Asia simulated by ECHAM6.3 with different schemes of cumulus convective parameterization. Climate Dynamics, 2020, 54, 4233-4261.	1.7	8
619	Predictability Horizons in the Global Carbon Cycle Inferred From a Perfectâ€Model Framework. Geophysical Research Letters, 2020, 47, e2019GL085311.	1.5	12
620	How useful is snow accumulation in reconstructing surface air temperature in Antarctica? A study combining ice core records and climate models. Cryosphere, 2020, 14, 1187-1207.	1.5	19
621	Genotypingâ€byâ€sequencing and ecological niche modeling illuminate phylogeography, admixture, and Pleistocene range dynamics in quaking aspen (<i>Populus tremuloides</i>). Ecology and Evolution, 2020, 10, 4609-4629.	0.8	13

#	Article	IF	CITATIONS
622	Equatorial Indian Ocean Response during Extreme Indian Summer Monsoon Years Using Reliable CMIP5 Models. Ocean Science Journal, 2020, 55, 17-31.	0.6	1
623	Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations. Climate Dynamics, 2021, 57, 1463-1488.	1.7	47
624	Emergence of robust anthropogenic increase of heat stress-related variables projected from CORDEX-CORE climate simulations. Climate Dynamics, 2021, 57, 1629-1644.	1.7	13
625	Human existence potential in Europe during the Last Glacial Maximum. Quaternary International, 2021, 581-582, 7-27.	0.7	12
626	European small pelagic fish distribution under global change scenarios. Fish and Fisheries, 2021, 22, 212-225.	2.7	43
627	Response of summer extreme precipitation over East Asia during the mid-Holocene versus future global warming. Clobal and Planetary Change, 2021, 197, 103398.	1.6	13
628	Datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP) Simulations with the Coupled Model CAS FGOALS-f3-L. Advances in Atmospheric Sciences, 2021, 38, 329-339.	1.9	15
629	Interdecadal Variation of Early Spring Rainfall Over the Southeastern Edge of the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	11
630	Dipolar mode of precipitation changes between north China and the Yangtze River Valley existed over the entire Holocene: Evidence from the sediment record of Nanyi Lake. International Journal of Climatology, 2021, 41, 1667-1681.	1.5	34
631	Climatic yield potential of Japonica â€type rice in the Korean Peninsula under RCP scenarios using the ensemble of multiâ€GCM and multiâ€RCM chains. International Journal of Climatology, 2021, 41, E1287.	1.5	5
632	Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods. Climate Dynamics, 2021, 57, 1425-1443.	1.7	79
633	ENSO teleconnections in an ensemble of CORDEX-CORE regional simulations. Climate Dynamics, 2021, 57, 1445-1461.	1.7	6
634	Centennialâ€ S cale Shifts in Storm Frequency Captured in Paleohurricane Records From The Bahamas Arise Predominantly From Random Variability. Geophysical Research Letters, 2021, 48, e2020GL091145.	1.5	20
635	Reevaluating the impacts of oceanic vertical resolution on the simulation of Madden–Julian Oscillation eastward propagation in a climate system model. Climate Dynamics, 2021, 56, 2259-2278.	1.7	2
636	DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate of the Past, 2021, 17, 203-227.	1.3	71
637	Extreme Subâ€Hourly Precipitation Intensities Scale Close to the Clausius lapeyron Rate Over Europe. Geophysical Research Letters, 2021, 48, e2020GL089506.	1.5	25
638	Climate Impacts of COVIDâ€19 Induced Emission Changes. Geophysical Research Letters, 2021, 48, e2020GL091805.	1.5	38
639	An evaluation of the Arctic clouds and surface radiative fluxes in CMIP6 models. Acta Oceanologica Sinica, 2021, 40, 85-102.	0.4	8

#	Article	IF	CITATIONS
640	A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline. Natural Hazards and Earth System Sciences, 2021, 21, 171-186.	1.5	35
641	Prediction of the Variability of Changes in the Intensity and Frequency of Climate Change Reinforced Multi-Day Extreme Precipitation in the North-Central Vietnam Using General Circulation Models and Generalized Extreme Value Distribution Method. Frontiers in Earth Science, 2021, 8, .	0.8	1
642	Very long-period oscillations in the atmosphere (0–110 km). Atmospheric Chemistry and Physics, 2021, 21, 1593-1611.	1.9	2
643	Future projections in the climatology of global low-level jets from CORDEX-CORE simulations. Climate Dynamics, 2021, 57, 1551-1569.	1.7	20
644	Assimilating aerosol optical properties related to size and absorption from POLDER/PARASOL with an ensemble data assimilation system. Atmospheric Chemistry and Physics, 2021, 21, 2637-2674.	1.9	21
645	Sensitivity of ENSO Simulation to the Convection Schemes in the NESM3 Climate System Model: Atmospheric Processes. Frontiers in Earth Science, 2021, 9, .	0.8	1
646	Entrainment and Its Dependency on Environmental Conditions and Convective Organization in Convection-Permitting Simulations. Monthly Weather Review, 2021, 149, 537-550.	0.5	8
647	Inferring Distributional Shifts of Asian Giant Hornet Vespa mandarinia Smith in Climate Change Scenarios. Neotropical Entomology, 2021, 50, 673-676.	0.5	8
648	ICON in Climate Limited-area Mode (ICON release version 2.6.1): a new regional climate model. Geoscientific Model Development, 2021, 14, 985-1005.	1.3	10
649	Nonstationarity of the link between the Tropics and the summer East Atlantic pattern. Atmospheric Science Letters, 2021, 22, e1026.	0.8	5
650	Climate change projection over the Tibetan Plateau based on a set of RCM simulations. Advances in Climate Change Research, 2021, 12, 313-321.	2.1	31
651	Expansion of drylands in China with an additional half a degree warming. International Journal of Climatology, 2021, 41, 3953-3967.	1.5	0
652	European cephalopods distribution under climate-change scenarios. Scientific Reports, 2021, 11, 3930.	1.6	19
653	Effects of transient processes for thermal simulations of the Central European Basin. Geoscientific Model Development, 2021, 14, 1699-1719.	1.3	2
654	Impact of Prospective Climate Change Scenarios upon Hydropower Potential of Ethiopia in GERD and GIBE Dams. Water (Switzerland), 2021, 13, 716.	1.2	13
655	Changes in fire weather climatology under 1.5 °C and 2.0 °C warming. Environmental Research Letters, 2021, 16, 034058.	2.2	14
656	Analysis of the surface mass balance for deglacial climate simulations. Cryosphere, 2021, 15, 1131-1156.	1.5	8
658	Sensitivity of QBO teleconnection to model circulation biases. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 2147-2159.	1.0	7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
659	Comparing different generations of idealized solar geoengineering simulations in the Geoe Model Intercomparison Project (GeoMIP). Atmospheric Chemistry and Physics, 2021, 21, 4		1.9	22
660	Regional Climate Model Biases, Their Dependence on Synoptic Circulation Biases and the F Bias Adjustment: A Processâ€Oriented Evaluation of the Austrian Regional Climate Projecti of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032824.	otential for ons. Journal	1.2	14
661	Substantial Climate Response outside the Target Area in an Idealized Experiment of Region Management. Climate, 2021, 9, 66.	al Radiation	1.2	2
662	Tropical cyclone genesis over the western North Pacific impacted by SST anomalies from o while El Niño decays. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 2	ther basins 580-2596.	1.0	5
663	The influence of the Atlantic multidecadal oscillation on the interdecadal variability of wint precipitation in the Greater Mekong Subregion. International Journal of Climatology, 2021, 5072-5083.		1.5	7
664	How Asian aerosols impact regional surface temperatures across the globe. Atmospheric C and Physics, 2021, 21, 5865-5881.	hemistry	1.9	9
666	Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM CORDEX-CORE simulations. Climate Dynamics, 2021, 57, 1507-1531.	4	1.7	14
667	Surface and Tropospheric Response of North Atlantic Summer Climate from Paleoclimate S of the Past Millennium. Atmosphere, 2021, 12, 568.	imulations	1.0	1
668	Effect of Resolving Ocean Eddies on the Transient Response of Global Mean Surface Tempe Abrupt 4xCO ₂ Forcing. Geophysical Research Letters, 2021, 48, e2020GL092	erature to 049.	1.5	1
669	Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric cirresponse to ozone depletion. Atmospheric Chemistry and Physics, 2021, 21, 5777-5806.	rculation	1.9	15
670	The connection of east Asia and southwestern north America in climate change mode since glacial maximum at various timescales. Quaternary Science Reviews, 2021, 260, 106935.	? the last	1.4	2
671	Opposite Responses of the Dry and Moist Eddy Heat Transport Into the Arctic in the PAMIF Geophysical Research Letters, 2021, 48, e2020GL089990.	Experiments.	1.5	11
672	Changes in polar amplification in response to increasing warming in CMIP6. Atmospheric a Science Letters, 2021, 14, 100043.	nd Oceanic	0.5	16
673	A data assimilation approach to last millennium temperature field reconstruction using a lin high-sensitivity proxy network. Journal of Climate, 2021, , 1-64.	nited	1.2	7
674	Coupled climate-ice sheet modelling of MIS-13 reveals a sensitive Cordilleran Ice Sheet. Glc Planetary Change, 2021, 200, 103474.	bal and	1.6	2
675	Projection of the Future Changes in Tropical Cyclone Activity Affecting East Asia over the V North Pacific Based on Multi-RegCM4 Simulations. Advances in Atmospheric Sciences, 202	Vestern 2, 39, 284-303.	1.9	12
676	Weather extremes over Europe under 1.5 and 2.0 °C global warming from HAPPI reg ensemble simulations. Earth System Dynamics, 2021, 12, 457-468.	ional climate	2.7	8
677	Volcanism and palaeoclimate change drive diversification of the world's largest whip spider (Amblypygi). Molecular Ecology, 2021, 30, 2872-2890.		2.0	12

#	Article	IF	CITATIONS
678	Comparing the Radiative Forcings of the Anthropogenic Aerosol Emissions From Chile and Mexico. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033364.	1.2	3
679	Comparison of ocean vertical mixing schemes in the Max Planck Institute Earth System Model (MPI-ESM1.2). Geoscientific Model Development, 2021, 14, 2317-2349.	1.3	11
680	A missing source of uncertainty: forcing-dependent model parameter sensitivity. Environmental Research Communications, 2021, 3, 051006.	0.9	1
681	Seasonal prediction of the boreal winter stratosphere. Climate Dynamics, 2022, 58, 2109-2130.	1.7	16
682	Interactions of Largeâ€5cale Dynamics and Maddenâ€Julian Oscillation Propagation in Multiâ€Model Simulations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033988.	1.2	2
683	Extending legacy climate models by adaptive mesh refinement for single-component tracer transport: a case study with ECHAM6-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0). Geoscientific Model Development, 2021, 14, 2289-2316.	1.3	2
684	ESM-Tools version 5.0: a modular infrastructure for stand-alone and coupled Earth system modelling (ESM). Geoscientific Model Development, 2021, 14, 4051-4067.	1.3	5
685	The Arctic Polar Vortex Response to Volcanic Forcing of Different Strengths. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034450.	1.2	12
686	An underestimated negative cloud feedback from cloud lifetime changes. Nature Climate Change, 2021, 11, 508-513.	8.1	51
687	Projected economic losses from milk performance detriments under heat stress in Quebec dairy herds. Canadian Journal of Animal Science, 2021, 101, 242-256.	0.7	5
688	Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species. Atmospheric Chemistry and Physics, 2021, 21, 8615-8635.	1.9	14
689	The unidentified eruption of 1809: a climatic cold case. Climate of the Past, 2021, 17, 1455-1482.	1.3	19
690	Ice microphysical processes exert a strong control on the simulated radiative energy budget in the tropics. Communications Earth & Environment, 2021, 2, .	2.6	5
691	Skilful prediction of cod stocks in the North and Barents Sea a decade in advance. Communications Earth & Environment, 2021, 2, .	2.6	14
692	Ocean Salinity changes in the global ocean under global warming conditions Part 1: Mechanisms in a strong warming scenario. Journal of Climate, 2021, , 1-56.	1.2	6
693	Spatial heterogeneity of aerosol induced rapid adjustments on precipitation response over India: a general circulation model study with ECHAM6-HAM2. Climate Dynamics, 0, , 1.	1.7	0
694	Efficient Bayesian inference for large chaotic dynamical systems. Geoscientific Model Development, 2021, 14, 4319-4333.	1.3	6
696	On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations. Atmospheric Chemistry and Physics, 2021, 21, 10179-10197.	1.9	8

#	Article	IF	CITATIONS
698	The impact of COVID-19 lockdown measures on the Indian summer monsoon. Environmental Research Letters, 2021, 16, 074054.	2.2	25
699	A role of asynchrony of seasons in explaining genetic differentiation in a Neotropical toad. Heredity, 2021, 127, 363-372.	1.2	7
700	Recalibrating decadal climate predictions – what is an adequate model for the drift?. Geoscientific Model Development, 2021, 14, 4335-4355.	1.3	5
701	Tropical cloud-radiative changes contribute to robust climate change-induced jet exit strengthening over Europe during boreal winter. Environmental Research Letters, 2021, 16, 084041.	2.2	3
702	Surface temperature variability in climate models with large and small internal climate variability. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3004-3016.	1.0	1
703	Past and Future Climate Variability Uncertainties in the Global Carbon Budget Using the MPI Grand Ensemble. Global Biogeochemical Cycles, 2021, 35, e2021GB007019.	1.9	7
704	Impacts of Arctic Sea Ice on Cold Season Atmospheric Variability and Trends Estimated from Observations and a Multi-model Large Ensemble. Journal of Climate, 2021, , 1-64.	1.2	11
705	Evaluation and projection of drought over India using high-resolution regional coupled model ROM. Climate Dynamics, 2022, 58, 503-521.	1.7	7
706	Subtle influence of the Atlantic Meridional Overturning CirculationÂ(AMOC) on seasonal sea surface temperature (SST) hindcast skill in the North Atlantic. Weather and Climate Dynamics, 2021, 2, 739-757.	1.2	1
707	Improving seasonal predictions of meteorological drought by conditioning on ENSO states. Environmental Research Letters, 2021, 16, 094027.	2.2	2
708	COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review. Geoscientific Model Development, 2021, 14, 5125-5154.	1.3	55
709	Applying an isotope-enabled regional climate model over the Greenland ice sheet: effect of spatial resolution on model bias. Climate of the Past, 2021, 17, 1685-1699.	1.3	4
710	Forcing convection to aggregate using diabatic heating perturbations. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002579.	1.3	4
711	Added value of convection-permitting simulations for understanding future urban humidity extremes: case studies for Berlin and its surroundings. Weather and Climate Extremes, 2021, 33, 100367.	1.6	7
712	High-resolution marine data and transient simulations support orbital forcing of ENSO amplitude since the mid-Holocene. Quaternary Science Reviews, 2021, 268, 107125.	1.4	20
713	Quantification of the hydrological consequences of climate change in a typical West African catchment using flow duration curves. Journal of Water and Climate Change, 2022, 13, 26-42.	1.2	6
714	Increasing the Depth of a Land Surface Model. Part I: Impacts on the Subsurface Thermal Regime and Energy Storage. Journal of Hydrometeorology, 2021, 22, 3211-3230.	0.7	10
715	Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments. Atmospheric Chemistry and Physics, 2021, 21, 13425-13442.	1.9	13

#	Article	IF	CITATIONS
716	Improving predictions of invasive fish ranges combining functional and ecological traits with environmental suitability under climate change scenarios. Global Change Biology, 2021, 27, 6086-6102.	4.2	14
717	Minimal impact of model biases on Northern Hemisphere El Niño–Southern Oscillation teleconnections. Weather and Climate Dynamics, 2021, 2, 913-925.	1.2	3
718	Future Climatic Projections and Hydrological Responses in the Upper Beijiang River Basin of South China Using Bias orrected RegCM 4.6 Data. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034550.	1.2	6
719	Atmosphere–ocean–aerosol–chemistry–climate model SOCOLv4.0: description and evaluation. Geoscientific Model Development, 2021, 14, 5525-5560.	1.3	16
720	Increasing the Depth of a Land Surface Model. Part II: Temperature Sensitivity to Improved Subsurface Thermodynamics and Associated Permafrost Response. Journal of Hydrometeorology, 2021, 22, 3231-3254.	0.7	11
721	Modellgestützte Wirkungsanalysen ausgewälter Maßnahmen und Strategien. , 2021, , 143-297.		0
722	Single-locus species delimitation and ecological niche modelling provide insights into the evolution, historical distribution and taxonomy of the Pacific chorus frogs. Biological Journal of the Linnean Society, 2021, 132, 612-633.	0.7	2
723	Enabling Adaptive Mesh Refinement for Single Components in ECHAM6. Lecture Notes in Computer Science, 2018, , 56-68.	1.0	1
724	On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. , 2014, 42, 2603.		1
725	Sky island diversification in the Merodon rufus group (Diptera, Syrphidae)—recent vicariance in south-east Europe. Organisms Diversity and Evolution, 2020, 20, 345-368.	0.7	8
726	Global and regional trends of atmospheric sulfur. Scientific Reports, 2019, 9, 953.	1.6	166
727	Beyond Forcing Scenarios: Predicting Climate Change through Response Operators in a Coupled General Circulation Model. Scientific Reports, 2020, 10, 8668.	1.6	25
728	Global aridity changes due to differences in surface energy and water balance between 1.5 ŰC and 2 ŰC warming. Environmental Research Letters, 2020, 15, 0940a7.	2.2	13
729	Changes in building climate zones over China based on high-resolution regional climate projections. Environmental Research Letters, 2020, 15, 114045.	2.2	8
730	Modeling of water isotopes with model ECHAM6-wiso in nudging mode with reanalysis ERA5. , 2018, , .		1
731	Evaluation of forecasts by accuracy and spread in the MiKlip decadal climate prediction system. Meteorologische Zeitschrift, 2016, 25, 631-643.	0.5	24
733	Diagnostic Metrics for Evaluating Model Simulations of the East Asian Monsoon. Journal of Climate, 2020, 33, 1777-1801.	1.2	14
734	Siberian Snow Forcing in a Dynamically Bias-Corrected Model. Journal of Climate, 2020, 33, 10455-10467.	1.2	6

ARTICLE IF CITATIONS # A Socio-Ecological Approach for Identifying and Contextualising Spatial Ecosystem-Based Adaptation 735 1.1 32 Priorities at the Sub-National Level. PLoS ONE, 2016, 11, e0155235. Simulation Skills of RegCM4 forced by ECHAM6 for Fine-scale Regional Climate over South Korea. 0.1 Journal of Climate Research, 2014, 9, 283-302. The Added Value of Large-eddy and Storm-resolving Models for Simulating Clouds and Precipitation. 738 0.7 93 Journal of the Meteorological Society of Japan, 2020, 98, 395-435. Projected river discharge in the Euphrates–Tigris Basin from a hydrological discharge model forced with RCM and GCM outputs. Climate Research, 2015, 62, 131-147. The radiative impact of Nordic anthropogenic black carbon. Tellus, Series B: Chemical and Physical 740 0.8 4 Meteorology, 2016, 68, 27428. Assessment of Climate Change Impact on Water Resources in the Upper Senegal Basin (West Africa). American Journal of Climate Change, 2015, 04, 77-93. An inter-hemispheric seasonal comparison of polar amplification using radiative forcing of a 753 quadrupling CO<sub&gt;2&lt;/sub&gt; experiment. Annales Geophysicae, 2020, 38, 0.6 10 1123-1138. Do we (need to) care about canopy radiation schemes in DGVMs? Caveats and potential impacts. Biogeosciences, 2014, 11, 1873-1897. 754 1.3 Sea ice dynamics in the Bransfield Strait, Antarctic Peninsula, during the past 240 years: a multi-proxy 756 1.3 19 intercomparison study. Climate of the Past, 2020, 16, 2459-2483. Tipping the ENSO into a permanent ElÂNiño can trigger state transitions in global terrestrial 2.7 ecosystems. Earth System Dynamics, 2019, 10, 631-650. Differing precipitation response between solar radiation management and carbon dioxide removal due 761 2.7 5 to fast and slow components. Earth System Dynamics, 2020, 11, 415-434. Long-term variance of heavy precipitation across central Europe using a large ensemble of regional climate model simulations. Earth System Dynamics, 2020, 11, 469-490. An investigation of weighting schemes suitable for incorporating large ensembles into multi-model 763 2.7 39 ensembles. Earth System Dynamics, 2020, 11, 807-834. The synergistic impact of ENSO and IOD on Indian summer monsoon rainfall in observations and 764 2.7 climate simulations – an information theory perspective. Earth System Dynamics, 2020, 11, 903-923. Radiative forcing and feedback by forests in warm climates – a sensitivity study. Earth System 765 2.7 4 Dynamics, 2016, 7, 535-547. The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, 23 dissemination and Âassessment. Earth System Science Data, 2018, 10, 815-835. The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): mean state and variability. 769 1.324 Geoscientific Model Development, 2020, 13, 2533-2568. Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation 770 Framework: example of AWI-CM (AWI-CM-PDAF 1.0). Geoscientific Model Development, 2020, 13, 1.3 4305-4321.

#	Article	IF	Citations
775	A universal Standardized Precipitation Index candidate distribution function for observations and simulations. Hydrology and Earth System Sciences, 2020, 24, 4541-4565.	1.9	23
779	The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere–ocean model. Ocean Science, 2020, 16, 743-765.	1.3	25
782	Identification of linear response functions from arbitrary perturbation experiments in the presence of noise – Part 2: Application to the land carbon cycle in the MPI Earth System Model. Nonlinear Processes in Geophysics, 2021, 28, 533-564.	0.6	2
783	Atmospheric Wind Biases: A Challenge for Simulating the Arctic Ocean in Coupled Models?. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017565.	1.0	7
784	Spatial patterns of multi–centennial surface air temperature trends in Antarctica over 1–1000 CE: Insights from ice core records and modeling. Quaternary Science Reviews, 2021, 271, 107205.	1.4	2
800	An Analysis of the Spectral Energetics for a Planet Experiencing Rapid Greenhouse Gas Emissions. Atmospheric and Climate Sciences, 2017, 07, 117-126.	0.1	2
802	Single-precision arithmetic in ECHAM radiation reduces runtime and energy consumption. Geoscientific Model Development, 2020, 13, 2783-2804.	1.3	6
803	Comparison of observed borehole temperatures in Antarctica with simulations using a forward model driven by climate model outputs covering the past millennium. Climate of the Past, 2020, 16, 1411-1428.	1.3	1
804	Wind Feedback Mediated by Sea Ice in the Nordic Seas. Journal of Climate, 2020, 33, 6621-6632.	1.2	1
805	Evaluation of lipid biomarkers as proxies for sea ice and ocean temperatures along the Antarctic continental margin. Climate of the Past, 2021, 17, 2305-2326.	1.3	12
806	Influence of vegetation cover change on the summer air temperature trend in the Pannonian Basin from 2002 to 2011. Theoretical and Applied Climatology, 2022, 147, 363-380.	1.3	0
807	Influence of aerosol radiative effects on surface temperature and snow melt in the Himalayan region. Science of the Total Environment, 2022, 810, 151299.	3.9	10
810	Highâ€Resolution Nudged Isotope Modeling With ECHAM6â€Wiso: Impacts of Updated Model Physics and ERA5 Reanalysis Data. Journal of Advances in Modeling Earth Systems, 2021, 13, .	1.3	14
811	The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – PartÂ2: Development and evaluation. Cryosphere, 2020, 14, 2387-2407.	1.5	7
813	Marine biogeochemical cycling and oceanic CO ₂ uptake simulated by the NUIST Earth System Model version 3 (NESM v3). Geoscientific Model Development, 2020, 13, 3119-3144.	1.3	0
814	Verification of the isotopic atmospheric general circulation model for a monitoring station in Labytnangi. , 2020, , .		0
815	Impacts of the stochastic multicloud parameterization on the simulation of Western North Pacific summer rainfall. Atmospheric Research, 2020, 244, 105067.	1.8	0
816	Forecast opportunities for European summer climate ensemble predictions using Self-Organising Maps. , 2020, , .		1

#	Article	IF	CITATIONS
817	Quantifying Energy Balance Regimes in the Modern Climate, Their Link to Lapse Rate Regimes, and Their Response to Warming. Journal of Climate, 2022, 35, 1045-1061.	1.2	7
818	Uncertainty of SW Cloud Radiative Effect in Atmospheric Models Due to the Parameterization of Liquid Cloud Optical Properties. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002742.	1.3	2
819	Mechanisms of Rainfall Biases in Two CORDEX-CORE Regional Climate Models at Rainfall Peaks over Central Equatorial Africa. Journal of Climate, 2022, 35, 639-668.	1.2	18
820	Ocean Model Formulation Influences Transient Climate Response. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017633.	1.0	8
821	Trivial improvements in predictive skill due to direct reconstruction of the global carbon cycle. Earth System Dynamics, 2021, 12, 1139-1167.	2.7	2
822	A Deep Learning Approach for the Identification of Long-Duration Mixed Precipitation in Montréal (Canada). Atmosphere - Ocean, 2022, 60, 554-565.	0.6	1
823	Future summer warming pattern under climate change is affected by lapse-rate changes. Weather and Climate Dynamics, 2021, 2, 1093-1110.	1.2	3
824	Climate Change Impacts on Wind Waves Generated by Major Tropical Cyclones off the Coast of New Jersey, USA. Frontiers in Built Environment, 2021, 7, .	1.2	5
825	Modeling the Sulfate Aerosol Evolution After Recent Moderate Volcanic Activity, 2008–2012. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035472.	1.2	7
826	Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes. Atmospheric Chemistry and Physics, 2021, 21, 17291-17314.	1.9	18
827	Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Climate of the Past, 2021, 17, 2481-2513.	1.3	23
828	Exploring future vulnerabilities of subalpine Italian regulated lakes under different climate scenarios: bottomâ€up vs top-down and CMIP5 vs CMIP6. Journal of Hydrology: Regional Studies, 2021, 38, 100973.	1.0	3
829	Oceanic Rossby waves drive inter-annual predictability of net primary production in the central tropical Pacific. Environmental Research Letters, 2022, 17, 014030.	2.2	3
830	Evaluating Climate Models' Cloud Feedbacks Against Expert Judgment. Journal of Geophysical Research D: Atmospheres, 2022, 127, e2021JD035198.	1.2	24
831	Relative Humidity: A Control Valve of the Steam Engine Climate. , 2021, 2, 140-182.		32
832	Influences of climate change on the geographical distribution of three potential reservoirs of Chagas and Leishmaniasis from the Yucatan Peninsula. Revista Mexicana De MastozoologÃa (Nueva Epoca), 2021, 11, 1-14.	0.1	0
833	Strongly Coupled Data Assimilation of Ocean Observations Into an Oceanâ€Atmosphere Model. Geophysical Research Letters, 2021, 48, .	1.5	8
834	Last glacial maximum hydro-climate and cyclone characteristics in the Levant: a regional modelling perspective. Environmental Research Letters, 2022, 17, 014053.	2.2	13

#	Article	IF	CITATIONS
835	An assessment of radiative impacts of CO 2 on baroclinic instability using idealized life cycles. Quarterly Journal of the Royal Meteorological Society, 0, , .	1.0	1
836	Impact of Decadal Trends in the Surface Climate of the North Atlantic Subpolar Gyre on the Marine Environment of the Barents Sea. Frontiers in Marine Science, 2022, 8, .	1.2	6
837	The Midlatitude Response to Polar Sea Ice Loss: Idealized Slab-Ocean Aquaplanet Experiments with Thermodynamic Sea Ice. Journal of Climate, 2022, 35, 2633-2649.	1.2	7
838	On the Correspondence Between Atmosphereâ€Only and Coupled Simulations for Radiative Feedbacks and Forcing From CO ₂ . Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	10
839	Impact of paleoclimate on present and future evolution of the Greenland Ice Sheet. PLoS ONE, 2022, 17, e0259816.	1.1	6
840	Sudden stratospheric warmings during El Niño and La Niña: sensitivity to atmospheric model biases. Weather and Climate Dynamics, 2022, 3, 45-58.	1.2	5
841	Dependency of the impacts of geoengineering on the stratospheric sulfur injection strategy – PartÂ1: Intercomparison of modal and sectional aerosol modules. Atmospheric Chemistry and Physics, 2022, 22, 93-118.	1.9	12
842	Simulating glacial dust changes in the Southern Hemisphere using ECHAM6.3-HAM2.3. Climate of the Past, 2022, 18, 67-87.	1.3	5
843	Decoding the dynamics of poleward shifting climate zones using aqua-planet model simulations. Climate Dynamics, 2022, 58, 3513-3526.	1.7	9
844	ExoPlaSim: Extending the Planet Simulator for exoplanets. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3272-3303.	1.6	11
845	Thematic domain analysis for ocean modeling. Environmental Modelling and Software, 2022, 150, 105323.	1.9	4
846	Delayed Antarctic sea-ice decline in high-resolution climate change simulations. Nature Communications, 2022, 13, 637.	5.8	31
847	Ocean Response in Transient Simulations of the Last Deglaciation Dominated by Underlying Iceâ€Sheet Reconstruction and Method of Meltwater Distribution. Geophysical Research Letters, 2022, 49, .	1.5	14
848	Twenty-first-century Southern Hemisphere impacts of ozone recovery and climate change from the stratosphere to the ocean. Weather and Climate Dynamics, 2022, 3, 139-171.	1.2	12
849	Association of the shift of the South Asian high in June with the diabatic heating in spring. Climate Dynamics, 2022, 59, 869-886.	1.7	3
850	The July 2019 European Heat Wave in a Warmer Climate: Storyline Scenarios with a Coupled Model Using Spectral Nudging. Journal of Climate, 2022, 35, 2373-2390.	1.2	14
851	Coupled climate response to Atlantic Multidecadal Variability in a multi-model multi-resolution ensemble. Climate Dynamics, 2022, 59, 805-836.	1.7	10
852	Multivariate Biasâ€Correction of Highâ€Resolution Regional Climate Change Simulations for West Africa: Performance and Climate Change Implications. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	21

#	Article	IF	CITATIONS
853	The Increasing Role of Vegetation Transpiration in Soil Moisture Loss across China under Global Warming. Journal of Hydrometeorology, 2022, 23, 253-274.	0.7	10
854	Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nature Climate Change, 2022, 12, 263-270.	8.1	37
855	On Timescales and Reversibility of the Ocean's Response to Enhanced Greenland Ice Sheet Melting in Comprehensive Climate Models. Geophysical Research Letters, 2022, 49, .	1.5	5
856	A storyline attribution of the 2011/2012 drought in Southeastern South America. Weather, 2022, 77, 212-218.	0.6	9
857	Variability and extremes: statistical validation of the Alfred Wegener Institute Earth System Model (AWI-ESM). Geoscientific Model Development, 2022, 15, 1803-1820.	1.3	4
858	Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment. Geoscientific Model Development, 2022, 15, 2265-2292.	1.3	22
859	Sea level changes mechanisms in the MPI-ESM under FAFMIP forcing conditions. Climate Dynamics, 0, , 1.	1.7	1
860	Evaluating the Eastward Propagation of the MJO in CMIP5 and CMIP6 Models Based on a Variety of Diagnostics. Journal of Climate, 2022, 35, 1719-1743.	1.2	5
861	Future Climate Change Under SSP Emission Scenarios With GISS 2.1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	22
862	Sensitivity of regional monsoons to idealised equatorial volcanic eruption of different sulfur emission strengths. Environmental Research Letters, 2022, 17, 054001.	2.2	5
863	Self-Organizing Maps Identify Windows of Opportunity for Seasonal European Summer Predictions. Frontiers in Climate, 2022, 4, .	1.3	2
864	The Global Atmosphereâ€aerosol Model ICONâ€Aâ€HAM2.3–Initial Model Evaluation and Effects of Radiation Balance Tuning on Aerosol Optical Thickness. Journal of Advances in Modeling Earth Systems, 2022, 14,	1.3	6
865	The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	16
866	Improved models, improved information? Exploring how climate change impacts pollen, influenza, and mold in Berlin and its surroundings. Urban Climate, 2022, 43, 101159.	2.4	0
867	The tangled evolutionary history of a long-debated Mesoamerican taxon: The Velazquez Woodpecker (Melanerpes santacruzi, Aves: Picidae). Molecular Phylogenetics and Evolution, 2022, 170, 107445.	1.2	2
868	A broadband infrared radiative transfer scheme including the effect related to vertically inhomogeneous microphysical properties inside water clouds. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 285, 108160.	1.1	1
869	Weatherscapes. ACM Transactions on Graphics, 2021, 40, 1-19.	4.9	2
870	A new perspective on permafrost boundaries in France during the Last Glacial Maximum. Climate of the Past, 2021, 17, 2559-2576.	1.3	10

#	Article	IF	CITATIONS
871	Influence of water transpired and irrigation on maize yields for future climate scenarios using Regional Model. Atmospheric Science Letters, 2022, 23, .	0.8	2
873	Concurrent calculation of radiative transfer in the atmospheric simulation in ECHAM-6.3.05p2. Geoscientific Model Development, 2021, 14, 7439-7457.	1.3	0
874	Climate and ocean circulation in the aftermath of a Marinoan snowball Earth. Climate of the Past, 2022, 18, 759-774.	1.3	7
875	Estimating aerosol emission from SPEXone on the NASA PACE mission using an ensemble Kalman smoother: observing system simulation experiments (OSSEs). Geoscientific Model Development, 2022, 15, 3253-3279.	1.3	3
891	The long-standing dilemma of European summer temperatures at the mid-Holocene and other considerations on learning from the past for the future using a regional climate model. Climate of the Past, 2022, 18, 895-909.	1.3	5
892	Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study. Atmospheric Chemistry and Physics, 2022, 22, 5775-5828.	1.9	15
893	Empirical values and assumptions in the convection schemes of numerical models. Geoscientific Model Development, 2022, 15, 3447-3518.	1.3	9
894	How Do Regional Distributions of Daily Precipitation Change under Warming?. Journal of Climate, 2022, 35, 3243-3260.	1.2	4
895	Examining the Regional Coâ€Variability of the Atmospheric Water and Energy Imbalances in Different Model Configurations—Linking Clouds and Circulation. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	3
896	Evaluation of dry and wet spell events over West Africa using CORDEX-CORE regional climate models. Modeling Earth Systems and Environment, 2022, 8, 4923-4937.	1.9	5
897	Statistical calibrations to improve the 2–5-year prediction skill for SST over the North Atlantic. Meteorology and Atmospheric Physics, 2022, 134, .	0.9	2
898	Projected changes in the near-surface atmosphere over the Barents Sea based on CMIP5 scenarios. Russian Journal of Earth Sciences, 2022, , 1-11.	0.2	1
899	Evaluation of Sea Ice Radiative Forcing according to Surface Albedo and Skin Temperature over the Arctic from 1982–2015. Remote Sensing, 2022, 14, 2512.	1.8	4
901	Evaluating seasonal and regional distribution of snowfall in regional climate model simulations in the Arctic. Atmospheric Chemistry and Physics, 2022, 22, 7287-7317.	1.9	4
902	Benefits of simulating precipitation characteristics over Africa with a regionally-coupled atmosphereâ \in "ocean model. Climate Dynamics, 2023, 60, 1079-1102.	1.7	7
903	Potential distributions of the parasite <i>Trypanosoma cruzi</i> and its vector <i>Dipetalogaster maxima</i> highlight areas at risk of Chagas disease transmission in Baja California Sur, Mexico, under climate change. Medical and Veterinary Entomology, 0, , .	0.7	3
905	Last Glacial Maximum active layer thickness in Western Europe, and the issue of â€~tundra gleys' in loess sequences. Journal of Quaternary Science, 0, , .	1.1	1
906	Regional earth system model for <scp>CORDEXâ€South</scp> Asia: A comparative assessment of <scp>RESM</scp> and <scp>ESM</scp> over the tropical Indian Ocean. International Journal of Climatology, 2022, 42, 9131-9149.	1.5	2

#	Article	IF	CITATIONS
907	Was there a volcanic-induced long-lasting cooling over the Northern Hemisphere in the mid-6th–7th century?. Climate of the Past, 2022, 18, 1601-1623.	1.3	10
908	Insect Herbivory Caused Plant Stress Emissions Increases the Negative Radiative Forcing of Aerosols. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
909	Aircraft Emissions, Their Plume-Scale Effects, and the Spatio-Temporal Sensitivity of the Atmospheric Response: A Review. Aerospace, 2022, 9, 355.	1.1	14
910	Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	18
911	An Analysis of the Aerosol Lifecycle Over India: COALESCE Intercomparison of Three General Circulation Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
912	High-Resolution Decadal Drought Predictions for German Water Boards: A Case Study for the Wupper Catchment. Frontiers in Climate, 0, 4, .	1.3	3
913	Strong control of effective radiative forcing by the spatial pattern of absorbing aerosol. Nature Climate Change, 2022, 12, 735-742.	8.1	16
914	Climate change projection over Mainland Southeast Asia and the <scp>Lancangâ€Mekong</scp> River basin based on a set of <scp>RegCM4</scp> simulations. International Journal of Climatology, 0, , .	1.5	2
916	Simulated contribution of the interdecadal Pacific oscillation to the west Eurasia cooling in 1998–2013. Environmental Research Letters, 2022, 17, 094021.	2.2	0
918	Abrupt emission reduction during COVID-19 intensified the spring 2020 rainfall over India. Frontiers in Environmental Science, 0, 10, .	1.5	2
919	Evaluation of the simulated aerosol optical properties over India: COALESCE model inter-comparison of three GCMs with ground and satellite observations. Science of the Total Environment, 2022, 852, 158442.	3.9	2
920	Projecting the Potential Evapotranspiration of Egypt Using a High-Resolution Regional Climate Model (RegCM4). , 0, , .		6
922	Climate Feedback to Stratospheric Aerosol Forcing: The Key Role of the Pattern Effect. Journal of Climate, 2022, 35, 7903-7917.	1.2	4
923	Detailing cloud property feedbacks with a regime-based decomposition. Climate Dynamics, 2023, 60, 2983-3003.	1.7	3
924	Cirrus cloud thinning using a more physically based ice microphysics scheme in the ECHAM-HAM general circulation model. Atmospheric Chemistry and Physics, 2022, 22, 11455-11484.	1.9	5
925	Process-oriented evaluation of the West African Monsoon system in CORDEX-CORE regional climate models. Climate Dynamics, 2023, 60, 3187-3210.	1.7	5
926	Future Projections of Extreme Precipitation Climate Indices over South America Based on CORDEX-CORE Multimodel Ensemble. Atmosphere, 2022, 13, 1463.	1.0	12
927	The ICON-A model for direct QBO simulations on GPUs (version icon-cscs:baf28a514). Geoscientific Model Development, 2022, 15, 6985-7016.	1.3	8

#	Article	IF	CITATIONS
928	Transport parameterization of the Polar SWIFT model (version 2). Geoscientific Model Development, 2022, 15, 7243-7255.	1.3	0
929	Cloud Climatologies from Global Climate Models—A Comparison of CMIP5 and CMIP6 Models with Satellite Data. Journal of Climate, 2023, 36, 281-311.	1.2	4
930	Comparison of particle number size distribution trends in ground measurements and climate models. Atmospheric Chemistry and Physics, 2022, 22, 12873-12905.	1.9	3
931	Increasing risk from landfalling tropical cyclone-heatwave compound events to coastal and inland China. Environmental Research Letters, 2022, 17, 105007.	2.2	5
932	Evaluation of <scp>CORDEXâ€CORE</scp> regional climate models in simulating rainfall variability in Rwanda. International Journal of Climatology, 2023, 43, 1112-1140.	1.5	2
933	Simulated Mid-Holocene and Last Interglacial Climate Using Two Generations of AWI-ESM. Journal of Climate, 2022, 35, 7811-7831.	1.2	3
934	Climate Change Effects upon Pasture in the Alps: The Case of Valtellina Valley, Italy. Climate, 2022, 10, 173.	1.2	4
935	An ensemble-based assessment of bias adjustment performance, changes in hydrometeorological predictors and compound extreme events in EAS-CORDEX. Weather and Climate Extremes, 2023, 39, 100531.	1.6	3
936	Strong cloud–circulation coupling explains weak trade cumulus feedback. Nature, 2022, 612, 696-700.	13.7	13
937	Ecological Response to Climate Change Across China From Combined Soil Temperature and Moisture Changes. Earth and Space Science, 2022, 9, .	1.1	5
938	Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2. Geoscientific Model Development, 2022, 15, 8581-8611.	1.3	1
939	Skillful decadal prediction of German Bight storm activity. Natural Hazards and Earth System Sciences, 2022, 22, 3993-4009.	1.5	0
940	A Modeling Perspective on the Lingering Glacial Sea Surface Temperature Conundrum. Geophysical Research Letters, 2022, 49, .	1.5	1
941	Toward Ocean Hindcasts in Earth System Models: AMOC Variability in a Partially Coupled Model at Eddying Resolution. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	0
942	Impacts of the strengthened Atlantic meridional overturning circulation on the North Atlantic sea surface temperature: mean state. Climate Dynamics, 2023, 61, 981-998.	1.7	1
943	Arctic Troposphere Warming Driven by External Radiative Forcing and Modulated by the Pacific and Atlantic. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
944	Evaluation of statistical climate reconstruction methods based on pseudoproxy experiments using linear and machine-learning methods. Climate of the Past, 2022, 18, 2643-2668.	1.3	5
945	Stormier Southern Hemisphere induced by topography and ocean circulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8

#	Article	IF	CITATIONS
946	A Comparative Assessment of Changes in Heat-Related Mortality Risk Under the RCP2.6 and RCP8.5 Scenarios Based on the CORDEX-CORE Ensembles. Asia-Pacific Journal of Atmospheric Sciences, 0, , .	1.3	0
948	A Novel Bias Correction Method for Extreme Events. Climate, 2023, 11, 3.	1.2	4
949	Interactive stratospheric aerosol models' response to different amounts and altitudes of SO ₂ injection during the 1991 Pinatubo eruption. Atmospheric Chemistry and Physics, 2023, 23, 921-948.	1.9	15
950	Redistribution of fisheries catch potential in Mediterranean and North European waters under climate change scenarios. Science of the Total Environment, 2023, 879, 163055.	3.9	1
953	The Impact of Different Atmospheric CO ₂ Concentrations on Large Scale Miocene Temperature Signatures. Paleoceanography and Paleoclimatology, 2023, 38, .	1.3	3
954	Monitoring climate related risk and opportunities for the wine sector: The MED-GOLD pilot service. Climate Services, 2023, 30, 100346.	1.0	3
955	Thermohaline patterns of intrinsic Atlantic Multidecadal Variability in MPI-ESM-LR. Climate Dynamics, 2023, 61, 2371-2393.	1.7	1
956	Understanding the diversity of the West African monsoon system change projected by CORDEX-CORE regional climate models. Climate Dynamics, 0, , .	1.7	0
957	The pseudo-global-warming (PGW) approach: methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses. Geoscientific Model Development, 2023, 16, 907-926.	1.3	9
958	Will Warming Climate Affect the Characteristics of Summer Monsoon Rainfall and Associated Extremes Over the Gangetic Plains in India?. Earth and Space Science, 2023, 10, .	1.1	7
959	Assessing climate change impact on river flow extreme events in different climates of Iran using hybrid application of LARS-WG6 and rainfall-runoff modeling of deep learning. Ecohydrology and Hydrobiology, 2023, 23, 224-239.	1.0	2
960	On the ocean's response to enhanced Greenland runoff in model experiments: relevance of mesoscale dynamics and atmospheric coupling. Ocean Science, 2023, 19, 141-167.	1.3	7
963	Evolution and copula modelling of drought duration and severity over Africa using <scp>CORDEX ORE</scp> regional climate models. International Journal of Climatology, 2023, 43, 3629-3646.	1.5	1
964	Projected changes in extreme rainfall and temperature events and possible implications for Cameroon's socioâ€economic sectors. Meteorological Applications, 2023, 30, .	0.9	11
965	Controls on Stable Water Isotopes in Monsoonal Precipitation Across the Bay of Bengal: Atmosphere and Surface Analysis. Geophysical Research Letters, 2023, 50, .	1.5	1
966	Dynamical Predictability of Leading Interannual Variability Modes of the Asian-Australian Monsoon in Climate Models. Advances in Atmospheric Sciences, 2023, 40, 1998-2012.	1.9	3
967	Framework for an Oceanâ€Connected Supermodel of the Earth System. Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	1
968	Very-long-period oscillations in the atmosphere (0–110 km) – PartÂ2: Latitude– longitude comparisons and trends. Atmospheric Chemistry and Physics, 2023, 23, 3267-3278.	1.9	0

#	Article	IF	CITATIONS
969	Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling. Atmospheric Chemistry and Physics, 2023, 23, 3471-3491.	1.9	0
970	Convectionâ€permitting climate simulations with <scp>COSMOâ€CLM</scp> over northwestern Türkiye under the <scp>RCP8</scp> .5 scenario. International Journal of Climatology, 2023, 43, 3841-3858.	1.5	0
971	The role of niche breadth in oak phylogeography: <i>Quercus glaucoides</i> as a study case. Journal of Biogeography, 2023, 50, 1653-1667.	1.4	1
972	Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition. Geoscientific Model Development, 2023, 16, 1857-1873.	1.3	0
973	The Impact of a Landâ€5ea Contrast on Convective Aggregation in Radiativeâ€Convective Equilibrium. Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	0
1039	Indicators of Transformation Processes: Change Profiles as a Method for Identifying Indicators. Quantitative Archaeology and Archaeological Modelling, 2024, , 63-102.	0.0	0

1043 Globale Modellierung des Klimawandels., 2023, , 7-18.