A Molecular Signature Predictive of Indolent Prostate C

Science Translational Medicine 5, 202ra122 DOI: 10.1126/scitranslmed.3006408

Citation Report

#	Article	IF	CITATIONS
2	Copy number alteration burden predicts prostate cancer relapse. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11139-11144.	3.3	299
3	Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. British Journal of Cancer, 2014, 111, 1201-1212.	2.9	123
4	Molecular markers to guide primary radical treatment selection in localized prostate cancer. Expert Review of Molecular Diagnostics, 2014, 14, 871-881.	1.5	5
5	Prognostic Histopathological and Molecular Markers on Prostate Cancer Needle-Biopsies: A Review. BioMed Research International, 2014, 2014, 1-12.	0.9	41
6	The Thoc1 Ribonucleoprotein and Prostate Cancer Progression. Journal of the National Cancer Institute, 2014, 106, dju306-dju306.	3.0	19
7	Single luminal epithelial progenitors can generate prostate organoids in culture. Nature Cell Biology, 2014, 16, 951-961.	4.6	283
8	FGF23: Mediator of poor prognosis in a sizeable subgroup of patients with castration-resistant prostate cancer presenting with severe hypophosphatemia?. Medical Hypotheses, 2014, 83, 482-487.	0.8	19
9	New concepts concerning prostate cancer screening. Experimental Biology and Medicine, 2014, 239, 793-804.	1.1	3
10	High concordance of molecular tumor alterations between pre-operative curettage and hysterectomy specimens in patients with endometrial carcinoma. Gynecologic Oncology, 2014, 133, 197-204.	0.6	70
11	The prognostic significance of Gleason scores in metastatic prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2014, 32, 707-713.	0.8	48
12	Evolving transcriptomic fingerprint based on genomeâ€wide data as prognostic tools in prostate cancer. Biology of the Cell, 2015, 107, 232-244.	0.7	6
13	Androgen receptor profiling predicts prostate cancer outcome. EMBO Molecular Medicine, 2015, 7, 1450-1464.	3.3	67
14	Nanocytological Field Carcinogenesis Detection to Mitigate Overdiagnosis of Prostate Cancer: A Proof of Concept Study. PLoS ONE, 2015, 10, e0115999.	1.1	27
15	RNA biomarkers to facilitate the identification of aggressive prostate cancer. Molecular Aspects of Medicine, 2015, 45, 37-46.	2.7	16
16	Dysregulation of the vascular endothelial growth factor and semaphorin ligand-receptor families in prostate cancer metastasis. BMC Systems Biology, 2015, 9, 55.	3.0	20
17	The biology of castration-resistant prostate cancer. Current Problems in Cancer, 2015, 39, 17-28.	1.0	22
18	Genomic Predictors of Outcome in Prostate Cancer. European Urology, 2015, 68, 1033-1044.	0.9	166
19	Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study. FBioMedicine, 2015, 2, 1133-1144	2.7	260 _

#	Article	IF	CITATIONS
20	BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence. Nature Genetics, 2015, 47, 22-30.	9.4	141
21	Antisense transcription at the TRPM2 locus as a novel prognostic marker and therapeutic target in prostate cancer. Oncogene, 2015, 34, 2094-2102.	2.6	72
22	The genetic classification of prostate cancer: what's on the horizon?. Future Oncology, 2016, 12, 729-733.	1.1	5
23	The role of chemotherapy and new targeted agents in the management of primary prostate cancer. Journal of Clinical Urology, 2016, 9, 30-37.	0.1	2
24	Validation of the Kattan Nomogram for Prostate Cancer Recurrence After Radical Prostatectomy. Journal of the National Comprehensive Cancer Network: JNCCN, 2016, 14, 1395-1401.	2.3	21
25	Molecular characterization of Gleason patterns 3 and 4 prostate cancer using reverse Warburg effect-associated genes. Cancer & Metabolism, 2016, 4, 8.	2.4	17
26	Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nature Communications, 2016, 7, 10798.	5.8	166
27	Roles of Distal and Genic Methylation in the Development of Prostate Tumorigenesis Revealed by Genome-wide DNA Methylation Analysis. Scientific Reports, 2016, 6, 22051.	1.6	19
28	Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science, 2016, 352, 1576-1580.	6.0	80
29	Integrated analysis of the prostate cancer smallâ€nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Molecular Oncology, 2016, 10, 693-703.	2.1	48
30	<i>Atg7</i> cooperates with <i>Pten</i> loss to drive prostate cancer tumor growth. Genes and Development, 2016, 30, 399-407.	2.7	97
31	Optimizing mouse models for precision cancer prevention. Nature Reviews Cancer, 2016, 16, 187-196.	12.8	59
32	Use of two gene panels for prostate cancer diagnosis and patient risk stratification. Tumor Biology, 2016, 37, 10115-10122.	0.8	9
33	Evaluation of an epithelial plasticity biomarker panel in men with localized prostate cancer. Prostate Cancer and Prostatic Diseases, 2016, 19, 40-45.	2.0	6
34	Tissue-based Genomics Augments Post-prostatectomy Risk Stratification in a Natural History Cohort of Intermediate- and High-Risk Men. European Urology, 2016, 69, 157-165.	0.9	206
36	Prostate cancer, PI3K, PTEN and prognosis. Clinical Science, 2017, 131, 197-210.	1.8	146
37	Molecular and Functional Diagnostic Tools in Precision Oncology for Urological Malignancies. Indian Journal of Surgical Oncology, 2017, 8, 24-32.	0.3	1
38	Co-clinical Analysis of a Genetically Engineered Mouse Model and Human Prostate Cancer Reveals Significance of NKX3.1 Expression for Response to 5α-reductase Inhibition. European Urology, 2017, 72, 499-506.	0.9	16

#	Article	IF	CITATIONS
39	The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice. Molecular Diagnosis and Therapy, 2017, 21, 385-400.	1.6	18
40	TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clinical Cancer Research, 2017, 23, 7072-7083.	3.2	87
41	Machine learning models to search relevant genetic signatures in clinical context. , 2017, , .		3
42	Developing a Novel Two-Dimensional Culture System to Enrich Human Prostate Luminal Progenitors that Can Function as a Cell of Origin for Prostate Cancer. Stem Cells Translational Medicine, 2017, 6, 748-760.	1.6	19
43	Predictive models and risk of biopsy progression in active surveillance patients. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 37.e1-37.e8.	0.8	4
44	Combinatorial Ranking of Gene Sets to Predict Disease Relapse: The Retinoic Acid Pathway in Early Prostate Cancer. Frontiers in Oncology, 2017, 7, 30.	1.3	5
45	Association between polymorphisms in sex hormones synthesis and metabolism and prostate cancer aggressiveness. PLoS ONE, 2017, 12, e0185447.	1.1	11
46	Improvement in prediction of prostate cancer prognosis with somatic mutational signatures. Journal of Cancer, 2017, 8, 3261-3267.	1.2	33
47	Cancer/Testis Antigens: "Smart―Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. International Journal of Molecular Sciences, 2017, 18, 740.	1.8	27
48	Prostate Cancer Molecular Prognosis. Molecular Pathology Library, 2018, , 503-522.	0.1	2
49	Development and Validation of a 28-gene Hypoxia-related Prognostic Signature for Localized Prostate Cancer. EBioMedicine, 2018, 31, 182-189.	2.7	132
50	A gene signature associated with PTEN activation defines good prognosis intermediate risk prostate cancer cases. Journal of Pathology: Clinical Research, 2018, 4, 103-113.	1.3	20
51	Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables. Health Informatics Journal, 2018, 24, 54-65.	1.1	18
52	Genomic Gain of 16p13.3 in Prostate Cancer Predicts Poor Clinical Outcome after Surgical Intervention. Molecular Cancer Research, 2018, 16, 115-123.	1.5	12
53	Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. British Journal of Cancer, 2018, 119, 1527-1537.	2.9	10
54	KLF4, A Gene Regulating Prostate Stem Cell Homeostasis, Is a Barrier to Malignant Progression and Predictor of Good Prognosis in Prostate Cancer. Cell Reports, 2018, 25, 3006-3020.e7.	2.9	22
55	Cooperation of loss of <i>NKX3.1</i> and inflammation in prostate cancer initiation. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	30
56	Genetics and biology of prostate cancer. Genes and Development, 2018, 32, 1105-1140.	2.7	434

#	Article	IF	CITATIONS
57	Cumulative Cancer Locations is a Novel Metric for Predicting Active Surveillance Outcomes: A Multicenter Study. European Urology Oncology, 2018, 1, 268-275.	2.6	5
58	Comprehensive molecular classification of localized prostate adenocarcinoma reveals a tumour subtype predictive of non-aggressive disease. Annals of Oncology, 2018, 29, 1814-1821.	0.6	35
59	Computer-aided diagnosis of clinically significant prostate cancer from MRI images using sparse autoencoder and random forest classifier. Biocybernetics and Biomedical Engineering, 2018, 38, 733-744.	3.3	33
60	Computer-aided classification of prostate cancer grade groups from MRI images using texture features and stacked sparse autoencoder. Computerized Medical Imaging and Graphics, 2018, 69, 60-68.	3.5	62
61	Biomarkers of aggressiveness in genitourinary tumors with emphasis on kidney, bladder, and prostate cancer. Expert Review of Molecular Diagnostics, 2018, 18, 645-655.	1.5	20
62	Computer-aided grading of prostate cancer from MRI images using Convolutional Neural Networks. Journal of Intelligent and Fuzzy Systems, 2019, 36, 2015-2024.	0.8	18
63	TRIM24 as an independent prognostic biomarker for prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 576.e1-576.e10.	0.8	18
64	A TMEFF2-regulated cell cycle derived gene signature is prognostic of recurrence risk in prostate cancer. BMC Cancer, 2019, 19, 423.	1.1	11
65	Cancer overdiagnosis: a biological challenge and clinical dilemma. Nature Reviews Cancer, 2019, 19, 349-358.	12.8	220
66	Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nature Reviews Urology, 2019, 16, 302-317.	1.9	86
67	Enzalutamide therapy for advanced prostate cancer: efficacy, resistance and beyond. Endocrine-Related Cancer, 2019, 26, R31-R52.	1.6	49
68	Mechanisms of PTEN loss in cancer: It's all about diversity. Seminars in Cancer Biology, 2019, 59, 66-79.	4.3	214
69	MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Research, 2019, 79, 1844-1856.	0.4	35
70	Unbiased data mining identifies cell cycle transcripts that predict non-indolent Gleason score 7 prostate cancer. BMC Urology, 2019, 19, 4.	0.6	8
71	Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a030528.	2.9	36
72	Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer and Prostatic Diseases, 2020, 23, 24-37.	2.0	37
73	Dual and multi-targeted nanoparticles for site-specific brain drug delivery. Journal of Controlled Release, 2020, 317, 195-215.	4.8	72
	TIPS primes prostate luminal cells for the opcogenic transformation mediated by civDTEN/ liv loss		

#	Article	IF	CITATIONS
75	Convergence of Prognostic Gene Signatures Suggests Underlying Mechanisms of Human Prostate Cancer Progression. Genes, 2020, 11, 802.	1.0	8
76	Wait-and-See Treatment Strategy Could be Considered for Lung Adenocarcinoma with Special Pleural Dissemination Lesions, and Low Genomic Instability Correlates with Better Survival. Annals of Surgical Oncology, 2020, 27, 3808-3818.	0.7	10
77	NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation. Cancer Discovery, 2021, 11, 2316-2333.	7.7	25
79	Limitations of Explainability for Established Prognostic Biomarkers of Prostate Cancer. Frontiers in Genetics, 2021, 12, 649429.	1.1	5
80	Immunopathologic Assessment of PTEN Expression. Methods in Molecular Biology, 2016, 1388, 23-37.	0.4	8
81	Gleason 6 Tumors Should Still Be Labeled as Cancer. Current Clinical Urology, 2018, , 41-52.	0.0	1
82	Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. Journal of Clinical Investigation, 2019, 129, 4492-4505.	3.9	250
83	Computational Reconstruction of NFήB Pathway Interaction Mechanisms during Prostate Cancer. PLoS Computational Biology, 2016, 12, e1004820.	1.5	27
84	Linking microsomal prostaglandin E Synthase-1/PGE-2 pathway with miR-15a and â^'186 expression: Novel mechanism of VEGF modulation in prostate cancer. Oncotarget, 2016, 7, 44350-44364.	0.8	24
85	A four gene signature predictive of recurrent prostate cancer. Oncotarget, 2017, 8, 3430-3440.	0.8	14
86	Alterations in expressed prostate secretion-urine PSA N-glycosylation discriminate prostate cancer from benign prostate hyperplasia. Oncotarget, 2017, 8, 76987-76999.	0.8	14
87	Molecular pathways and targets in prostate cancer. Oncotarget, 2014, 5, 7217-7259.	0.8	84
88	Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget, 2016, 7, 5273-5288.	0.8	60
89	Prostate cancer: unmet clinical needs and RAD9 as a candidate biomarker for patient management. Translational Cancer Research, 2018, 7, S651-S661.	0.4	8
90	Can epigenetic and inflammatory biomarkers identify clinically aggressive prostate cancer?. World Journal of Clinical Oncology, 2020, 11, 43-52.	0.9	12
91	Tools to identify the men with prostate cancer most appropriate for active surveillance?. Asian Journal of Andrology, 2014, 16, 97.	0.8	0
92	Gene Expression Analysis. Molecular Pathology Library, 2018, , 153-167.	0.1	0
94	Unifying Next-Generation Biomarkers and Nanodiagnostic Platforms for Precision Prostate Cancer Management, Springer Theses, 2019. , 1-29.	0.0	0

#	Article	IF	CITATIONS
96	AÂm6Avalue predictive of prostate cancer stemness, tumor immune landscape and immunotherapy response. NAR Cancer, 2022, 4, zcac010.	1.6	7
97	A new perspective on breast cancer diagnostic guidelines to reduce overdiagnosis. Production and Operations Management, 2022, 31, 2361-2378.	2.1	5
98	Patterns of indolence in prostate cancer (Review). Experimental and Therapeutic Medicine, 2022, 23, 351.	0.8	5
99	Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts. Cancer Research, 2022, 82, 1832-1843.	0.4	13
100	<i>MCAM</i> is associated with metastasis and poor prognosis in osteosarcoma by modulating tumor cell migration. Journal of Clinical Laboratory Analysis, 2022, 36, e24214.	0.9	5
101	Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry. Prostate Cancer and Prostatic Diseases, 2022, 25, 513-523.	2.0	2
102	Correlation between stage of prostate cancer and tyrosine and tryptophan in urine samples measured electrochemically. Analytical Biochemistry, 2022, 649, 114698.	1.1	5
103	Scaffold protein MAPK8IP2 expression is a robust prognostic factor in prostate cancer associated with AR signaling activity. Asian Journal of Andrology, 2023, 25, 198.	0.8	5
104	Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. Advances in Experimental Medicine and Biology, 2022, , 255-275.	0.8	1
106	Immunoarray Measurements of Parathyroid Hormone-Related Peptides Combined with Other Biomarkers to Diagnose Aggressive Prostate Cancer. Analytical Chemistry, 2022, 94, 12788-12797.	3.2	3
107	Dramatic impact of partial loss of PTEN function on tumorigenesis and progression of prostate cancer. , 2023, , 339-356.		0
112	From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Information Science and Systems, 2024, 12, .	3.4	0