Present and future global distributions of the marine Cy <i>Prochlorococcus</i> and <i>Synechococcus</i>

Proceedings of the National Academy of Sciences of the Unite 110, 9824-9829

DOI: 10.1073/pnas.1307701110

Citation Report

#	Article	IF	CITATIONS
1	Space-for-time substitution in predicting the state of picoplankton and nanoplankton in a changing Arctic Ocean. Journal of Geophysical Research: Oceans, 2013, 118, 5750-5759.	1.0	24
2	Vertical Profiles of Bacteria in the Tropical and Subarctic Oceans Revealed by Pyrosequencing. PLoS ONE, 2013, 8, e79423.	1.1	49
3	Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth. PLoS ONE, 2014, 9, e99312.	1.1	93
4	The First Molecular Characterization of Picocyanobacteria from the Argentine Sea. Journal of Marine Biology, 2014, 2014, 1-8.	1.0	1
5	Toward a systems-level understanding of gene regulatory, protein interaction, and metabolic networks in cyanobacteria. Frontiers in Genetics, 2014, 5, 191.	1.1	19
6	Diversity and regulation of ATP sulfurylase in photosynthetic organisms. Frontiers in Plant Science, 2014, 5, 597.	1.7	52
7	Symbiotic Adaptation Drives Genome Streamlining of the Cyanobacterial Sponge Symbiont " <i>Candidatus</i> Synechococcus spongiarum― MBio, 2014, 5, e00079-14.	1.8	83
8	Impact of ocean phytoplankton diversity on phosphate uptake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17540-17545.	3.3	93
9	Biogeochemical regimes in focus. Nature Geoscience, 2014, 7, 862-863.	5.4	1
10	The Need for Change. Methods in Microbiology, 2014, , 1-12.	0.4	10
11	Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311) Tj ETQq0 C	0 rgBT /O	verlock 10 T
12	<i>Synechococcus</i> : 3 billion years of global dominance. Molecular Ecology, 2014, 23, 5538-5551.	2.0	88
13	Development and Bias Assessment of a Method for Targeted Metagenomic Sequencing of Marine Cyanobacteria. Applied and Environmental Microbiology, 2014, 80, 1116-1125.	1.4	12
14	Dynamics in the microbial cytome—single cell analytics in natural systems. Current Opinion in Biotechnology, 2014, 27, 134-141.	3.3	38
15	Genetic data generated from virus–host complexes obtained by membrane co-immobilization are equivalent to data obtained from tangential filtrate virus concentrates and virus cultures. Virus Genes, 2014, 48, 160-167.	0.7	2
16	Progenitor Outgrowth from the Niche in <i>Drosophila</i> Trachea Is Guided by FGF from Decaying Branches. Science, 2014, 343, 186-189.	6.0	32

- 17Nutrition: Rejection Is the Fly's Protection. Current Biology, 2014, 24, R278-R280.1.81
- 18Bacterial Vesicles in Marine Ecosystems. Science, 2014, 343, 183-186.6.0432

#	Article	IF	CITATIONS
19	Being Selective in the <i>Prochlorococcus</i> Collective. Science, 2014, 344, 366-367.	6.0	3
20	Marine microorganisms: An emerging avenue in modern nutraceuticals and functional foods. Food Research International, 2014, 56, 115-125.	2.9	91
21	Bacterial Vesicles in the Ocean. Science, 2014, 343, 143-144.	6.0	17
22	Explaining the causes of cell death in cyanobacteria: what role for asymmetric division?. Journal of Plankton Research, 2014, 36, 11-17.	0.8	18
23	Reductive genome evolution at both ends of the bacterial population size spectrum. Nature Reviews Microbiology, 2014, 12, 841-850.	13.6	158
24	Identification of major zinc-binding proteins from a marine cyanobacterium: insight into metal uptake in oligotrophic environments. Metallomics, 2014, 6, 1254-1268.	1.0	17
25	Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science, 2014, 345, 1173-1177.	6.0	174
26	Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 2014, 345, 1312-1317.	6.0	332
27	Greenland temperature response to climate forcing during the last deglaciation. Science, 2014, 345, 1177-1180.	6.0	226
28	Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature, 2014, 513, 242-245.	13.7	183
29	Connecting thermal physiology and latitudinal niche partitioning in marine <i>Synechococcus</i> . ISME Journal, 2014, 8, 1221-1236.	4.4	135
30	Microbial oceanography and the Hawaii Ocean Time-series programme. Nature Reviews Microbiology, 2014, 12, 699-713.	13.6	183
31	Evolution: A Fixed-Nitrogen Fix in the Early Ocean?. Current Biology, 2014, 24, R276-R278.	1.8	8
32	A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Marine Genomics, 2014, 15, 17-28.	0.4	69
33	Microbially Mediated Transformations of Phosphorus in the Sea: New Views of an Old Cycle. Annual Review of Marine Science, 2014, 6, 279-337.	5.1	285
34	Abundance of Broad Bacterial Taxa in the Sargasso Sea Explained by Environmental Conditions but Not Water Mass. Applied and Environmental Microbiology, 2014, 80, 2786-2795.	1.4	36
35	Closely related phytoplankton species produce similar suites of dissolved organic matter. Frontiers in Microbiology, 2014, 5, 111.	1.5	124
36	Seasonal and spatial patterns of picophytoplankton growth, grazing and distribution in the East China Sea. Biogeosciences, 2014, 11, 1847-1862.	1.3	55

#	Article	IF	CITATIONS
37	Temperature effects on the growth rate of marine picoplankton. Marine Ecology - Progress Series, 2014, 505, 37-47.	0.9	66
38	Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Scientific Data, 2014, 1, 140034.	2.4	114
39	Nitrogen isotopic response of prokaryotic and eukaryotic phytoplankton to nitrate availability in Sargasso Sea surface waters. Limnology and Oceanography, 2014, 59, 972-985.	1.6	26
40	The unique trace metal and mixed layer conditions of the Costa Rica upwelling dome support a distinct and dense community of <i>Synechococcus</i> . Limnology and Oceanography, 2014, 59, 2166-2184.	1.6	51
41	Phytoplankton global mapping from space with a support vector machine algorithm. Proceedings of SPIE, 2014, , .	0.8	5
42	Between―and withinâ€population variations in thermal reaction norms of the coccolithophore <i>Emiliania huxleyi</i> . Limnology and Oceanography, 2014, 59, 1570-1580.	1.6	35
43	Origin of marine planktonic cyanobacteria. Scientific Reports, 2015, 5, 17418.	1.6	143
44	The effects of diel cycles and temperature on size distributions of pico- and nanophytoplankton in the subtropical and tropical Pacific Ocean. Plankton and Benthos Research, 2015, 10, 26-33.	0.2	10
45	Phytoplankton community structure in relation to vertical stratification along a northâ€south gradient in the <scp>N</scp> ortheast <scp>A</scp> tlantic <scp>O</scp> cean. Limnology and Oceanography, 2015, 60, 1498-1521.	1.6	51
46	Needles in the blue sea: Subâ€species specificity in targeted protein biomarker analyses within the vast oceanic microbial metaproteome. Proteomics, 2015, 15, 3521-3531.	1.3	49
47	Resource allocation by the marine cyanobacterium <scp><i>S</i></scp> <i>ynechococcus</i> <scp>WH</scp> 8102 in response to different nutrient supply ratios. Limnology and Oceanography, 2015, 60, 1634-1641.	1.6	23
48	Enhanced salinities, as a proxy of seawater desalination discharges, impact coastal microbial communities of the eastern <scp>M</scp> editerranean <scp>S</scp> ea. Environmental Microbiology, 2015, 17, 4105-4120.	1.8	33
49	Hidden biosphere in an oxygen-deficient Atlantic open-ocean eddy: future implications of ocean deoxygenation on primary production in the eastern tropical North Atlantic. Biogeosciences, 2015, 12, 7467-7482.	1.3	29
50	High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris. Frontiers in Microbiology, 2015, 6, 561.	1.5	42
51	Spontaneous Deletion of an "ORFanage―Region Facilitates Host Adaptation in a "Photosynthetic― Cyanophage. PLoS ONE, 2015, 10, e0132642.	1.1	11
52	Temperature-Correlated Changes in Phytoplankton Community Structure Are Restricted to Polar Waters. PLoS ONE, 2015, 10, e0135581.	1.1	48
53	Insights into the Microbial and Viral Dynamics of a Coastal Downwelling-Upwelling Transition. PLoS ONE, 2015, 10, e0137090.	1.1	16
54	Engineering a Global Response to Infectious Diseases. Proceedings of the IEEE, 2015, 103, 263-272.	16.4	5

#	ARTICLE	IF	CITATIONS
55	Dynamics of the bacterial and archaeal communities in the Northern South China Sea revealed by 454 pyrosequencing of the 16S rRNA gene. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 117, 97-107.	0.6	39
56	Occurrence of Far-Red Light Photoacclimation (FaRLiP) in Diverse Cyanobacteria. Life, 2015, 5, 4-24.	1.1	155
57	Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity. Nature Geoscience, 2015, 8, 126-130.	5.4	68
58	Challenges of metagenomics and single-cell genomics approaches for exploring cyanobacterial diversity. Photosynthesis Research, 2015, 126, 135-146.	1.6	10
59	Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodiversity and Conservation, 2015, 24, 949-971.	1.2	29
60	Cell surface reactivity of Synechococcus sp. PCC 7002: Implications for metal sorption from seawater. Geochimica Et Cosmochimica Acta, 2015, 169, 30-44.	1.6	48
61	Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnology and Oceanography, 2015, 60, 1212-1221.	1.6	19
62	Phytoplankton adapt to changing ocean environments. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5762-5766.	3.3	114
63	Copper speciation and distribution in the Atlantic sector of the Southern Ocean. Marine Chemistry, 2015, 173, 253-268.	0.9	52
64	Convergent evolution toward an improved growth rate and a reduced resistance range in <i>Prochlorococcus</i> strains resistant to phage. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2191-200.	3.3	54
65	Cyanobacterial distributions along a physicoâ€chemical gradient in the <scp>N</scp> ortheastern <scp>P</scp> acific <scp>O</scp> cean. Environmental Microbiology, 2015, 17, 3692-3707.	1.8	42
66	Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proceedings of the United States of America, 2015, 112, 13591-13596.	3.3	159
67	Luxury uptake, iron storage and ferritin abundance in <i>Prochlorococcus marinus</i> (Synechococcales) strain MED4. Phycologia, 2015, 54, 398-406.	0.6	15
68	Latent hydrocarbons from cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13434-13435.	3.3	30
69	Divergent responses of Atlantic coastal and oceanic <i>Synechococcus</i> to iron limitation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9944-9949.	3.3	61
70	Phytoplankton biomass and composition in a well-flushed, sub-tropical estuary: The contrasting effects of hydrology, nutrient loads and allochthonous influences. Marine Environmental Research, 2015, 112, 9-20.	1.1	36
71	Comparison of the Seasonal Variations of Synechococcus Assemblage Structures in Estuarine Waters and Coastal Waters of Hong Kong. Applied and Environmental Microbiology, 2015, 81, 7644-7655.	1.4	69
72	More, smaller bacteria in response to ocean's warming?. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150371.	1.2	84

#	Article	IF	Citations
	Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean. Science, 2015, 350,		
73	1530-1533.	6.0	71
74	Biological ramifications of climate-change-mediated oceanic multi-stressors. Nature Climate Change, 2015, 5, 71-79.	8.1	214
75	Marine Cyanophages Demonstrate Biogeographic Patterns throughout the Global Ocean. Applied and Environmental Microbiology, 2015, 81, 441-452.	1.4	37
76	Prochlorococcus: the structure and function of collective diversity. Nature Reviews Microbiology, 2015, 13, 13-27.	13.6	435
77	Shedding new light on viral photosynthesis. Photosynthesis Research, 2015, 126, 71-97.	1.6	76
78	When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems. Journal of Plankton Research, 2015, 37, 28-47.	0.8	20
79	Physiology and evolution of nitrate acquisition in <i>Prochlorococcus</i> . ISME Journal, 2015, 9, 1195-1207.	4.4	130
80	Hostâ€dependent differences in abundance, composition and host range of cyanophages from the <scp>R</scp> ed <scp>S</scp> ea. Environmental Microbiology, 2015, 17, 1286-1299.	1.8	42
81	Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Progress in Oceanography, 2015, 130, 205-248.	1.5	618
82	Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon. Biogeosciences, 2016, 13, 2319-2337.	1.3	16
83	Spatial Variations of Prokaryotic Communities in Surface Water from India Ocean to Chinese Marginal Seas and their Underlining Environmental Determinants. Frontiers in Marine Science, 2016, 3, .	1.2	11
84	Distribution of Prochlorococcus Ecotypes in the Red Sea Basin Based on Analyses of rpoC1 Sequences. Frontiers in Marine Science, 2016, 3, .	1.2	17
85	The Physiological Response of Picophytoplankton to Temperature and Its Model Representation. Frontiers in Marine Science, 2016, 3, .	1.2	29
86	Synechococcus in the Atlantic Gateway to the Arctic Ocean. Frontiers in Marine Science, 2016, 3, .	1.2	103
87	Physiological Studies of Glutamine Synthetases I and III from Synechococcus sp. WH7803 Reveal Differential Regulation. Frontiers in Microbiology, 2016, 7, 969.	1.5	11
88	A Sample-to-Sequence Protocol for Genus Targeted Transcriptomic Profiling: Application to Marine Synechococcus. Frontiers in Microbiology, 2016, 7, 1592.	1.5	1
89	Intraclade Heterogeneity in Nitrogen Utilization by Marine Prokaryotes Revealed Using Stable Isotope Probing Coupled with Tag Sequencing (Tag-SIP). Frontiers in Microbiology, 2016, 7, 1932.	1.5	24
90	Highly Variable Bacterial Communities Associated with the Octocoral Antillogorgia elisabethae. Microorganisms, 2016, 4, 23.	1.6	29

#	Article	IF	CITATIONS
91	Methanol Production by a Broad Phylogenetic Array of Marine Phytoplankton. PLoS ONE, 2016, 11, e0150820.	1.1	54
92	A Comprehensive Study of Cyanobacterial Morphological and Ecological Evolutionary Dynamics through Deep Geologic Time. PLoS ONE, 2016, 11, e0162539.	1.1	69
93	The Role of Ocean Currents in the Temperature Selection of Plankton: Insights from an Individual-Based Model. PLoS ONE, 2016, 11, e0167010.	1.1	16
94	Interactions between Thermal Acclimation, Growth Rate, and Phylogeny Influence Prochlorococcus Elemental Stoichiometry. PLoS ONE, 2016, 11, e0168291.	1.1	45
95	Temporal dynamics of <i>P rochlorococcus</i> cells with the potential for nitrate assimilation in the subtropical Atlantic and Pacific oceans. Limnology and Oceanography, 2016, 61, 482-495.	1.6	29
96	Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 2016, 353, .	6.0	155
97	Microzooplankton regulation of surface ocean POC:PON ratios. Global Biogeochemical Cycles, 2016, 30, 311-332.	1.9	23
98	Silicon content of individual cells of Synechococcus from the North Atlantic Ocean. Marine Chemistry, 2016, 187, 16-24.	0.9	24
99	Cell surface acid-base properties of the cyanobacterium Synechococcus : Influences of nitrogen source, growth phase and N:P ratios. Geochimica Et Cosmochimica Acta, 2016, 187, 179-194.	1.6	14
100	Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B12. Current Biology, 2016, 26, 999-1008.	1.8	220
101	Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proceedings of the United States of America, 2016, 113, 5700-5705.	3.3	78
102	Did a "perfect storm―of oceanic changes and continental anthropogenic impacts cause northern hemisphere anguillid recruitment reductions?. ICES Journal of Marine Science, 2016, 73, 43-56.	1.2	65
103	Bio-optical characteristics along the Straits of Magallanes. Continental Shelf Research, 2016, 119, 56-67.	0.9	11
104	Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine <i>Synechococcus</i> . ISME Journal, 2016, 10, 2715-2724.	4.4	90
105	Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5970-5975.	3.3	857
106	Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME Journal, 2016, 10, 2946-2957.	4.4	82
107	Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine <i>Synechococcus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6077-6082.	3.3	37
108	Genomic diversification of marine cyanophages into stable ecotypes. Environmental Microbiology, 2016, 18, 4240-4253.	1.8	44

#	Article	IF	CITATIONS
109	Influence of spectral wavelength and N:P ratio on the cell cycle of <i>Synechococcus</i> strain CSIRNIO1 isolated from the central Eastern Arabian Sea. European Journal of Phycology, 2016, 51, 469-481.	0.9	4
110	Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria. Plant Physiology, 2016, 172, 1928-1940.	2.3	53
111	Genetic and ecophysiological traits of <i>Synechococcus</i> strains isolated from coastal and open ocean waters of the Arabian Sea. FEMS Microbiology Ecology, 2016, 92, fiw162.	1.3	10
112	Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton. Science of the Total Environment, 2016, 571, 34-41.	3.9	33
113	Responses of phytoplankton community to the input of different aerosols in the East China Sea. Geophysical Research Letters, 2016, 43, 7081-7088.	1.5	22
114	Validation of trophic and anthropic underwater noise as settlement trigger in blue mussels. Scientific Reports, 2016, 6, 33829.	1.6	29
115	Variable depth distribution of <i>Trichodesmium</i> clades in the North Pacific Ocean. Environmental Microbiology Reports, 2016, 8, 1058-1066.	1.0	16
116	Evolutionary Computation. , 2016, , 40-47.		4
117	Phototrophic Microorganisms: The Basis of the Marine Food Web. , 2016, , 57-97.		4
118	MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions. Journal of Biomedical Semantics, 2016, 7, 18.	0.9	12
119	Viruses Inhibit CO 2 Fixation in the Most Abundant Phototrophs on Earth. Current Biology, 2016, 26, 1585-1589.	1.8	94
120	Torn apart and reunited: impact of a heterotroph on the transcriptome of <i>Prochlorococcus</i> . ISME Journal, 2016, 10, 2831-2843.	4.4	53
121	Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3365-74.	3.3	159
122	Responses of Phytoplankton Communities to Environmental Variability in the East China Sea. Ecosystems, 2016, 19, 832-849.	1.6	103
123	Proposal of fifteen new species of Parasynechococcus based on genomic, physiological and ecological features. Archives of Microbiology, 2016, 198, 973-986.	1.0	10
124	Prokaryotic picoplankton spatial distribution during summer in a haline front in the Balearic Sea, Western Mediterranean. Hydrobiologia, 2016, 779, 243-257.	1.0	9
125	Niche partitioning and biogeography of high light adapted <i>Prochlorococcus</i> across taxonomic ranks in the North Pacific. ISME Journal, 2016, 10, 1555-1567.	4.4	63
126	Diel variability in the elemental composition of the marine cyanobacterium <i>Synechococcus</i> . Journal of Plankton Research, 2016, 38, 1052-1061.	0.8	36

		CITATION REPORT	
#	Article	IF	CITATIONS
127	Diel periodicity of grazing by heterotrophic nanoflagellates influenced by prey cell properties and intrinsic grazing rhythm. Journal of Plankton Research, 2016, 38, 636-651.	0.8	19
128	Plankton communities in the five lles Eparses (Western Indian Ocean) considered to be pristine ecosystems. Acta Oecologica, 2016, 72, 9-20.	0.5	11
129	Sulphur and Algae: Metabolism, Ecology and Evolution. , 2016, , 185-209.		19
130	Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2964		204
131	Clobal biogeography of <i>Prochlorococcus</i> genome diversity in the surface ocean. ISME Journal 2016, 10, 1856-1865.	l, 4.4	76
132	Trophic relationships between metazooplankton communities and their plankton food sources in th lles Eparses (Western Indian Ocean). Marine Environmental Research, 2016, 116, 18-31.	le 1.1	25
133	A global seasonal surface ocean climatology of phytoplankton types based on CHEMTAX analysis of HPLC pigments. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 109, 137-156.	0.6	33
134	Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Science Bulletin, 2016, 61, 163-171.	4.3	109
135	Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME Journal, 2016, 10, 500-513.	4.4	103
136	Co-occurring <i>Synechococcus</i> ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME Journal, 2016, 10, 333-345.	4.4	169
137	Inhibition by ultraviolet and photosynthetically available radiation lowers model estimates of depthâ€integrated picophytoplankton photosynthesis: global predictions for <i>Prochlorococcus</i> Synechococcus <td>·> 4.2</td> <td>19</td>	·> 4.2	19
138	The Synechococcus cell surface protein SwmA increases vulnerability to predation by flagellates and ciliates. Limnology and Oceanography, 2017, 62, 784-794.	1.6	10
139	Stoichiometry of <i>Prochlorococcus, Synechococcus</i> , and small eukaryotic populations in the western North Atlantic Ocean. Environmental Microbiology, 2017, 19, 1568-1583.	1.8	25
140	Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Current Biology, 2017, 27, R15-R16.	1.8	35
141	Identifying the Metabolic Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973. Scientific Reports, 2017, 7, 41569.	1.6	56
142	The effect of iron limitation on cyanobacteria major nutrient and trace element stoichiometry. Limnology and Oceanography, 2017, 62, 846-858.	1.6	21
143	Effects of elevated CO2 and nitrogen supply on the growth and photosynthetic physiology of a mar cyanobacterium, Synechococcus sp. PCC7002. Journal of Applied Phycology, 2017, 29, 1755-1763.	ine 1.5	17
144	Trade-Off Between Dimethyl Sulfide and Isoprene Emissions from Marine Phytoplankton. Trends in Plant Science, 2017, 22, 361-372.	4.3	60

# 145	ARTICLE Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environmental Microbiology Reports, 2017, 9, 55-70.	IF 1.0	CITATIONS
146	Shifting of phytoplankton community in the frontal regions of Indian Ocean sector of the Southern Ocean using <i>in situ</i> and satellite data. Journal of Applied Remote Sensing, 2017, 11, 016019.	0.6	7
147	Diversity of the Cyanobacteria. , 2017, , 3-46.		27
148	Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottomâ€up and topâ€down controls. Global Change Biology, 2017, 23, 3956-3964.	4.2	48
149	Stress, death, and the biological glue of sinking matter. Journal of Phycology, 2017, 53, 241-244.	1.0	6
150	Genetic hurdles limit the arms race between <i>Prochlorococcus</i> and the T7-like podoviruses infecting them. ISME Journal, 2017, 11, 1836-1851.	4.4	36
151	Distributions and relationships of virio- and picoplankton in the epi-, meso- and bathypelagic zones of the Western Pacific Ocean. FEMS Microbiology Ecology, 2017, 93, fiw238.	1.3	36
152	Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nature Communications, 2017, 8, 15284.	5.8	100
153	Fundamental differences in diversity and genomic population structure between Atlantic and Pacific <i>Prochlorococcus</i> . ISME Journal, 2017, 11, 1997-2011.	4.4	56
154	Seabirds. Current Biology, 2017, 27, R448-R450.	1.8	15
155	Prochlorococcus. Current Biology, 2017, 27, R447-R448.	1.8	19
156	Microorganisms and ocean global change. Nature Microbiology, 2017, 2, 17058.	5.9	302
157	Distribution and diversity of marine picocyanobacteria community: Targeting of Prochlorococcus ecotypes in winter conditions (southern Adriatic Sea). Marine Genomics, 2017, 36, 3-11.	0.4	15
158	Physiological and proteomic characterization of light adaptations in marine <i>Synechococcus</i> . Environmental Microbiology, 2017, 19, 2348-2365.	1.8	20
159	Picophytoplankton Seasonal Dynamics and Interactions with Environmental Variables in Three Mediterranean Coastal Lagoons. Estuaries and Coasts, 2017, 40, 469-478.	1.0	17
160	Photoinhibition in marine picocyanobacteria. Physiologia Plantarum, 2017, 161, 97-108.	2.6	21
161	Metabolic evolution and the self-organization of ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3091-E3100.	3.3	139
162	Robert R. L. Guillard (5 February 1921–25 September 2016). Phycologia, 2017, 56, 354-358.	0.6	1

#	Article	IF	CITATIONS
163	Direct single-cell biomass estimates for marine bacteria via Archimedes' principle. ISME Journal, 2017, 11, 825-828.	4.4	47
164	CPSIR-CM: A database for structural properties of proteins identified in cyanobacterial C1 metabolism. Algal Research, 2017, 22, 135-139.	2.4	8
165	Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments. International Journal of Astrobiology, 2017, 16, 271-279.	0.9	3
166	The ecology of oceanic dispersal and survival of anguillid leptocephali. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 958-971.	0.7	50
167	Phytoplankton community structure in relation to hydrographic features along a coast-to-offshore transect on the SW Atlantic Continental Shelf. Continental Shelf Research, 2017, 151, 30-39.	0.9	10
168	Influence of short-term hydrographic variations during the north-east monsoon on picophytoplankton community structure in the eastern Arabian Sea. Continental Shelf Research, 2017, 146, 28-36.	0.9	7
169	Carbon use efficiencies and allocation strategies in Prochlorococcus marinus strain PCC 9511 during nitrogen-limited growth. Photosynthesis Research, 2017, 134, 71-82.	1.6	18
170	The U.S. Culture Collection Network Responding to the Requirements of the Nagoya Protocol on Access and Benefit Sharing. MBio, 2017, 8, .	1.8	30
171	Nitrogen cost minimization is promoted by structural changes in the transcriptome of N-deprived <i>Prochlorococcus</i> cells. ISME Journal, 2017, 11, 2267-2278.	4.4	27
173	Using species distribution modelling to predict future distributions of phytoplankton: Case study using species important for the biological pump. Marine Ecology, 2017, 38, e12427.	0.4	17
174	Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nature Microbiology, 2017, 2, 17100.	5.9	181
175	Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nature Communications, 2017, 8, 15955.	5.8	231
176	Influence of agriculture and aquaculture activities on the response of autotrophic picoplankton in Laguna Macapule, Gulf of California (Mexico). Ecological Processes, 2017, 6, .	1.6	4
177	Phylogeography and pigment type diversity of <i>Synechococcus</i> cyanobacteria in surface waters of the northwestern pacific ocean. Environmental Microbiology, 2017, 19, 142-158.	1.8	40
178	Exopolymer production as a function of cell permeability and death in a diatom (<i>Thalassiosira) Tj ETQq0 0 0 53, 245-260.</i>	rgBT /Over 1.0	lock 10 Tf 50 24
179	Adaptive thermostability of light-harvesting complexes in marine picocyanobacteria. ISME Journal, 2017, 11, 112-124.	4.4	34
180	Metaâ€omic analyses of Baltic Sea cyanobacteria: diversity, community structure and salt acclimation. Environmental Microbiology, 2017, 19, 673-686.	1.8	65
181	Copper toxicity response influences mesotrophic <scp><i>S</i></scp> <i>ynechococcus</i> community structure. Environmental Microbiology, 2017, 19, 756-769.	1.8	6

#	Article	IF	CITATIONS
182	Three-Dimensional Superresolution Imaging of the FtsZ Ring during Cell Division of the Cyanobacterium <i>Prochlorococcus</i> . MBio, 2017, 8, .	1.8	30
183	Synechococcus plasticity under environmental changes. FEMS Microbiology Letters, 2017, 364, .	0.7	56
184	Predictions of response to temperature are contingent on model choice and data quality. Ecology and Evolution, 2017, 7, 10467-10481.	0.8	19
185	Two Synechococcus genes, Two Different Effects on Cyanophage Infection. Viruses, 2017, 9, 136.	1.5	19
186	Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis. Frontiers in Marine Science, 2017, 4, .	1.2	12
187	Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean. Frontiers in Marine Science, 2017, 4, .	1.2	25
188	Long-Term Acclimation to Iron Limitation Reveals New Insights in Metabolism Regulation of Synechococcus sp. PCC7002. Frontiers in Marine Science, 2017, 4, .	1.2	12
189	Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time. Frontiers in Marine Science, 2017, 4, .	1.2	88
190	Adaptation to Blue Light in Marine Synechococcus Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases. Frontiers in Microbiology, 2017, 8, 243.	1.5	25
191	Novel Synechococcus Genomes Reconstructed from Freshwater Reservoirs. Frontiers in Microbiology, 2017, 8, 1151.	1.5	69
192	Synechococcus Assemblages across the Salinity Gradient in a Salt Wedge Estuary. Frontiers in Microbiology, 2017, 8, 1254.	1.5	51
193	Mesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic. Frontiers in Microbiology, 2017, 8, 1436.	1.5	40
194	Seasonal Succession and Spatial Patterns of Synechococcus Microdiversity in a Salt Marsh Estuary Revealed through 16S rRNA Gene Oligotyping. Frontiers in Microbiology, 2017, 8, 1496.	1.5	39
195	Estimating Primary Production of Picophytoplankton Using the Carbon-Based Ocean Productivity Model: A Preliminary Study. Frontiers in Microbiology, 2017, 8, 1926.	1.5	38
196	Ecogenomics and Taxonomy of Cyanobacteria Phylum. Frontiers in Microbiology, 2017, 8, 2132.	1.5	99
197	Characterization of spatial distribution of the bacterial community in the South Sea of Korea. PLoS ONE, 2017, 12, e0174159.	1.1	29
198	Variability of ultraplankton composition and distribution in an oligotrophic coastal ecosystem of the NW Mediterranean Sea derived from a two-year survey at the single cell level. PLoS ONE, 2017, 12, e0190121.	1.1	10
199	Spatiotemporal analysis of microbial community dynamics during seasonal stratification events in a freshwater lake (Grand Lake, OK, USA). PLoS ONE, 2017, 12, e0177488.	1.1	47

# 200	ARTICLE The cyanobacterial circadian clock follows midday in vivo and in vitro. ELife, 2017, 6, .	IF 2.8	Citations 37
201	The Structural Basis for the Extraordinary Energy-Transfer Capabilities of the Phycobilisome. Sub-Cellular Biochemistry, 2018, 87, 57-82.	1.0	15
202	Sustained climate warming drives declining marine biological productivity. Science, 2018, 359, 1139-1143.	6.0	276
203	Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean. Nature Communications, 2018, 9, 915.	5.8	67
204	Stress effects of cyanotoxin βâ€methylamino‣â€alanine (BMAA) on cyanobacterial heterocyst formation and functionality. Environmental Microbiology Reports, 2018, 10, 369-377.	1.0	19
205	Picoplankton distribution influenced by thermohaline circulation in the southern Adriatic. Continental Shelf Research, 2018, 155, 21-33.	0.9	9
206	Impact on the Fe redox cycling of organic ligands released by Synechococcus PCC 7002, under different iron fertilization scenarios. Modeling approach. Journal of Marine Systems, 2018, 182, 67-78.	0.9	12
207	Light color acclimation is a key process in the global ocean distribution of <i>Synechococcus cyanobacteria</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2010-E2019.	3.3	91
208	Energy limitation of cyanophage development: implications for marine carbon cycling. ISME Journal, 2018, 12, 1273-1286.	4.4	62
209	Crossâ€protection from hydrogen peroxide by helper microbes: the impacts on the cyanobacterium <i>Prochlorococcus</i> and other beneficiaries in marine communities. Environmental Microbiology Reports, 2018, 10, 399-411.	1.0	30
210	Effects of salinity on cellular growth and exopolysaccharide production of freshwater Synechococcus strain CCAP1405. Journal of Plankton Research, 2018, 40, 46-58.	0.8	23
211	Clade and strain specific contributions of <i>Synechococcus</i> and <i>Prochlorococcus</i> to carbon export in the Sargasso Sea. Limnology and Oceanography, 2018, 63, S448.	1.6	32
212	Distinct features of C/N balance regulation in Prochlorococcus sp. strain MIT9313. FEMS Microbiology Letters, 2018, 365, .	0.7	5
213	Spatial variability in picophytoplankton, bacteria and viruses in waters of the Great Australian Bight (southern Australia). Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 157-158, 46-57.	0.6	14
214	Realized niches explain spatial gradients in seasonal abundance of phytoplankton groups in the South China Sea. Progress in Oceanography, 2018, 162, 223-239.	1.5	57
215	Light-dependent cytolysis in the allelopathic interaction between picoplanktic and filamentous cyanobacteria. Journal of Plankton Research, 2018, 40, 165-177.	0.8	16
216	Shift in Cyanobacteria Community Diversity in Hot Springs of India. Geomicrobiology Journal, 2018, 35, 141-147.	1.0	11
217	Variation of Synechococcus Pigment Genetic Diversity Along Two Turbidity Gradients in the China Seas. Microbial Ecology, 2018, 75, 10-21.	1.4	19

#	Article	IF	CITATIONS
218	Degradation of hydrogen peroxide at the ocean's surface: the influence of the microbial community on the realized thermal niche of <i>Prochlorococcus</i> . ISME Journal, 2018, 12, 473-484.	4.4	45
219	<i>Elainella</i> gen. nov.: a new tropical cyanobacterium characterized using a complex genomic approach. European Journal of Phycology, 2018, 53, 39-51.	0.9	27
220	UVâ€B induced biosynthesis of a novel sunscreen compound in solar radiation and desiccation tolerant cyanobacteria. Environmental Microbiology, 2018, 20, 200-213.	1.8	40
221	Quantification of diverse virus populations in the environment using the polony method. Nature Microbiology, 2018, 3, 62-72.	5.9	53
222	Cyanobacteria: Promising biocatalysts for sustainable chemical production. Journal of Biological Chemistry, 2018, 293, 5044-5052.	1.6	184
223	Thermoacclimation and genome adaptation of the membrane lipidome in marine <i>Synechococcus</i> . Environmental Microbiology, 2018, 20, 612-631.	1.8	39
224	Ecophysiological characteristics of red, green, and brown strains of the Baltic picocyanobacterium <i>Synechococcus</i> sp. – a laboratory study. Biogeosciences, 2018, 15, 6257-6276.	1.3	9
225	Linking pangenomes and metagenomes: the <i>Prochlorococcus</i> metapangenome. PeerJ, 2018, 6, e4320.	0.9	318
226	Factors controlling the community structure of picoplankton in contrasting marine environments. Biogeosciences, 2018, 15, 6199-6220.	1.3	44
227	The Distinctive Regulation of Cyanobacterial Glutamine Synthetase. Life, 2018, 8, 52.	1.1	37
228	Adaptation to sub-optimal hosts is a driver of viral diversification in the ocean. Nature Communications, 2018, 9, 4698.	5.8	39
229	Effects of Phosphorus in Growth Media on Biomineralization and Cell Surface Properties of Marine Cyanobacteria Synechococcus. Geosciences (Switzerland), 2018, 8, 471.	1.0	15
230	Web Strategy to Convey Marine Biogeochemical Feedback Concepts to the Policy Community: Aerosol and Sea Ice. Atmosphere, 2018, 9, 22.	1.0	2
231	Dynamics of Prochlorococcus Diversity and Photoacclimation During Short-Term Shifts in Water Column Stratification at Station ALOHA. Frontiers in Marine Science, 2018, 5, .	1.2	17
233	Prochlorococcus viruses—From biodiversity to biogeochemical cycles. Science China Earth Sciences, 2018, 61, 1728-1736.	2.3	4
234	The Niche at the Edge of Life or the Microbial Ecology (Including Microfungi) of Cuatro Ciénegas: Mutualisms with Locals, Antagonisms Against Foreigners. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2018, , 73-82.	0.4	0
235	Bacterial community structure in the Bohai Strait provides insights into organic matter niche partitioning. Continental Shelf Research, 2018, 169, 46-54.	0.9	13
236	Insight Into the Pico- and Nano-Phytoplankton Communities in the Deepest Biosphere, the Mariana Trench. Frontiers in Microbiology, 2018, 9, 2289.	1.5	30

ARTICLE IF CITATIONS # The genome of a novel isolate of Prochlorococcus from the Red Sea contains transcribed genes for 237 1.3 5 compatible solute biosynthesis. FEMS Microbiology Ecology, 2018, 94, . Phytoplankton Realized Niches Track Changing Oceanic Conditions at a Long-Term Coastal Station off 1.2 Sydney Australia. Frontiers in Marine Science, 2018, 5, . The importance of resolving biogeographic patterns of microbial microdiversity. Microbiology 240 0.1 23 Australia, 2018, 39, 5. Differential physiological responses of the coastal cyanobacterium Synechococcus sp. PCC7002 to elevated pCO2 at lag, exponential, and stationary growth phases. Science China Earth Sciences, 2018, 241 61, 1397-1405. Heterotroph Interactions Alter <i>Prochlorococcus</i> Transcriptome Dynamics during Extended 242 1.7 38 Periods of Darkness. MSystems, 2018, 3, . Pico- and Nanophytoplankton Dynamics in Two Coupled but Contrasting Coastal Bays in the NW Mediterranean Sea (France). Estuaries and Coasts, 2018, 41, 2039-2055. 1.0 A metabarcoding survey for seasonal picophytoplankton composition in two coral reefs around 244 1.5 4 Sesoko Island, Okinawa, Japan. Journal of Applied Phycology, 2018, 30, 3179-3186. Comparison of photosynthetic performances of marine picocyanobacteria with different 1.6 configurations of the oxygen-evolving complex. Photosynthesis Research, 2018, 138, 57-71. High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime 246 39 1.5 survival. PLoS Genetics, 2018, 14, e1007301. Specialized proteomic responses and an ancient photoprotection mechanism sustain marine green 247 algal growth during phosphate limitation. Nature Microbiology, 2018, 3, 781-790. Metagenomics Sheds Light on the Ecology of Marine Microbes and Their Viruses. Trends in 248 49 3.5 Microbiology, 2018, 26, 955-965. Distinct molecular signatures in dissolved organic matter produced by viral lysis of marine 1.8 cyanobacteria. Environmental Microbiology, 2018, 20, 3001-3011. Outer Membrane Iron Uptake Pathways in the Model Cyanobacterium Synechocystis sp. Strain PCC 250 1.4 26 6803. Applied and Environmental Microbiology, 2018, 84, . Allelopathic and Bloom-Forming Picocyanobacteria in a Changing World. Toxins, 2018, 10, 48. 1.5 Differential NtcA Responsiveness to 2-Oxoglutarate Underlies the Diversity of C/N Balance Regulation 252 1.5 28 in Prochlorococcus. Frontiers in Microbiology, 2017, 8, 2641. Bacterial Diversity and Nitrogen Utilization Strategies in the Upper Layer of the Northwestern Pacific 48 Ocean. Frontiers in Microbiology, 2018, 9, 797. Metagenomic Analysis of Cyanobacteria in an Oligotrophic Tropical Estuary, South Atlantic. Frontiers 254 1.517 in Microbiology, 2018, 9, 1393. The evolutionary signal in metagenome phyletic profiles predicts many gene functions. Microbiome, 2018, 6, 129.

#	Article	IF	CITATIONS
256	Agulhas Current properties shape microbial community diversity and potential functionality. Scientific Reports, 2018, 8, 10542.	1.6	12
257	Climate Change Impacts on Natural Sulfur Production: Ocean Acidification and Community Shifts. Atmosphere, 2018, 9, 167.	1.0	7
258	Microalgal Systematics. , 2018, , 73-107.		2
259	A Long-Standing Complex Tropical Dipole Shapes Marine Microbial Biogeography. Applied and Environmental Microbiology, 2018, 84, .	1.4	6
260	Scratching Beneath the Surface: A Model to Predict the Vertical Distribution of Prochlorococcus Using Remote Sensing. Remote Sensing, 2018, 10, 847.	1.8	21
261	Effects of increasing nutrient disturbances on phytoplankton community structure and biodiversity in two tropical seas. Marine Pollution Bulletin, 2018, 135, 239-248.	2.3	13
262	Effect of temperature on the accumulation of marine biogenic gels in the surface microlayer near the outlet of nuclear power plants and adjacent areas in the Daya Bay, China. PLoS ONE, 2018, 13, e0198735.	1.1	9
263	Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate. Sustainability, 2018, 10, 869.	1.6	141
264	Allelopathic activity of the bloomâ€forming picocyanobacterium <i>Synechococcus</i> sp. on the coexisting microalgae: The role of eutrophication. International Review of Hydrobiology, 2018, 103, 37-47.	0.5	12
265	Phytoplankton Assemblages of the Subtropical South West Atlantic: Composition and Dynamics in Relation to Physical and Chemical Processes. , 2018, , 129-148.		3
266	Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity. Ecological Modelling, 2018, 384, 241-248.	1.2	13
267	Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. BMC Genomics, 2018, 19, 259.	1.2	41
268	Overproduction, purification, and characterization of nanosized polyphosphate bodies from Synechococcus sp. PCC 7002. Microbial Cell Factories, 2018, 17, 27.	1.9	9
269	Influence of dimethyl sulfide on the carbon cycle and biological production. Biogeochemistry, 2018, 138, 49-68.	1.7	35
270	Energy transfer and trapping in Synechococcus WH 7803. Photosynthesis Research, 2018, 135, 115-124.	1.6	11
271	A singular nitric oxide synthase with a globin domain found in Synechococcus PCC 7335 mobilizes N from arginine to nitrate. Scientific Reports, 2018, 8, 12505.	1.6	27
272	First Record of Microbiomes of Sponges Collected From the Persian Gulf, Using Tag Pyrosequencing. Frontiers in Microbiology, 2018, 9, 1500.	1.5	24
273	Elemental Stoichiometry and Photophysiology Regulation of Synechococcus sp. PCC7002 Under Increasing Severity of Chronic Iron Limitation. Plant and Cell Physiology, 2018, 59, 1803-1816.	1.5	8

#	Article	IF	CITATIONS
275	Distribution patterns of marine planktonic cyanobacterial assemblages in transitional marine habitats using 16S rRNA phylogeny. Phycological Research, 2018, 66, 189-198.	0.8	13
276	Impacts of Shifts in Phytoplankton Community on Clouds and Climate via the Sulfur Cycle. Global Biogeochemical Cycles, 2018, 32, 1005-1026.	1.9	27
277	Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons. PLoS ONE, 2018, 13, e0190266.	1.1	41
278	Vertical and horizontal biogeographic patterns and major factors affecting bacterial communities in the open South China Sea. Scientific Reports, 2018, 8, 8800.	1.6	27
279	Temporal dynamics of eukaryotic microbial diversity at a coastal Pacific site. ISME Journal, 2018, 12, 2278-2291.	4.4	19
280	Genome Rearrangement Shapes Prochlorococcus Ecological Adaptation. Applied and Environmental Microbiology, 2018, 84, .	1.4	17
281	Mechanisms and Pathways of Small-Phytoplankton Export from the Surface Ocean. Annual Review of Marine Science, 2019, 11, 57-74.	5.1	78
282	Membrane organization of photosystem I complexes in the most abundant phototroph on Earth. Nature Plants, 2019, 5, 879-889.	4.7	22
283	How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth?. Free Radical Biology and Medicine, 2019, 140, 154-166.	1.3	15
284	Picophytoplankton variability: Influence of Rossby wave propagation in the southeastern Arabian Sea. Journal of Marine Systems, 2019, 199, 103221.	0.9	6
285	Dust-Associated Airborne Microbes Affect Primary and Bacterial Production Rates, and Eukaryotes Diversity, in the Northern Red Sea: A Mesocosm Approach. Atmosphere, 2019, 10, 358.	1.0	15
286	Coccolithophore responses to the Pacific Decadal Oscillation in the East China Sea region of the Northwest Pacific from <scp>ad</scp> 1901 to 2013. Journal of Quaternary Science, 2019, 34, 333-341.	1.1	3
287	Extracellular superoxide production by key microbes in the global ocean. Limnology and Oceanography, 2019, 64, 2679-2693.	1.6	32
288	Landsat-derived environmental factors to describe habitat preferences and spatiotemporal distribution of phytoplankton. Ecological Modelling, 2019, 408, 108759.	1.2	8
289	Towards Integrating Evolution, Metabolism, and Climate Change Studies of Marine Ecosystems. Trends in Ecology and Evolution, 2019, 34, 1022-1033.	4.2	28
290	Genomics reveals alga-associated cyanobacteria hiding in plain sight. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15757-15759.	3.3	2
291	Monitoring Microbial Communities in the Marine Environment. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 717-721.	1.1	3
292	The importance of cyanobacteria and microalgae present in aerosols to human health and the environment $\hat{a} \in$ Review study. Environment International, 2019, 131, 104964.	4.8	57

	CITATION	Report	
#	Article	IF	CITATIONS
293	Freshwater-to-marine transitions may explain the evolution of herbivory in the subgenus Mollienesia (genus Poecilia, mollies and guppies). Biological Journal of the Linnean Society, 2019, 127, 742-761.	0.7	3
294	Small Phytoplankton Shapes Colored Dissolved Organic Matter Dynamics in the North Atlantic Subtropical Gyre. Geophysical Research Letters, 2019, 46, 12183-12191.	1.5	18
295	Hopanoid lipids may facilitate aerobic nitrogen fixation in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18269-18271.	3.3	31
296	Photosynthetic conversion of CO2 to hyaluronic acid by engineered strains of the cyanobacterium Synechococcus sp. PCC 7002. Algal Research, 2019, 44, 101702.	2.4	21
297	Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell, 2019, 179, 1084-1097.e21.	13.5	271
298	Heterotrophic Bacteria Enhance the Aggregation of the Marine Picocyanobacteria Prochlorococcus and Synechococcus. Frontiers in Microbiology, 2019, 10, 1864.	1.5	40
299	Temperature-Dependent Bifurcated Seasonal Shift of Phytoplankton Community Composition in the Coastal Water off Southwestern Korea. Ocean Science Journal, 2019, 54, 467-486.	0.6	6
300	Salt-Regulated Accumulation of the Compatible Solutes Sucrose and Glucosylglycerol in Cyanobacteria and Its Biotechnological Potential. Frontiers in Microbiology, 2019, 10, 2139.	1.5	69
301	Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. Annual Review of Microbiology, 2019, 73, 407-433.	2.9	72
302	Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria. Scientific Data, 2019, 6, 163.	2.4	23
303	Factors Regulating the Relationship Between Total and Size-Fractionated Chlorophyll-a in Coastal Waters of the Red Sea. Frontiers in Microbiology, 2019, 10, 1964.	1.5	23
304	Proteomic Response to Rising Temperature in the Marine Cyanobacterium Synechococcus Grown in Different Nitrogen Sources. Frontiers in Microbiology, 2019, 10, 1976.	1.5	13
305	Development of a longevous two-species biophotovoltaics with constrained electron flow. Nature Communications, 2019, 10, 4282.	5.8	45
306	Responses of marine phytoplankton communities to environmental changes: New insights from a niche classification scheme. Water Research, 2019, 166, 115070.	5.3	20
307	Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158522.	1.2	15
308	Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology. Microorganisms, 2019, 7, 409.	1.6	39
309	The Influence of Temperature and Community Structure on Light Absorption by Phytoplankton in the North Atlantic. Sensors, 2019, 19, 4182.	2.1	15
310	DOP Stimulates Heterotrophic Bacterial Production in the Oligotrophic Southeastern Mediterranean Coastal Waters. Frontiers in Microbiology, 2019, 10, 1913.	1.5	26

#	ARTICLE	IF	CITATIONS
311	The structure of a highly-conserved picocyanobacterial protein reveals a Tudor domain with an RNA-binding function. Journal of Biological Chemistry, 2019, 294, 14333-14344.	1.6	3
312	The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190090.	1.8	32
313	Remote sensing, isotopic composition and metagenomics analyses revealed Doce River ore plume reached the southern Abrolhos Bank Reefs. Science of the Total Environment, 2019, 697, 134038.	3.9	50
314	Insights Into the Evolution of Picocyanobacteria and Phycoerythrin Genes (mpeBA and cpeBA). Frontiers in Microbiology, 2019, 10, 45.	1.5	56
315	Unicellular Cyanobacteria Are Important Components of Phytoplankton Communities in Australia's Northern Oceanic Ecoregions. Frontiers in Microbiology, 2018, 9, 3356.	1.5	12
316	Traitâ€based analysis of subpolar North Atlantic phytoplankton and plastidic ciliate communities using automated flow cytometer. Limnology and Oceanography, 2019, 64, 1763-1778.	1.6	15
317	Phytoplankton community structure and diversity in the indoor industrial aquaculture system for Litopenaeus vannamei revealed by highâ€throughput sequencing and morphological identification. Aquaculture Research, 2019, 50, 2563-2576.	0.9	10
318	Diversity and Spatial Distribution of Chromophytic Phytoplankton in the Bay of Bengal Revealed by RuBisCO Genes (rbcL). Frontiers in Microbiology, 2019, 10, 1501.	1.5	25
319	Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME Journal, 2019, 13, 2551-2565.	4.4	122
320	Cyanobacterial viruses exhibit diurnal rhythms during infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14077-14082.	3.3	39
321	Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15973-15978.	3.3	27
322	High bacterial diversity in nearshore and oceanic biofilms and their influence on larval settlement by <i>Hydroides elegans</i> (Polychaeta). Environmental Microbiology, 2019, 21, 3472-3488.	1.8	22
323	Multiâ€year dynamics of fineâ€scale marine cyanobacterial populations are more strongly explained by phage interactions than abiotic, bottomâ€up factors. Environmental Microbiology, 2019, 21, 2948-2963.	1.8	45
324	Modelling the influence of environmental parameters over marine planktonic microbial communities using artificial neural networks. Science of the Total Environment, 2019, 677, 205-214.	3.9	21
325	Adsorption of biologically critical trace elements to the marine cyanobacterium Synechococcus sp. PCC 7002: Implications for marine trace metal cycling. Chemical Geology, 2019, 525, 28-36.	1.4	7
326	Structure and diversity of the bacterial community of an Arctic estuarine system (Kandalaksha Bay) subject to intense tidal currents. Journal of Marine Systems, 2019, 196, 77-85.	0.9	13
327	Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean's most abundant photosynthetic bacteria. Communications Biology, 2019, 2, 184.	2.0	135
328	Evolution of cellular metabolism and the rise of a globally productive biosphere. Free Radical Biology and Medicine, 2019, 140, 172-187.	1.3	17

#	Article	IF	CITATIONS
329	On-Site Analysis of Bacterial Communities of the Ultraoligotrophic South Pacific Gyre. Applied and Environmental Microbiology, 2019, 85, .	1.4	27
330	Cyanobacterial Siderophores—Physiology, Structure, Biosynthesis, and Applications. Marine Drugs, 2019, 17, 281.	2.2	55
331	Epiphytic bacterial community composition on the surface of the submerged macrophyte <i>Myriophyllum spicatum</i> in a low-salinity sea area of Hangzhou Bay. Oceanological and Hydrobiological Studies, 2019, 48, 43-55.	0.3	5
332	Biogeography of Cyanobacterial isiA Genes and Their Link to Iron Availability in the Ocean. Frontiers in Microbiology, 2019, 10, 650.	1.5	7
333	Diverse Chromatic Acclimation Processes Regulating Phycoerythrocyanin and Rod-Shaped Phycobilisome in Cyanobacteria. Molecular Plant, 2019, 12, 715-725.	3.9	57
334	Drivers of Regional Bacterial Community Structure and Diversity in the Northwest Atlantic Ocean. Frontiers in Microbiology, 2019, 10, 281.	1.5	50
335	Interplay between differentially expressed enzymes contributes to light color acclimation in marine <i>Synechococcus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6457-6462.	3.3	25
336	Evolutionary Patterns of Thylakoid Architecture in Cyanobacteria. Frontiers in Microbiology, 2019, 10, 277.	1.5	77
337	Carbon Fate and Flux in <i>Prochlorococcus</i> under Nitrogen Limitation. MSystems, 2019, 4, .	1.7	12
338	CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax. Plant Physiology, 2019, 180, 39-55.	2.3	123
339	Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions. BMC Genomics, 2019, 20, 207.	1.2	23
340	Dynamic responses of picophytoplankton to physicochemical variation in the eastern Indian Ocean. Ecology and Evolution, 2019, 9, 5003-5017.	0.8	31
341	Towards the development of a new generation of wholeâ€cell bioreporters to sense iron bioavailability in oceanic systems—learning from the case of Synechococcus sp. PCC7002 iron bioreporter. Journal of Applied Microbiology, 2019, 127, 1291-1304.	1.4	7
342	Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnology Advances, 2019, 37, 771-786.	6.0	62
343	Enhanced microbial nitrogen transformations in association with macrobiota from the rocky intertidal. Biogeosciences, 2019, 16, 193-206.	1.3	13
344	Nutrient stoichiometry shapes microbial coevolution. Ecology Letters, 2019, 22, 1009-1018.	3.0	25
345	Adopting a Theophylline-Responsive Riboswitch for Flexible Regulation and Understanding of Glycogen Metabolism in Synechococcus elongatus PCC7942. Frontiers in Microbiology, 2019, 10, 551.	1.5	20
346	Co-culture and biogeography of <i>Prochlorococcus</i> and SAR11. ISME Journal, 2019, 13, 1506-1519.	4.4	80

#	Article	IF	CITATIONS
347	Marine <i>Synechococcus</i> isolates representing globally abundant genomic lineages demonstrate a unique evolutionary path of genome reduction without a decrease in GC content. Environmental Microbiology, 2019, 21, 1677-1686.	1.8	28
348	Estimation of Secondary Phytoplankton Pigments From Satellite Observations Using Selfâ€Organizing Maps (SOMs). Journal of Geophysical Research: Oceans, 2019, 124, 1357-1378.	1.0	30
349	Bacteria and archaea on Earth and their abundance in biofilms. Nature Reviews Microbiology, 2019, 17, 247-260.	13.6	965
350	Diverse hydrocarbon biosynthetic enzymes can substitute for olefin synthase in the cyanobacterium Synechococcus sp. PCC 7002. Scientific Reports, 2019, 9, 1360.	1.6	25
351	Dissolved Organic Carbon Source Influences Tropical Coastal Heterotrophic Bacterioplankton Response to Experimental Warming. Frontiers in Microbiology, 2019, 10, 2807.	1.5	17
352	Carbon Flow for Plankton Metabolism of Saco do Mamanguá RÃa, Bay of Ilha Grande, a Subtropical Coastal Environment in the South Brazil Bight. Frontiers in Marine Science, 2019, 6, .	1.2	9
353	Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16899-16908.	3.3	59
354	Considering the Role of Adaptive Evolution in Models of the Ocean and Climate System. Journal of Advances in Modeling Earth Systems, 2019, 11, 3343-3361.	1.3	22
355	Microplastics increase the marine production of particulate forms of organic matter. Environmental Research Letters, 2019, 14, 124085.	2.2	45
356	SeaFlow data v1, high-resolution abundance, size and biomass of small phytoplankton in the North Pacific. Scientific Data, 2019, 6, 277.	2.4	36
357	Marine Cyanobacteria: Prochlorococcus and Synechococcus. , 2019, , 569-573.		2
358	Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Science of the Total Environment, 2019, 657, 1194-1204.	3.9	116
359	Direct and indirect effects of a common cyanobacterial toxin on amphibian-trematode dynamics. Chemosphere, 2019, 220, 731-737.	4.2	6
360	Investigating the Heterogeneous Ice Nucleation of Sea Spray Aerosols Using <i>Prochlorococcus</i> as a Model Source of Marine Organic Matter. Environmental Science & Technology, 2019, 53, 1139-1149.	4.6	32
361	Projected Changes in Photosynthetic Picoplankton in a Warmer Subtropical Ocean. Frontiers in Marine Science, 2019, 5, .	1.2	45
362	Latitudinal and Vertical Variation of Synechococcus Assemblage Composition Along 170° W Transect From the South Pacific to the Arctic Ocean. Microbial Ecology, 2019, 77, 333-342.	1.4	22
363	Shift in Structural and Functional Diversity of Algal Community: An Ecophysiological Reason. , 2019, , 87-98.		0
364	Cyanophage A-1(L) Adsorbs to Lipopolysaccharides of <i>Anabaena</i> sp. Strain PCC 7120 via the Tail Protein Lipopolysaccharide-Interacting Protein (ORF36). Journal of Bacteriology, 2019, 201, .	1.0	15

#	Article	IF	CITATIONS
365	The Role of Microalgae in Wastewater Treatment. , 2019, , .		6
366	Carbon and nitrogen productivity during spring in the oligotrophic Indian Ocean along the GO-SHIP IO9N transect. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 161, 81-91.	0.6	27
367	Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium <i>Nostoc flagelliforme</i> in arid and exposed habitats. Environmental Microbiology, 2019, 21, 845-863.	1.8	32
368	Microbial communities in the nepheloid layers and hypoxic zones of the Canary Current upwelling system. MicrobiologyOpen, 2019, 8, e00705.	1.2	7
369	Microbial Loops. , 2019, , 739-745.		0
370	Assessing the effect of abiotic variables and zooplankton on picocyanobacterial dominance in two tropical mesotrophic reservoirs by means of evolutionary computation. Water Research, 2019, 149, 120-129.	5.3	14
371	Microfluidic technology for plankton research. Current Opinion in Biotechnology, 2019, 55, 134-150.	3.3	14
372	NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME Journal, 2019, 13, 651-662.	4.4	67
373	Cyanobacteria in Diverse Habitats. , 2019, , 1-28.		20
374	Chlorophyll a Fluorescence in Cyanobacteria: Relation to Photosynthesis. , 2019, , 79-130.		35
375	A Hard Day's Night: Cyanobacteria in Diel Cycles. Trends in Microbiology, 2019, 27, 231-242.	3.5	89
376	Parallel phylogeography of <i>Prochlorococcus</i> and <i>Synechococcus</i> . ISME Journal, 2019, 13, 430-441.	4.4	55
377	Advancing assessment of marine phytoplankton community structure and nutritional value from fatty acid profiles of cultured microalgae. Reviews in Aquaculture, 2019, 11, 527-549.	4.6	33
378	Picophytoplankton size and biomass around equatorial eastern Indian Ocean. MicrobiologyOpen, 2019, 8, e00629.	1.2	38
379	The â€~1% culturability paradigm' needs to be carefully defined. ISME Journal, 2020, 14, 10-11.	4.4	30
380	Evolution, Microbes, and Changing Ocean Conditions. Annual Review of Marine Science, 2020, 12, 181-208.	5.1	42
381	Manganese-oxidizing bacteria isolated from natural and technical systems remove cylindrospermopsin. Chemosphere, 2020, 238, 124625.	4.2	25
382	Unveiling membrane thermoregulation strategies in marine picocyanobacteria. New Phytologist, 2020, 225, 2396-2410.	3.5	20

#	Article	IF	CITATIONS
383	Circadian clock helps cyanobacteria manage energy in coastal and high latitude ocean. ISME Journal, 2020, 14, 560-568.	4.4	16
384	Acclimation to low ultravioletâ€B radiation increases photosystem I abundance and cyclic electron transfer with enhanced photosynthesis and growth in the cyanobacterium Nostoc sphaeroides. Environmental Microbiology, 2020, 22, 183-197.	1.8	14
385	Nitrogen assimilation in picocyanobacteria inhabiting the oxygenâ€deficient waters of the eastern tropical North and South Pacific. Limnology and Oceanography, 2020, 65, 437-453.	1.6	20
386	Regulatory RNA at the crossroads of carbon and nitrogen metabolism in photosynthetic cyanobacteria. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194477.	0.9	25
387	Temporal variations in the abundance of picoplanktonic Synechococcus (Cyanobacteria) during a mucilage event in the Gulfs of Bandırma and Erdek. Estuarine, Coastal and Shelf Science, 2020, 233, 106513.	0.9	15
388	Genomic mosaicism underlies the adaptation of marine <i>Synechococcus</i> ecotypes to distinct oceanic iron niches. Environmental Microbiology, 2020, 22, 1801-1815.	1.8	32
389	Changes in water color shift competition between phytoplankton species with contrasting lightâ€harvesting strategies. Ecology, 2020, 101, e02951.	1.5	35
390	Phylogenetic distribution and structural analyses of cyanobacterial glutaredoxins (Grxs). Computational Biology and Chemistry, 2020, 84, 107141.	1.1	15
391	Electrochemical evaluation of iron-binding ligands along the Australian GEOTRACES southwestern Pacific section (GP13). Marine Chemistry, 2020, 219, 103736.	0.9	12
392	Dimethylated sulfur production in batch cultures of Southern Ocean phytoplankton. Biogeochemistry, 2020, 147, 53-69.	1.7	16
393	Comparative membrane proteomics reveal contrasting adaptation strategies for coastal and oceanic marine <i>Synechococcus</i> cyanobacteria. Environmental Microbiology, 2020, 22, 1816-1828.	1.8	6
394	Silver nanoparticle and Ag+-induced shifts of microbial communities in natural brackish waters: Are they more pronounced under oxic conditions than anoxic conditions?. Environmental Pollution, 2020, 258, 113686.	3.7	10
395	Phytoplankton in the <i>Tara</i> Ocean. Annual Review of Marine Science, 2020, 12, 233-265.	5.1	96
396	Viral ecogenomics across the Porifera. Microbiome, 2020, 8, 144.	4.9	21
397	Persistent El Niño driven shifts in marine cyanobacteria populations. PLoS ONE, 2020, 15, e0238405.	1.1	7
398	Seasonal and Geographical Transitions in Eukaryotic Phytoplankton Community Structure in the Atlantic and Pacific Oceans. Frontiers in Microbiology, 2020, 11, 542372.	1.5	22
399	Cadmium adsorption to clay-microbe aggregates: Implications for marine heavy metals cycling. Geochimica Et Cosmochimica Acta, 2020, 290, 124-136.	1.6	124
400	Assessing the Toxicity of Leachates From Weathered Plastics on Photosynthetic Marine Bacteria Prochlorococcus. Frontiers in Marine Science, 2020, 7, .	1.2	36

#	Article	IF	CITATIONS
401	A machine-learning approach to modeling picophytoplankton abundances in the South China Sea. Progress in Oceanography, 2020, 189, 102456.	1.5	11
402	Co ulture with <i>Synechococcus</i> facilitates growth of <i>Prochlorococcus</i> under ocean acidification conditions. Environmental Microbiology, 2020, 22, 4876-4889.	1.8	8
403	Will coral reef sponges be winners in the Anthropocene?. Global Change Biology, 2020, 26, 3202-3211.	4.2	34
404	Microbial Diversity and Phage–Host Interactions in the Georgian Coastal Area of the Black Sea Revealed by Whole Genome Metagenomic Sequencing. Marine Drugs, 2020, 18, 558.	2.2	7
405	Prokaryotic Diversity and Distribution Along Physical and Nutrient Gradients in the Tunisian Coastal Waters (South Mediterranean Sea). Frontiers in Microbiology, 2020, 11, 593540.	1.5	9
406	Environmental influence on the picophytoplankton community structure in the central and northern Bay of Bengal. Regional Studies in Marine Science, 2020, 40, 101528.	0.4	4
407	Stress Signaling in Cyanobacteria: A Mechanistic Overview. Life, 2020, 10, 312.	1.1	25
408	From the Ocean to the Lab—Assessing Iron Limitation in Cyanobacteria: An Interface Paper. Microorganisms, 2020, 8, 1889.	1.6	2
409	Toward Determining the Spatio-Temporal Variability of Upper-Ocean Ecosystem Stoichiometry From Satellite Remote Sensing. Frontiers in Marine Science, 2020, 7, .	1.2	9
410	Genome Sequences of <i>Synechococcus</i> sp. Strain MIT S9220 and Cocultured Cyanophage SynMITS9220M01. Microbiology Resource Announcements, 2020, 9, .	0.3	3
411	A new genomic taxonomy system for the <i>Synechococcus</i> collective. Environmental Microbiology, 2020, 22, 4557-4570.	1.8	32
412	Comparative Genomics Discloses the Uniqueness and the Biosynthetic Potential of the Marine Cyanobacterium Hyella patelloides. Frontiers in Microbiology, 2020, 11, 1527.	1.5	5
413	Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Synechococcus Strain WH7803. Frontiers in Microbiology, 2020, 11, 1707.	1.5	18
414	Mechanisms of silver nanoparticle toxicity on the marine cyanobacterium Prochlorococcus under environmentally-relevant conditions. Science of the Total Environment, 2020, 747, 141229.	3.9	31
415	Structural and Functional Insights into a Lysine Deacylase in the Cyanobacterium <i>Synechococcus</i> sp. PCC 7002. Plant Physiology, 2020, 184, 762-776.	2.3	6
416	Extracellular Vesicles: An Overlooked Secretion System in Cyanobacteria. Life, 2020, 10, 129.	1.1	13
417	Recurrent pattern of picophytoplankton dynamics in estuaries around the world: The case of RÃo de la Plata. Marine Environmental Research, 2020, 161, 105136.	1.1	5
418	Plankton spatial variability within the Marquesas archipelago, South Pacific. Journal of Marine Systems, 2020, 212, 103432.	0.9	2

#	Article	IF	CITATIONS
419	Genomic analysis of Synechococcus phage S-B43 and its adaption to the coastal environment. Virus Research, 2020, 289, 198155.	1.1	5
422	Homogeneous environmental selection dominates microbial community assembly in the oligotrophic South Pacific Gyre. Molecular Ecology, 2020, 29, 4680-4691.	2.0	33
423	<i>Prochlorococcus</i> Cells Rely on Microbial Interactions Rather than on Chlorotic Resting Stages To Survive Long-Term Nutrient Starvation. MBio, 2020, 11, .	1.8	39
424	Changes in Population Age-Structure Obscure the Temperature-Size Rule in Marine Cyanobacteria. Frontiers in Microbiology, 2020, 11, 2059.	1.5	4
425	Contrasting environmental preferences of photosynthetic and nonâ€photosynthetic soil cyanobacteria across the globe. Global Ecology and Biogeography, 2020, 29, 2025-2038.	2.7	24
426	Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria. Frontiers in Microbiology, 2020, 11, 567431.	1.5	37
427	Simulation of Enhanced Growth of Marine Group II Euryarchaeota From the Deep Chlorophyll Maximum of the Western Pacific Ocean: Implication for Upwelling Impact on Microbial Functions in the Photic Zone. Frontiers in Microbiology, 2020, 11, 571199.	1.5	3
428	Photosynthetic Pigments Changes of Three Phenotypes of Picocyanobacteria Synechococcus sp. under Different Light and Temperature Conditions. Cells, 2020, 9, 2030.	1.8	13
429	A driftâ€barrier model drives the genomic landscape of a structured bacterial population. Molecular Ecology, 2020, 29, 4143-4156.	2.0	3
430	Genomic Comparison and Spatial Distribution of Different Synechococcus Phylotypes in the Black Sea. Frontiers in Microbiology, 2020, 11, 1979.	1.5	13
431	Presence of toxin-antitoxin systems in picocyanobacteria and their ecological implications. ISME Journal, 2020, 14, 2843-2850.	4.4	10
432	Organic matter assimilation by hard substrate fauna in an offshore wind farm area: a pulse-chase study. ICES Journal of Marine Science, 2020, 77, 2681-2693.	1.2	17
433	Research advances on ecotype and sub-ecotype differentiation of Prochlorococcus and its environmental adaptability. Science China Earth Sciences, 2020, 63, 1691-1700.	2.3	3
434	A Scientometric Overview of Global Dinoflagellate Research. Publications, 2020, 8, 50.	1.9	12
435	The Role of the Cyanobacterial Type IV Pilus Machinery in Finding and Maintaining a Favourable Environment. Life, 2020, 10, 252.	1.1	18
436	Summer phytoplankton assemblages and carbon biomass in the northern south China sea. Continental Shelf Research, 2020, 210, 104276.	0.9	9
437	CpeY is a phycoerythrobilin lyase for cysteine 82 of the phycoerythrin I α-subunit in marine Synechococcus. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148215.	0.5	5
438	Spatial Distribution Patterns of Bacterioplankton in the Oxygen Minimum Zone of the Tropical Mexican Pacific. Microbial Ecology, 2020, 80, 519-536.	1.4	30

#	Article	IF	CITATIONS
439	Prochlorococcus phage ferredoxin: structural characterization and electron transfer to cyanobacterial sulfite reductases. Journal of Biological Chemistry, 2020, 295, 10610-10623.	1.6	10
440	Temporal transcriptional patterns of cyanophage genes suggest synchronized infection of cyanobacteria in the oceans. Microbiome, 2020, 8, 68.	4.9	8
441	Natural and anthropogenic dispersal of cyanobacteria: a review. Hydrobiologia, 2020, 847, 2801-2822.	1.0	17
442	Microbial Photosynthesis. , 2020, , .		4
443	Phytoplankton community patterns in the Taiwan Strait match the characteristics of their realized niches. Progress in Oceanography, 2020, 186, 102366.	1.5	17
444	Phytoplankton biomass and community composition in the frontal zones of Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 178, 104799.	0.6	5
445	Minimal cobalt metabolism in the marine cyanobacterium <i>Prochlorococcus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15740-15747.	3.3	25
446	Quantification of T4-Like and T7-Like Cyanophages Using the Polony Method Show They Are Significant Members of the Virioplankton in the North Pacific Subtropical Gyre. Frontiers in Microbiology, 2020, 11, 1210.	1.5	16
447	Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnology Advances, 2020, 43, 107578.	6.0	30
448	Increasing picocyanobacteria success in shelf waters contributes to longâ€ŧerm food web degradation. Global Change Biology, 2020, 26, 5574-5587.	4.2	68
449	Analysis of Marine Planktonic Cyanobacterial Assemblages From Mooriganga Estuary, Indian Sundarbans Using Molecular Approaches. Frontiers in Marine Science, 2020, 7, .	1.2	8
450	Coupling Between Carbon and Nitrogen Metabolic Processes Mediated by Coastal Microbes in Synechococcus-Derived Organic Matter Addition Incubations. Frontiers in Microbiology, 2020, 11, 1041.	1.5	19
451	Bio-Aerosols Negatively Affect Prochlorococcus in Oligotrophic Aerosol-Rich Marine Regions. Atmosphere, 2020, 11, 540.	1.0	11
452	Diversity and biogeography of picoplankton communities from the Straits of Malacca to the South China Sea. Oceanological and Hydrobiological Studies, 2020, 49, 23-33.	0.3	2
453	Cyanobacteria in tropical and subtropical marine environments: bloom formation and ecological role. , 2020, , 35-46.		3
454	Weekly variations of viruses and heterotrophic nanoflagellates and their potential impact on bacterioplankton in shallow waters of the central Red Sea. FEMS Microbiology Ecology, 2020, 96, .	1.3	19
455	Pollution status of the Yellow River tributaries in middle and lower reaches. Science of the Total Environment, 2020, 722, 137861.	3.9	40
456	Blue light induces major changes in the gene expression profile of the cyanobacterium <scp><i>Synechocystis</i></scp> sp. PCC 6803. Physiologia Plantarum, 2020, 170, 10-26.	2.6	22

#	Article	IF	CITATIONS
457	Modeling the Spatio-Temporal Evolution of Chlorophyll-a in Three Tropical Rivers Comoé, Bandama, and Bia Rivers (Côte d'Ivoire) by Artificial Neural Network. Wetlands, 2020, 40, 939-956.	0.7	6
458	Interaction of Cyanobacteria with Nanometer and Micron Sized Polystyrene Particles in Marine and Fresh Water. Langmuir, 2020, 36, 3963-3969.	1.6	30
459	The circadian clock and darkness control natural competence in cyanobacteria. Nature Communications, 2020, 11, 1688.	5.8	72
460	Effects of Temperature and Nutrient Supply on Resource Allocation, Photosynthetic Strategy, and Metabolic Rates of <i>Synechococcus</i> sp Journal of Phycology, 2020, 56, 818-829.	1.0	15
461	Ice Nucleation by Marine Aerosols Over the North Atlantic Ocean in Late Spring. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030913.	1.2	30
462	Chaos may lurk under a cloak of neutrality. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16104-16106.	3.3	2
463	Sources and Sinks of Isoprene in the Global Open Ocean: Simulated Patterns and Emissions to the Atmosphere. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015946.	1.0	19
464	Impacts of Global Change on Ocean Dissolved Organic Carbon (DOC) Cycling. Frontiers in Marine Science, 2020, 7, .	1.2	91
465	Metabarcoding Cyanobacteria in coastal waters and sediment in central and southern Adriatic Sea. Acta Botanica Croatica, 2020, 79, 157-169.	0.3	5
466	A meta-analysis on environmental drivers of marine phytoplankton C : N : P. Biogeosciences, 20 2939-2954.)20,17, 1.3	32
467	A network-based integrated framework for predicting virus–prokaryote interactions. NAR Genomics and Bioinformatics, 2020, 2, Iqaa044.	1.5	69
468	Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River. Environmental Pollution, 2020, 266, 115198.	3.7	40
469	Systematic Identification of Target Genes for Cellular Morphology Engineering in Synechococcus elongatus PCC7942. Frontiers in Microbiology, 2020, 11, 1608.	1.5	6
470	Bacterial diversity in the <i>clarki</i> ecotype of the photosynthetic sacoglossan, <i>Elysia crispata</i> . MicrobiologyOpen, 2020, 9, e1098.	1.2	2
471	Mixotrophy in marine picocyanobacteria: use of organic compounds by <i>Prochlorococcus</i> and <i>Synechococcus</i> . ISME Journal, 2020, 14, 1065-1073.	4.4	63
472	Impact of water column stability dynamics on the succession of plankton food web types in the offshore area of the Adriatic Sea. Journal of Sea Research, 2020, 158, 101860.	0.6	12
473	A minimum set of regulators to thrive in the ocean. FEMS Microbiology Reviews, 2020, 44, 232-252.	3.9	8
474	Global retrieval of phytoplankton functional types based on empirical orthogonal functions using CMEMS GlobColour merged products and further extension to OLCI data. Remote Sensing of Environment, 2020, 240, 111704.	4.6	51

#	Article	IF	CITATIONS
475	Influence of potential grazers on picocyanobacterial abundance in Lake Biwa revealed with empirical dynamic modeling. Inland Waters, 2020, 10, 386-396.	1.1	4
476	Seasons of <i>Syn</i> . Limnology and Oceanography, 2020, 65, 1085-1102.	1.6	15
477	How will marine plastic pollution affect bacterial primary producers?. Communications Biology, 2020, 3, 55.	2.0	16
478	Comparative phylogeography of two freeâ€living cosmopolitan cyanobacteria: Insights on biogeographic and latitudinal distribution. Journal of Biogeography, 2020, 47, 1106-1118.	1.4	8
479	Clobal picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nature Geoscience, 2020, 13, 116-120.	5.4	82
480	Whole-Genome Sequence of the Cyanobacterium Synechococcus sp. Strain WH 8101. Microbiology Resource Announcements, 2020, 9, .	0.3	3
481	The Distribution of Nickel in the West-Atlantic Ocean, Its Relationship With Phosphate and a Comparison to Cadmium and Zinc. Frontiers in Marine Science, 2020, 7, .	1.2	28
482	Responses of physiological groups of tropical heterotrophic bacteria to temperature and dissolved organic matter additions: food matters more than warming. Environmental Microbiology, 2020, 22, 1930-1943.	1.8	17
483	Assessment of the Allelochemical Activity and Biochemical Profile of Different Phenotypes of Picocyanobacteria from the Genus Synechococcus. Marine Drugs, 2020, 18, 179.	2.2	12
484	Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. Biogeosciences, 2020, 17, 2085-2106.	1.3	21
485	Environmental factors controlling the dynamics of phytoplankton communities during spring and fall seasons in the southern Sunda Shelf. Environmental Science and Pollution Research, 2020, 27, 23222-23233.	2.7	8
486	The Importance of Allelopathic Picocyanobacterium Synechococcus sp. on the Abundance, Biomass Formation, and Structure of Phytoplankton Assemblages in Three Freshwater Lakes. Toxins, 2020, 12, 259.	1.5	14
487	Isolation and complete genome sequence of a novel cyanophage, S-B05, infecting an estuarine Synechococcus strain: insights into environmental adaptation. Archives of Virology, 2020, 165, 1397-1407.	0.9	8
488	Linking Light-Dependent Life History Traits with Population Dynamics for <i>Prochlorococcus</i> and Cyanophage. MSystems, 2020, 5, .	1.7	11
489	Vertical Beta-Diversity of Bacterial Communities Depending on Water Stratification. Frontiers in Microbiology, 2020, 11, 449.	1.5	9
490	Changes in the Trophic Pathways within the Microbial Food Web in the Global Warming Scenario: An Experimental Study in the Adriatic Sea. Microorganisms, 2020, 8, 510.	1.6	8
491	Microbial diversity accumulates in a downstream direction in the Three Gorges Reservoir. Journal of Environmental Sciences, 2021, 101, 156-167.	3.2	20
492	Plastic pollution impacts on marine carbon biogeochemistry. Environmental Pollution, 2021, 268, 115598.	3.7	55

#	Article	IF	CITATIONS
493	Elements of disease in a changing world: modelling feedbacks between infectious disease and ecosystems. Ecology Letters, 2021, 24, 6-19.	3.0	15
494	Estimation of cell abundances of picophytoplankton based on the absorption coefficient of phytoplankton in the South China sea. Continental Shelf Research, 2021, 212, 104294.	0.9	0
495	Modelling the impact of phytoplankton cell size and abundance on inherent optical properties (IOPs) and a remotely sensed chlorophyll-a product. Journal of Marine Systems, 2021, 213, 103460.	0.9	7
496	Topâ€down controls on nutrient cycling and population dynamics in a model estuarine photoautotroph–heterotroph coâ€culture system. Molecular Ecology, 2021, 30, 592-607.	2.0	9
497	Phytoplankton strengthen CO2 uptake in the South Atlantic Ocean. Progress in Oceanography, 2021, 190, 102476.	1.5	13
498	Cell sorting reveals few novel prokaryote and photosynthetic picoeukaryote associations in the oligotrophic ocean. Environmental Microbiology, 2021, 23, 1469-1480.	1.8	7
499	Latitudinal distribution of the picoplankton community in the eastern equatorial Indian Ocean during the boreal fall intermonsoon period. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 168, 103451.	0.6	4
500	Viral Lysis Alters the Optical Properties and Biological Availability of Dissolved Organic Matter Derived from <i>Prochlorococcus</i> Picocyanobacteria. Applied and Environmental Microbiology, 2021, 87, .	1.4	26
501	Responses of phytoplankton communities to the effect of internal waveâ€powered upwelling. Limnology and Oceanography, 2021, 66, 1083-1098.	1.6	6
502	Response of oligotrophic coastal microbial populations in the SE Mediterranean Sea to crude oil pollution; lessons from mesocosm studies. Estuarine, Coastal and Shelf Science, 2021, 249, 107102.	0.9	13
503	Are temperature sensitivities of <scp> <i>Prochlorococcus </i> </scp> and <scp> <i>Synechococcus </i> </scp> impacted by nutrient availability in the subtropical northwest Pacific?. Limnology and Oceanography, 2021, 66, 639-651.	1.6	14
504	Highly enriched N ontaining organic molecules of <i>Synechococcus</i> lysates and their rapid transformation by heterotrophic bacteria. Limnology and Oceanography, 2021, 66, 335-348.	1.6	30
505	A single-cell polony method reveals low levels of infected <i>Prochlorococcus</i> in oligotrophic waters despite high cyanophage abundances. ISME Journal, 2021, 15, 41-54.	4.4	40
506	Frequency of mispackaging of <i>Prochlorococcus</i> DNA by cyanophage. ISME Journal, 2021, 15, 129-140.	4.4	8
507	Eco-evolutionary feedbacks mediated by bacterial membrane vesicles. FEMS Microbiology Reviews, 2021, 45, .	3.9	13
508	Semitransparent polymer solar cells floating on water: selected transmission windows and active control of algal growth. Journal of Materials Chemistry C, 2021, 9, 13132-13143.	2.7	8
509	The Effect of Abiotic Factors on Abundance and Photosynthetic Performance of Airborne Cyanobacteria and Microalgae Isolated from the Southern Baltic Sea Region. Cells, 2021, 10, 103.	1.8	16
510	Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes. Environmental Science: Nano, 2021, 8, 1236-1255.	2.2	29

#	Article	IF	CITATIONS
511	Insights into the Evolution of Circadian Clocks Gleaned from Bacteria. , 2021, , 111-135.		2
512	Photosynthesis Phycobilisome Antennae and Chromatic Acclimation. , 2021, , 268-281.		1
513	Microbial diversity of co-occurring heterotrophs in cultures of marine picocyanobacteria. Environmental Microbiomes, 2021, 16, 1.	2.2	28
514	Plastics and the microbiome: impacts and solutions. Environmental Microbiomes, 2021, 16, 2.	2.2	118
515	Discovery of a small protein factor involved in the coordinated degradation of phycobilisomes in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
516	Pollution Affecting Cyanobacteria in Aquatic Habitats. , 2021, , 11-37.		0
517	Long-Term Presence of the Island Mass Effect at Rangiroa Atoll, French Polynesia. Frontiers in Marine Science, 2021, 7, .	1.2	5
518	Genomes of Diverse Isolates of Prochlorococcus High-Light-Adapted Clade II in the Western Pacific Ocean. Frontiers in Marine Science, 2021, 7, .	1.2	1
519	Seasonality of the Microbial Community Composition in the North Atlantic. Frontiers in Marine Science, 2021, 8, .	1.2	32
520	Effects of calcium ion on the colony formation, growth, and photosynthesis in the edible cyanobacterium Nostoc sphaeroides. Journal of Applied Phycology, 2021, 33, 1409-1417.	1.5	4
521	Surface reactivity of the cyanobacterium Synechocystis sp. PCC 6803 – Implications for trace metals transport to the oceans. Chemical Geology, 2021, 562, 120045.	1.4	3
522	Bioorganic Study of New Natural Products Isolated from Marine Cyanobacteria. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 133-144.	0.0	1
523	Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiology and Molecular Biology Reviews, 2021, 85, .	2.9	58
524	Metagenomic Analysis Reveals Microbial Community Structure and Metabolic Potential for Nitrogen Acquisition in the Oligotrophic Surface Water of the Indian Ocean. Frontiers in Microbiology, 2021, 12, 518865.	1.5	17
525	Common architectures in cyanobacteria Prochlorococcus cells visualized by X-ray diffraction imaging using X-ray free electron laser. Scientific Reports, 2021, 11, 3877.	1.6	8
526	Requirement of the exopolyphosphatase gene for cellular acclimation to phosphorus starvation in a cyanobacterium, Synechocystis sp. PCC 6803. Biochemical and Biophysical Research Communications, 2021, 540, 16-21.	1.0	6
527	Dynamic Allocation of Carbon Storage and Nutrient-Dependent Exudation in a Revised Genome-Scale Model of Prochlorococcus. Frontiers in Genetics, 2021, 12, 586293.	1.1	15
529	Molecular bases of an alternative dual-enzyme system for light color acclimation of marine <i>Synechococcus</i> cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16

#ARTICLEIFCITATIONS530Microbial production and consumption of hydrocarbons in the global ocean. Nature Microbiology,
021, 6, 489-498.5.95.9531Interactive Effects of Elevated CO2 Concentration and Light on the Picophytoplankton1.25

CITATION REPORT

Effect of copper sulfate on the external microbiota of adult common snook (Centropomus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662 To $\frac{15}{1.5}$

534	The cyanobacterium <i>Prochlorococcus</i> has divergent light-harvesting antennae and may have evolved in a low-oxygen ocean. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
535	Microbiota Diversity in Pearl Oyster Pinctada fucata martensii Intestine and Its Aquaculture Environment. Frontiers in Marine Science, 2021, 8, .	1.2	10
537	Cell Death in Cyanobacteria: Current Understanding and Recommendations for a Consensus on Its Nomenclature. Frontiers in Microbiology, 2021, 12, 631654.	1.5	32
538	The Composition and Primary Metabolic Potential of Microbial Communities Inhabiting the Surface Water in the Equatorial Eastern Indian Ocean. Biology, 2021, 10, 248.	1.3	6
539	Short-Term Spatiotemporal Variability in Picoplankton Induced by a Submesoscale Front South of Gran Canaria (Canary Islands). Frontiers in Marine Science, 2021, 8, .	1.2	1
540	Obligate Brominating Enzymes Underlie Bromoform Production by Marine Cyanobacteria. Journal of Phycology, 2021, 57, 1131-1139.	1.0	6
541	Identification of Genomic Islands in Synechococcus sp. WH8102 Using Genomic Barcode and Whole-Genome Microarray Analysis. Current Bioinformatics, 2021, 16, 24-30.	0.7	1
542	Picophytoplankton Niche Partitioning in the Warmest Oligotrophic Sea. Frontiers in Marine Science, 2021, 8, .	1.2	9
543	Plankton food webs in the oligotrophic Gulf of Mexico spawning grounds of Atlantic bluefin tuna. Journal of Plankton Research, 2022, 44, 763-781.	0.8	5
544	Dynamic macromolecular composition and high exudation rates in <i>Prochlorococcus</i> . Limnology and Oceanography, 2021, 66, 1759-1773.	1.6	13
545	The Novel P _{II} -Interacting Protein PirA Controls Flux into the Cyanobacterial Ornithine-Ammonia Cycle. MBio, 2021, 12, .	1.8	17
546	Special roles for efflux systems in iron homeostasis of nonâ€siderophoreâ€producing cyanobacteria. Environmental Microbiology, 2022, 24, 551-565.	1.8	3
547	Accumulation of DOC in the South Pacific Subtropical Gyre from a molecular perspective. Marine Chemistry, 2021, 231, 103955.	0.9	18
548	Cyanobacteria—From the Oceans to the Potential Biotechnological and Biomedical Applications. Marine Drugs, 2021, 19, 241.	2.2	66
549	Aircraft measurements of aerosol and trace gas chemistry in the eastern North Atlantic. Atmospheric Chemistry and Physics, 2021, 21, 7983-8002.	1.9	19

#	Article	IF	CITATIONS
550	Mixotrophic plankton and Synechococcus distribution in waters around Svalbard, Norway during June 2019. Polar Science, 2021, , 100697.	0.5	5
551	Linking a Latitudinal Gradient in Ocean Hydrography and Elemental Stoichiometry in the Eastern Pacific Ocean. Global Biogeochemical Cycles, 2021, 35, e2020GB006622.	1.9	10
552	Comparing <i>Prochlorococcus</i> temperature niches in the lab and across ocean basins. Limnology and Oceanography, 2021, 66, 2632-2647.	1.6	5
553	Cyanobiont genetic diversity and host specificity of cyanobiont-bearing dinoflagellate Ornithocercus in temperate coastal waters. Scientific Reports, 2021, 11, 9458.	1.6	6
554	Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean Epiphyte Cobetia Sp. to Varying Nutrient Concentration. Microbial Ecology, 2022, 83, 296-313.	1.4	3
556	Global Chlorophyll <i>a</i> Concentrations of Phytoplankton Functional Types With Detailed Uncertainty Assessment Using Multisensor Ocean Color and Sea Surface Temperature Satellite Products. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017127.	1.0	17
557	Investigating the Impact of Cerium Oxide Nanoparticles Upon the Ecologically Significant Marine Cyanobacterium Prochlorococcus. Frontiers in Marine Science, 2021, 8, .	1.2	13
559	<i>Prochlorococcus</i> , <i>Synechococcus</i> , and picoeukaryotic phytoplankton abundances in the global ocean. Limnology and Oceanography Letters, 2021, 6, 207-215.	1.6	40
560	Dynamics and Distribution of Marine Synechococcus Abundance and Genotypes during Seasonal Hypoxia in a Coastal Marine Ranch. Journal of Marine Science and Engineering, 2021, 9, 549.	1.2	9
561	The kaolinite shuttle links the Great Oxidation and Lomagundi events. Nature Communications, 2021, 12, 2944.	5.8	19
562	Coping with darkness: The adaptive response of marine picocyanobacteria to repeated light energy deprivation. Limnology and Oceanography, 2021, 66, 3300-3312.	1.6	9
563	Potential competition between marine heterotrophic prokaryotes and autotrophic picoplankton for nitrogen substrates. Limnology and Oceanography, 2021, 66, 3338-3355.	1.6	7
564	Doing synthetic biology with photosynthetic microorganisms. Physiologia Plantarum, 2021, 173, 624-638.	2.6	20
566	Marine Community Metabolomes Carry Fingerprints of Phytoplankton Community Composition. MSystems, 2021, 6, .	1.7	26
567	Picocyanobacterial Contribution to the Total Primary Production in the Northwestern Pacific Ocean. Water (Switzerland), 2021, 13, 1610.	1.2	6
568	Simons Collaborative Marine Atlas Project (Simons <scp>CMAP</scp>): An openâ€source portal to share, visualize, and analyze ocean data. Limnology and Oceanography: Methods, 2021, 19, 488-496.	1.0	14
569	Phosphorus enrichment masked the negative effects of ocean acidification on picophytoplankton and photosynthetic performance in the oligotrophic Indian Ocean. Ecological Indicators, 2021, 125, 107459.	2.6	4
570	New discoveries expand possibilities for carboxysome engineering. Current Opinion in Microbiology, 2021, 61, 58-66.	2.3	32

#	Article	IF	CITATIONS
571	Nutrient Loading and Viral Memory Drive Accumulation of Restriction Modification Systems in Bloom-Forming Cyanobacteria. MBio, 2021, 12, e0087321.	1.8	7
573	Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium Synechocystis sp. strain PCC 6803. ELife, 2021, 10, .	2.8	29
574	Towards omics-based predictions of planktonic functional composition from environmental data. Nature Communications, 2021, 12, 4361.	5.8	16
575	Transparent Exopolymer Particles (TEP), phytoplankton and picocyanobacteria a littoral-to-pelagic depth-gradient in a large subalpine lake. Journal of Limnology, 0, , .	0.3	2
576	Seasonal-to-decadal scale variability in primary production and particulate matter export at Station ALOHA. Progress in Oceanography, 2021, 195, 102563.	1.5	32
577	Cyanobacteria and biogeochemical cycles through Earth history. Trends in Microbiology, 2022, 30, 143-157.	3.5	108
578	Light intensity stimulates the production of extracellular polymeric substances (EPS) in a culture of the desert cyanobacterium Trichormus sp. Journal of Applied Phycology, 2021, 33, 2795-2804.	1.5	4
579	Abyssal fauna, benthic microbes, and organic matter quality across a range of trophic conditions in the western Pacific ocean. Progress in Oceanography, 2021, 195, 102591.	1.5	10
581	Spatial Distribution of Picophytoplankton in Southeastern Coast of Peninsular Malaysia Using Flow Cytometry. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	0
582	The Enzymology of Ocean Global Change. Annual Review of Marine Science, 2022, 14, 187-211.	5.1	4
583	Spatial distribution and behavior of dissolved selenium speciation in the South China Sea and Malacca Straits during spring inter-monsoon period. Acta Oceanologica Sinica, 2021, 40, 1-13.	0.4	2
584	Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME Journal, 2022, 16, 465-476.	4.4	10
585	Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME Journal, 2022, 16, 488-499.	4.4	20
586	Seasonal and annual changes in the microbial communities of Ofunato Bay, Japan, based on metagenomics. Scientific Reports, 2021, 11, 17277.	1.6	4
588	Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annual Review of Microbiology, 2021, 75, 515-539.	2.9	19
589	Capsid Structure of <i>Anabaena</i> Cyanophage A-1(L). Journal of Virology, 2021, 95, e0135621.	1.5	4
590	Viral Characteristics of the Warm Atlantic and Cold Arctic Water Masses in the Nordic Seas. Applied and Environmental Microbiology, 2021, 87, e0116021.	1.4	12
591	Microbial response to the presence of invasive ctenophore Mnemiopsis leidyi in the coastal waters of the Northeastern Adriatic. Estuarine, Coastal and Shelf Science, 2021, 259, 107459.	0.9	4

#	Article	IF	Citations
592	Marine <i>Synechococcus</i> picocyanobacteria: Light utilization across latitudes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
593	Magnitude of nitrate turbulent diffusion in contrasting marine environments. Scientific Reports, 2021, 11, 18804.	1.6	5
594	Evaluation of three photosynthetic species smaller than ten microns as possible standard test organisms of ultraviolet-based ballast water treatment. Marine Pollution Bulletin, 2021, 170, 112643.	2.3	7
595	Phylogenetic and Phenogenetic Diversity of Synechococcus along a Yellow Sea Section Reveal Its Environmental Dependent Distribution and Co-Occurrence Microbial Pattern. Journal of Marine Science and Engineering, 2021, 9, 1018.	1.2	7
596	Modeling Ocean Color Niche Selection by <i>Synechococcus</i> Blueâ€Green Acclimaters. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017434.	1.0	1
597	Impacts of global warming on marine microbial communities. Science of the Total Environment, 2021, 791, 147905.	3.9	47
598	Warming-driven migration of core microbiota indicates soil property changes at continental scale. Science Bulletin, 2021, 66, 2025-2035.	4.3	12
599	Stratification governs the plankton community structure and trophic interaction in the Southwestern tropical Indian Ocean during boreal summer. Regional Studies in Marine Science, 2021, 48, 101987.	0.4	1
600	Nutrient cycling in tropical and temperate coastal waters: Is latitude making a difference?. Estuarine, Coastal and Shelf Science, 2021, 262, 107571.	0.9	19
601	Distinct metabolic strategies of the dominant heterotrophic bacterial groups associated with marine Synechococcus. Science of the Total Environment, 2021, 798, 149208.	3.9	10
602	Nitric oxide synthases from photosynthetic microorganisms. , 2022, , 753-767.		0
603	Effect of climate change on marine ecosystems. , 2021, , 115-176.		13
604	MpeV is a lyase isomerase that ligates a doubly linked phycourobilin on the β-subunit of phycoerythrin I and II in marine Synechococcus. Journal of Biological Chemistry, 2021, 296, 100031.	1.6	9
605	Niche partitioning of lowâ€light adapted <i>Prochlorococcus</i> subecotypes across oceanographic gradients of the North Pacific Subtropical Front. Limnology and Oceanography, 2021, 66, 1548-1562.	1.6	14
607	Complex Interactions Between Aquatic Organisms and Their Chemical Environment Elucidated from Different Perspectives. , 2020, , 279-297.		5
608	Regulatory Tools for Controlling Gene Expression in Cyanobacteria. Advances in Experimental Medicine and Biology, 2018, 1080, 281-315.	0.8	26
609	Adaptive Mechanisms of the Model Photosynthetic Organisms, Cyanobacteria, to Iron Deficiency. , 2020, , 197-244.		8
610	Distribution and phenogenetic diversity of Synechococcus in the Bohai Sea, China. Journal of Oceanology and Limnology, 2022, 40, 592-604.	0.6	4

#	Article	IF	CITATIONS
611	Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events. Scientific Reports, 2020, 10, 22026.	1.6	29
612	Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Scientific Data, 2018, 5, 180154.	2.4	81
613	Toward a genetic system in the marine cyanobacterium Prochlorococcus. Access Microbiology, 2020, 2, acmi000107.	0.2	19
614	Synechococcus diversity along a trophic gradient in the Osterseen Lake District, Bavaria. Microbiology (United Kingdom), 2016, 162, 2053-2063.	0.7	26
629	Complete Genome Sequence of Subcluster 5.2 <i>Synechococcus</i> sp. Strain CB0101, Isolated from the Chesapeake Bay. Microbiology Resource Announcements, 2019, 8, .	0.3	5
630	Discovery of Euryhaline Phycoerythrobilin-Containing Synechococcus and Its Mechanisms for Adaptation to Estuarine Environments. MSystems, 2020, 5, .	1.7	4
631	Radiometric approach for the detection of picophytoplankton assemblages across oceanic fronts. Optics Express, 2020, 28, 25682.	1.7	12
632	A Gene Island with Two Possible Configurations Is Involved in Chromatic Acclimation in Marine Synechococcus. PLoS ONE, 2013, 8, e84459.	1.1	46
633	Metagenomic Analysis of the Indian Ocean Picocyanobacterial Community: Structure, Potential Function and Evolution. PLoS ONE, 2016, 11, e0155757.	1.1	54
634	Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress. PLoS ONE, 2017, 12, e0172135.	1.1	15
635	Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLoS ONE, 2017, 12, e0188198.	1.1	49
636	Using distribution models to estimate blooms of phytosanitary cyanobacteria in Brazil. Biota Neotropica, 2020, 20, .	0.2	5
637	Observations of gut contents of anguilliform leptocephali collected in the western North Pacific. Nippon Suisan Gakkaishi, 2018, 84, 32-44.	0.0	14
638	Biogeographic variations of picophytoplankton in three contrasting seas: the Bay of Bengal, South China Sea and Western Pacific Ocean. Aquatic Microbial Ecology, 2020, 84, 91-103.	0.9	25
639	Diel oscillations in the feeding activity of heterotrophic and mixotrophic nanoplankton in the North Pacific Subtropical Gyre. Aquatic Microbial Ecology, 2020, 85, 167-181.	0.9	13
640	Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Marine Ecology - Progress Series, 2016, 543, 1-19.	0.9	41
641	Seasonal and interannual variability of phytoplankton community structure in a Mediterranean coastal site. Marine Ecology - Progress Series, 2018, 592, 57-75.	0.9	42
642	Projected Effects of Climate-Induced Changes in Hydrodynamics on the Biogeochemistry of the Mediterranean Sea Under the RCP 8.5 Regional Climate Scenario. Frontiers in Marine Science, 2020, 7, .	1.2	12

#	Article	IF	CITATIONS
643	Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates. Biogeosciences, 2020, 17, 4153-4171.	1.3	3
647	PhytoBase: A global synthesis of open-ocean phytoplankton occurrences. Earth System Science Data, 2020, 12, 907-933.	3.7	12
648	Difference without distinction? Gaps in cyanobacterial systematics; when more is just too much. Fottea, 2018, 18, 130-136.	0.4	13
649	Phylogeny and taxonomy of Synechococcus-like cyanobacteria. Fottea, 2020, 20, 171-191.	0.4	59
650	Emergence of trait variability through the lens of nitrogen assimilation in Prochlorococcus. ELife, 2019, 8, .	2.8	57
651	Pico and nanoplankton abundance and carbon stocks along the Brazilian Bight. PeerJ, 2016, 4, e2587.	0.9	26
652	Fine grained compositional analysis of Port Everglades Inlet microbiome using high throughput DNA sequencing. PeerJ, 2018, 6, e4671.	0.9	4
655	Genome sequencing of the NIES Cyanobacteria collection with a focus on the heterocyst-forming clade. DNA Research, 2021, 28, .	1.5	12
656	Diverse but uncertain responses of picophytoplankton lineages to future climate change. Limnology and Oceanography, 2021, 66, 4171-4181.	1.6	12
657	Phytoplanktonâ€Nitrifier Interactions Control the Geographic Distribution of Nitrite in the Upper Ocean. Clobal Biogeochemical Cycles, 2021, 35, e2021GB007072.	1.9	14
658	Temporal variability of microbial communities during the past 600Âyears in a Tibetan lake sediment core. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 584, 110678.	1.0	8
659	Dynamics of ammonium biogeochemistry in an oligotrophic regime in the South China Sea. Marine Chemistry, 2021, 237, 104040.	0.9	7
660	Acid-base properties of Synechococcus-derived organic matter. Geochimica Et Cosmochimica Acta, 2021, 315, 89-100.	1.6	2
663	Auf der Suche nach Signaturen des Lebens. , 2017, , 1-81.		Ο
664	Modeling the effect of ultraviolet radiation on the photosynthetic potential of Prochlorococcus and Synechococcus cyanobacteria. Aquatic Microbial Ecology, 2017, 79, 149-164.	0.9	1
666	The impact of temperature and photosynthetically active radiation on the growth and pigments concentration in Baltic picocyanobacterium Synechococcus sp Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 0, , .	0.0	Ο
667	Transporters Related to Stress Responses and Their Potential Application in Synechocystis sp. PCC 6803. Advances in Experimental Medicine and Biology, 2018, 1080, 27-53.	0.8	0
671	Picophytoplankton intaglios in temperate waters of the southern Bay of Biscay. Aquatic Microbial Ecology, 2018, 82, 177-197.	0.9	0

#	Article	IF	CITATIONS
672	Signaturen des Lebens. , 2019, , 1-114.		0
673	Diversity and Taxonomy of Aliphatic Hydrocarbon Producers. , 2019, , 431-450.		Ο
677	Differential Activity of Coexisting Prochlorococcus Ecotypes. Frontiers in Marine Science, 2019, 6, .	1.2	6
682	Ocean Aerobiology. Frontiers in Microbiology, 2021, 12, 764178.	1.5	14
683	Evaluation of Genomic Sequence-Based Growth Rate Methods for Synchronized <i>Synechococcus</i> Cultures. Applied and Environmental Microbiology, 2022, 88, AEM0174321.	1.4	3
685	The large genome of Synechococcus moorigangaii CMS01 isolated from a mangrove ecosystem- evidences of motility and adaptive features. IOP SciNotes, 2020, 1, 034001.	0.4	1
686	Light-Regulated Nucleotide Second Messenger Signaling in Cyanobacteria. , 2020, , 311-327.		2
689	The Future Is Big—and Small: Remote Sensing Enables Cross-Scale Comparisons of Microbiome Dynamics and Ecological Consequences. MSystems, 2021, 6, e0110621.	1.7	4
690	Rainfall governs picocyanobacterial ecology in a tropical estuary (Guanabara Bay, Brazil). Hydrobiologia, 2022, 849, 175-196.	1.0	3
695	Vertical Distribution of Phytoplankton Community and Pigment Production in the Yellow Sea and the East China Sea during the Late Summer Season. Water (Switzerland), 2021, 13, 3321.	1.2	9
696	<i>Prochlorococcus</i> extracellular vesicles: molecular composition and adsorption to diverse microbes. Environmental Microbiology, 2022, 24, 420-435.	1.8	25
697	Insignificant Response of Bacterioplankton Community to Elevated pCO2 During a Short-Term Microcosm Experiment in a Subtropical Eutrophic Coastal Ecosystem. Frontiers in Microbiology, 2021, 12, 730377.	1.5	1
699	The Rhythm of Many: Biological Rhythms in the Marine Environment, From Macro-Scale Planktonic Ecosystems to Micro-Scale Holobionts. Frontiers in Marine Science, 2021, 8, .	1.2	5
700	Additive impacts of ocean acidification and ambient ultraviolet radiation threaten calcifying marine primary producers. Science of the Total Environment, 2022, 818, 151782.	3.9	4
701	The moderating role of population succession in the adaptive responses of Synechococcus assemblages: evidence from light intensity simulation experiment. Photosynthetica, 2021, 59, 587-599.	0.9	2
702	Seasonal and inter-annual variability of chemotaxonomic marker pigments in the north-eastern Arabian Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 179, 103679.	0.6	1
703	Mesozooplankton Community Dynamics and Grazing Potential Across Algal Bloom Cycles in a Subtropical Estuary. Frontiers in Marine Science, 2021, 8, .	1.2	4
704	Tracking Bacterial Pollution at a Marine Wastewater Outfall Site – a Case Study from Norway. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
705	Study of the Spatio-emporal Distribution of Monitoring the Abundance and Diversity of Phytoplancton in Ivoirian Marine Waters using Remote Sensing. International Journal of Advances in Scientific Research and Engineering, 2021, 07, 72-80.	0.0	0
706	Global marine phytoplankton revealed by the Tara Oceans expedition. , 2022, , 531-561.		2
707	Uncoupled changes in phytoplankton biomass and size structure in the western tropical Atlantic. Journal of Marine Systems, 2022, 227, 103696.	0.9	10
712	<i>Prochlorococcus</i> Exudate Stimulates Heterotrophic Bacterial Competition with Rival Phytoplankton for Available Nitrogen. MBio, 2022, 13, e0257121.	1.8	6
713	Geography and climate drive the distribution and diversification of the cosmopolitan cyanobacterium <i>Microcoleus</i> (Oscillatoriales, Cyanobacteria). European Journal of Phycology, 2022, 57, 396-405.	0.9	5
714	Bio-GO-SHIP: The Time Is Right to Establish Global Repeat Sections of Ocean Biology. Frontiers in Marine Science, 2022, 8, .	1.2	9
715	Disentangling the Ecological Processes Shaping the Latitudinal Pattern of Phytoplankton Communities in the Pacific Ocean. MSystems, 2022, 7, e0120321.	1.7	14
716	Phytoplankton diversity and ecology through the lens of high throughput sequencing technologies. , 2022, , 353-413.		8
717	Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. Science Advances, 2022, 8, eabl4930.	4.7	16
718	Trophic interactions with heterotrophic bacteria limit the range of <i>Prochlorococcus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
719	Mapping the Green-Lipped Mussel (Perna canaliculus) Microbiome: A Multi-Tissue Analysis of Bacterial and Fungal Diversity. Current Microbiology, 2022, 79, 76.	1.0	10
720	<i>Synechococcus</i> silicon accumulation in oligotrophic oceans. Limnology and Oceanography, 2022, 67, 552-566.	1.6	1
721	Marine phytoplankton resilience may moderate oligotrophic ecosystem responses and biogeochemical feedbacks to climate change. Limnology and Oceanography, 2022, 67, .	1.6	15
722	Deuterium in marine organic biomarkers: toward a new tool for quantifying aquatic mixotrophy. New Phytologist, 2022, 234, 776-782.	3.5	4
723	Crystal structure and molecular mechanism of an E/F type bilin lyase-isomerase. Structure, 2022, 30, 564-574.e3.	1.6	4
724	Controllable Phycobilin Modification: An Alternative Photoacclimation Response in Cryptophyte Algae. ACS Central Science, 2022, 8, 340-350.	5.3	14
725	Empirical estimation of marine phytoplankton assemblages in coastal and offshore areas using an in situ multi-wavelength excitation fluorometer. PLoS ONE, 2022, 17, e0257258.	1.1	4
726	A year in the life of the Eastern Mediterranean: Monthly dynamics of phytoplankton and bacterioplankton in an ultra-oligotrophic sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 182, 103720.	0.6	10

#	Article	IF	CITATIONS
727	Phytoplankton exudates provide full nutrition to a subset of accompanying heterotrophic bacteria via carbon, nitrogen and phosphorus allocation. Environmental Microbiology, 2022, 24, 2467-2483.	1.8	10
728	Spectres of Clock Evolution: Past, Present, and Yet to Come. Frontiers in Physiology, 2021, 12, 815847.	1.3	15
729	Observation of the feeding behaviour of reared Japanese eel Anguilla japonica leptocephali fed picocyanobacteria Synechococcus spp Journal of Fish Biology, 2021, , .	0.7	2
730	Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chemical Reviews, 2022, 122, 10036-10086.	23.0	60
732	Marine Cyanobacteria. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 103-157.	0.2	1
733	Two types of C-terminal regions of RNA-binding proteins play distinct roles in stress tolerance of <i>Synechocystis</i> sp. PCC 6803. FEMS Microbiology Letters, 2022, 369, .	0.7	0
734	Marine Protists: A Hitchhiker's Guide to their Role in the Marine Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 159-241.	0.2	3
735	Highly Diverse Synechococcus Pigment Types in the Eastern Indian Ocean. Frontiers in Microbiology, 2022, 13, 806390.	1.5	0
736	Sargasso Sea bacterioplankton community structure and drivers of variance as revealed by DNA metabarcoding analysis. PeerJ, 2022, 10, e12835.	0.9	2
737	Annual dynamics of eukaryotic and bacterial communities revealed by 18S and 16S rRNA metabarcoding in the coastal ecosystem of Sagami Bay, Japan. Metabarcoding and Metagenomics, 0, 6, .	0.0	1
738	Anticyclonic Eddy Driving Significant Changes in Prokaryotic and Eukaryotic Communities in the South China Sea. Frontiers in Marine Science, 2022, 9, .	1.2	6
739	The Diel Cycle of Surface Ocean Elemental Stoichiometry has Implications for Ocean Productivity. Global Biogeochemical Cycles, 2022, 36, .	1.9	3
740	Nitrogen Sources for Phytoplankton in the Eastern Indian Ocean Determined From δ ¹⁵ N of Chlorophyll <i>a</i> and Divinylchlorophyll <i>a</i> . Geochemistry, Geophysics, Geosystems, 2022, 23,	1.0	6
741	Spatio-Temporal Variation of Synechococcus Assemblages at DNA and cDNA Levels in the Tropical Estuarine and Coastal Waters. Frontiers in Microbiology, 2022, 13, 837037.	1.5	2
742	Siderophores as an iron source for picocyanobacteria in deep chlorophyll maximum layers of the oligotrophic ocean. ISME Journal, 2022, 16, 1636-1646.	4.4	18
743	Genome Sequence of <i>Synechococcus</i> sp. Strain LA31, Isolated from a Temperate Estuary. Microbiology Resource Announcements, 2022, 11, e0077521.	0.3	3
744	The "Dark Side―of Picocyanobacteria: Life as We Do Not Know It (Yet). Microorganisms, 2022, 10, 546.	1.6	7
745	Diversity and Evolution of Pigment Types in Marine <i>Synechococcus</i> Cyanobacteria. Genome Biology and Evolution, 2022, 14, .	1.1	15

#	Article	IF	CITATIONS
747	Interspecific divergence of circadian properties in duckweed plants. Plant, Cell and Environment, 2022, 45, 1942-1953.	2.8	4
748	Distribution Patterns of Synechococcus Indicated Their Environmental Constraints and Related Geochemical Processes in the Yellow Sea. Journal of Ocean University of China, 2022, 21, 499-508.	0.6	1
749	Phosphonate production by marine microbes: Exploring new sources and potential function. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113386119.	3.3	31
751	Quasiâ€Antiphase Diel Patterns of Abundance and Cell Size/Biomass of Picophytoplankton in the Oligotrophic Ocean. Geophysical Research Letters, 2022, 49, .	1.5	8
752	Diverse Subclade Differentiation Attributed to the Ubiquity of <i>Prochlorococcus</i> High-Light-Adapted Clade II. MBio, 2022, 13, e0302721.	1.8	3
753	Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nature Microbiology, 2022, 7, 570-580.	5.9	25
755	The transcriptional regulator RbcR controls ribuloseâ€1,5â€bisphosphate carboxylase/oxygenase (RuBisCO) genes in the cyanobacterium <i>Synechocystis</i> sp. PCC 6803. New Phytologist, 2022, 235, 432-445.	3.5	7
756	Phylogenetic Structure of Synechococcus Assemblages and Its Environmental Determinants in the Bay and Strait Areas of a Continental Sea. Frontiers in Microbiology, 2022, 13, 757896.	1.5	0
757	Linking Microbial Population Succession and DOM Molecular Changes in <i>Synechococcus</i> -Derived Organic Matter Addition Incubation. Microbiology Spectrum, 2022, 10, e0230821.	1.2	8
758	Picocyanobacterial Synechococcus in marine ecosystem: Insights from genetic diversity, global distribution, and potential function. Marine Environmental Research, 2022, 177, 105622.	1.1	4
759	Life, death and cyanobacterial biogeography. Nature Microbiology, 2022, 7, 480-481.	5.9	0
760	Extracellular vesicles as an alternative copper-secretion mechanism in bacteria. Journal of Hazardous Materials, 2022, 431, 128594.	6.5	14
761	Metagenomics reveals bacterioplankton community adaptation to long-term thermal pollution through the strategy of functional regulation in a subtropical bay. Water Research, 2022, 216, 118298.	5.3	11
762	Tracking bacterial pollution at a marine wastewater outfall site – A case study from Norway. Science of the Total Environment, 2022, 829, 154257.	3.9	5
763	Seasonality of Coastal Picophytoplankton Growth, Nutrient Limitation, and Biomass Contribution. Frontiers in Microbiology, 2021, 12, 786590.	1.5	5
764	Functional characterisation of substrate-binding proteins to address nutrient uptake in marine picocyanobacteria. Biochemical Society Transactions, 2021, 49, 2465-2481.	1.6	6
765	The Role of Outer Membrane Protein(s) Harboring SLH/OprB-Domains in Extracellular Vesicles' Production in Synechocystis sp. PCC 6803. Plants, 2021, 10, 2757.	1.6	3
766	Size-Fractionated Filtration Combined with Molecular Methods Reveals the Size and Diversity of Picophytoplankton. Biology, 2021, 10, 1280.	1.3	0

#	Article	IF	CITATIONS
767	When maths meets phytoplankton ecology. Nature Ecology and Evolution, 2022, 6, 138-139.	3.4	1
768	Phytoplankton Pigments Reveal Size Structure and Interannual Variability of the Coastal Phytoplankton Community (Adriatic Sea). Water (Switzerland), 2022, 14, 23.	1.2	7
769	Engineering a Controllable Targeted Protein Degradation System and a Derived OR-GATE-Type Inducible Gene Expression System in <i>Synechococcus elongatus</i> PCC 7942. ACS Synthetic Biology, 2022, 11, 125-134.	1.9	9
770	Prochlorococcus have low global mutation rate and small effective population size. Nature Ecology and Evolution, 2022, 6, 183-194.	3.4	16
771	Global Change Effects on Plankton from Atlantic Patagonian Coastal Waters: The Role of Interacting Drivers. Natural and Social Sciences of Patagonia, 2022, , 117-150.	0.2	1
773	New Perspectives on the Marine Carbon Cycle–The Marine Dissolved Organic Matter Reactivity Continuum. Environmental Science & Technology, 2022, 56, 5371-5380.	4.6	11
774	Temperature Rise Increases the Bioavailability of Marine Synechococcus-Derived Dissolved Organic Matter. Frontiers in Microbiology, 2022, 13, 838707.	1.5	2
775	Bacterioplankton Community Profiling of the Surface Waters of Kuwait. Frontiers in Marine Science, 2022, 9, .	1.2	6
839	Exploring cyanobacterial diversity for sustainable biotechnology. Journal of Experimental Botany, 2022, 73, 3057-3071.	2.4	7
840	Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. Science Advances, 2022, 8, eabj4437.	4.7	9
842	Isolation and Characterization of a Novel Cyanophage Encoding Multiple Auxiliary Metabolic Genes. Viruses, 2022, 14, 887.	1.5	16
843	Metagenome-assembled genomes of phytoplankton microbiomes from the Arctic and Atlantic Oceans. Microbiome, 2022, 10, 67.	4.9	17
844	Seasonal and Spatial Variations in Synechococcus Abundance and Diversity Throughout the Gullmar Fjord, Swedish Skagerrak. Frontiers in Microbiology, 2022, 13, .	1.5	0
845	Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From Different Thermal Niches in Iron-Depleted Areas. Frontiers in Microbiology, 2022, 13, .	1.5	7
846	Comparative Analysis of Total and Size-Fractionated Chlorophyll a in the Yellow Sea and Western Pacific. Frontiers in Microbiology, 2022, 13, .	1.5	0
847	Terrestrial and marine influence on atmospheric bacterial diversity over the north Atlantic and Pacific Oceans. Communications Earth & Environment, 2022, 3, .	2.6	13
849	Forecasting ocean microbiome shifts. Nature Microbiology, 2022, 7, 747-748.	5.9	1
850	Effects of light intensity, temperature, and salinity in allelopathic interactions between coexisting Synechococcus sp. phenotypes. Marine Environmental Research, 2022, 179, 105671.	1.1	Ο

#	Article	IF	CITATIONS
852	Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability, 2022, 14, 7154.	1.6	25
853	The sRNA NsiR4 fine-tunes arginine synthesis in the cyanobacterium <i>Synechocystis</i> sp. PCC 6803 by post-transcriptional regulation of PirA. RNA Biology, 2022, 19, 811-818.	1.5	6
854	A Large Silicon Pool in Small Picophytoplankton. Frontiers in Microbiology, 0, 13, .	1.5	2
855	A single sensor controls large variations in zinc quotas in a marine cyanobacterium. Nature Chemical Biology, 2022, 18, 869-877.	3.9	7
856	Cyanophages from a less virulent clade dominate over their sister clade in global oceans. ISME Journal, 2022, 16, 2169-2180.	4.4	5
857	Theoretical aspects of temperature effect on cyanobacterial circadian clock. , 2022, , 61-68.		0
858	Picophytoplankton phenology in the global ocean assessed by quantitative niche models. Marine Biology, 2022, 169, .	0.7	0
860	Rapid evolution allows coexistence of highly divergent lineages within the same niche. Ecology Letters, 2022, 25, 1839-1853.	3.0	7
861	Genome Sequence of the Estuarine <i>Synechococcus</i> sp. Strain NB0720_010. Microbiology Resource Announcements, 0, , .	0.3	0
862	α-cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats. ISME Journal, 2022, 16, 2421-2432.	4.4	14
863	Diel light cycles affect phytoplankton competition in the global ocean. Global Ecology and Biogeography, 2022, 31, 1838-1849.	2.7	4
864	Auxiliary Metabolic Gene Functions in Pelagic and Benthic Viruses of the Baltic Sea. Frontiers in Microbiology, 0, 13, .	1.5	21
866	Exploring the dynamics of marine picophytoplankton among the Yellow Sea, Indian Ocean and Pacific Ocean: The importance of temperature and nitrogen. Environmental Research, 2022, 214, 113870.	3.7	5
867	Manipulating the Expression of Glycogen Phosphorylase in Synechococcus elongatus PCC 7942 to Mobilize Glycogen Storage for Sucrose Synthesis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
869	Bioavailable iron titrations reveal oceanic <i>Synechococcus</i> ecotypes optimized for different iron availabilities. ISME Communications, 2022, 2, .	1.7	8
870	Interannual variability in particulate organic matter distribution and its carbon stable isotope signatures from the western Indian shelf waters. Science of the Total Environment, 2022, 844, 157044.	3.9	1
871	Vertical distribution of picophytoplankton in the NW shelf and deep-water area of the Black Sea in spring. Journal of Marine Systems, 2022, 234, 103779.	0.9	0
872	Marine Microbial Communities of North and South Shelves of Iceland. Frontiers in Marine Science, 0, 9, .	1.2	0

#	Article	IF	CITATIONS
873	Multiple Photolyases Protect the Marine Cyanobacterium <i>Synechococcus</i> from Ultraviolet Radiation. MBio, 2022, 13, .	1.8	5
874	Current Changing CoastalÂEnvironments Benefit Phytoplankton But Harm Zooplankton. SSRN Electronic Journal, 0, , .	0.4	0
875	Marine <i>Synechococcus</i> sp. Strain WH7803 Shows Specific Adaptative Responses to Assimilate Nanomolar Concentrations of Nitrate. Microbiology Spectrum, 2022, 10, .	1.2	2
876	An absorptionâ€based approach to improved estimates of phytoplankton biomass and net primary production. Limnology and Oceanography Letters, 2022, 7, 419-426.	1.6	6
878	Effect of Rising Temperature and Carbon Dioxide on the Growth, Photophysiology, and Elemental Ratios of Marine Synechococcus: A Multistressor Approach. Sustainability, 2022, 14, 9508.	1.6	4
879	Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates. BMC Biology, 2022, 20, .	1.7	7
880	Sponge holobionts shift their prokaryotic communities and antimicrobial activity from shallow to lower mesophotic depths. Antonie Van Leeuwenhoek, 2022, 115, 1265-1283.	0.7	3
881	Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO2. ISME Journal, 2022, 16, 2587-2598.	4.4	7
883	Seasonal dynamics in picocyanobacterial abundance and clade composition at coastal and offshore stations in the Baltic Sea. Scientific Reports, 2022, 12, .	1.6	4
884	Latitudinal Dynamics of Vibrio along the Eastern Coastline of Australia. Water (Switzerland), 2022, 14, 2510.	1.2	2
885	Microbial communities on plastic particles in surface waters differ from subsurface waters of the North Pacific Subtropical Gyre. Marine Pollution Bulletin, 2022, 182, 113949.	2.3	9
886	Different responses of phytoplankton and zooplankton communities to current changing coastal environments. Environmental Research, 2022, 215, 114426.	3.7	17
887	Tides: Lifting life in the ocean. , 2023, , 307-331.		0
888	Habitat selection and abundance of West Indian manatees Trichechus manatus at the margins of their expanding range. Marine Ecology - Progress Series, 2022, 696, 151-167.	0.9	1
889	An update on dissolved methane distribution in the subtropical North Atlantic Ocean. Ocean Science, 2022, 18, 1377-1388.	1.3	5
890	Cultivation of different seaweed species and seasonal changes cause divergence of the microbial community in coastal seawaters. Frontiers in Microbiology, 0, 13, .	1.5	2
891	Frequency-Domain Spectroscopic Study of the Photosystem I Supercomplexes, Isolated IsiA Monomers, and the Intact IsiA Ring. Journal of Physical Chemistry B, 2022, 126, 6891-6910.	1.2	1
892	Global long-term observations reveal wide geographic divergence in coastal phytoplankton species niches. Journal of Plankton Research, 0, , .	0.8	0

#	Article	IF	CITATIONS
894	A miniaturized bionic ocean-battery mimicking the structure of marine microbial ecosystems. Nature Communications, 2022, 13, .	5.8	11
895	Inherent tendency of <i>Synechococcus</i> and heterotrophic bacteria for mutualism on long-term coexistence despite environmental interference. Science Advances, 2022, 8, .	4.7	8
896	Protist impacts on marine cyanovirocell metabolism. ISME Communications, 2022, 2, .	1.7	3
897	Microbiome network in the pelagic and benthic offshore systems of the northern Adriatic Sea (Mediterranean Sea). Scientific Reports, 2022, 12, .	1.6	5
898	Safeguarding nutrients from coral reefs under climate change. Nature Ecology and Evolution, 2022, 6, 1808-1817.	3.4	16
899	Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Advances in Virus Research, 2022, , 67-146.	0.9	1
901	Acclimation and stress response of Prochlorococcus to low salinity. Frontiers in Microbiology, 0, 13,	1.5	1
902	Viruses in astrobiology. Frontiers in Microbiology, 0, 13, .	1.5	5
903	Microbial ecology of the Southern Ocean. FEMS Microbiology Ecology, 2022, 98, .	1.3	3
904	Basin-scale biogeography of <i>Prochlorococcus</i> and SAR11 ecotype replication. ISME Journal, 2023, 17, 185-194.	4.4	2
906	Tracking contemporary microbial evolution in a changing ocean. Trends in Microbiology, 2023, 31, 336-345.	3.5	4
907	Plastic leachates impair picophytoplankton and dramatically reshape the marine microbiome. Microbiome, 2022, 10, .	4.9	12
908	Mixotrophy in depth. Nature Microbiology, 0, , .	5.9	0
909	Regulatory and metabolic adaptations in the nitrogen assimilation of marine picocyanobacteria. FEMS Microbiology Reviews, 2023, 47, .	3.9	5
910	Microbial community structures and important taxa across oxygen gradients in the Andaman Sea and eastern Bay of Bengal epipelagic waters. Frontiers in Microbiology, 0, 13, .	1.5	3
911	Abundant and cosmopolitan lineage of cyanopodoviruses lacking a DNA polymerase gene. ISME Journal, 2023, 17, 252-262.	4.4	4
912	The phycoerythrobilin isomerization activity of MpeV in Synechococcus sp. WH8020 is prevented by the presence of a histidine at position 141 within its phycoerythrin-l β-subunit substrate. Frontiers in Microbiology, 0, 13, .	1.5	0
913	A Cyanophage MarR-Type Transcription Factor Regulates Host RNase E Expression during Infection. Microorganisms, 2022, 10, 2245.	1.6	2

#	Article	IF	CITATIONS
914	Community context and pCO2 impact the transcriptome of the "helper―bacterium <i>Alteromonas</i> in co-culture with picocyanobacteria. ISME Communications, 2022, 2, .	1.7	2
915	Global patterns and predictors of C:N:P in marine ecosystems. Communications Earth & Environment, 2022, 3, .	2.6	9
916	Prospective bacterial and fungal sources of hyaluronic acid: A review. Computational and Structural Biotechnology Journal, 2022, 20, 6214-6236.	1.9	4
917	Development of shuttle vectors for rapid prototyping of engineered Synechococcus sp. PCC7002. Applied Microbiology and Biotechnology, 0, , .	1.7	0
918	Coupling ecological concepts with an ocean-colour model: Phytoplankton size structure. Remote Sensing of Environment, 2023, 285, 113415.	4.6	4
919	Production, homology modeling and mutagenesis studies on GlcH glucose transporter from Prochlorococcus sp. strain SS120. Biochimica Et Biophysica Acta - Bioenergetics, 2023, 1864, 148954.	0.5	0
920	Evolution of self-sustained circadian rhythms is facilitated by seasonal change of daylight. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	1
922	Molecular diet analysis enables detection of diatom and cyanobacteria DNA in the gut of Macoma balthica. PLoS ONE, 2022, 17, e0278070.	1.1	1
923	Cyanophages as an important factor in the early evolution of oxygenic photosynthesis. Scientific Reports, 2022, 12, .	1.6	1
924	Epipelagic nitrous oxide production offsets carbon sequestration by the biological pump. Nature Geoscience, 2023, 16, 29-36.	5.4	7
925	Growth dynamics and transcriptional responses of a <scp>Red Sea</scp> <i>Prochlorococcus</i> strain to varying temperatures. Environmental Microbiology, 2023, 25, 1007-1021.	1.8	0
926	Diversity and Evolution of Iron Uptake Pathways in Marine Cyanobacteria from the Perspective of the Coastal Strain <i>Synechococcus</i> sp. Strain PCC 7002. Applied and Environmental Microbiology, 2023, 89, .	1.4	5
927	Global Phylogeography of Marine <i>Synechococcus</i> in Coastal Areas Reveals Strong Community Shifts. MSystems, 2022, 7, .	1.7	12
928	Composition and assembly of the bacterial community in the overlying waters of the coral reef of China's Xisha Islands. Frontiers in Microbiology, 0, 13, .	1.5	1
930	Community assemblages and species coexistence of prokaryotes controlled by local environmental heterogeneity in a cold seep water column. Science of the Total Environment, 2023, 868, 161725.	3.9	7
931	Spatio-temporal patterns of Synechococcus oligotypes in Moroccan lagoonal environments. Scientific Reports, 2023, 13, .	1.6	1
932	Sulfoquinovose is a widespread organosulfur substrate for <i>Roseobacter</i> clade bacteria in the ocean. ISME Journal, 2023, 17, 393-405.	4.4	10
933	Comparative metabarcoding analysis of phytoplankton community composition and diversity in aquaculture water and the stomach contents of Tegillarca granosa during months of growth. Marine Pollution Bulletin, 2023, 187, 114556.	2.3	4

\sim			n
C1	TAT	ION	Report

#	Article	IF	CITATIONS
934	Quantifying relative contributions of biotic interactions to bacterial diversity and community assembly by using community characteristics of microbial eukaryotes. Ecological Indicators, 2023, 146, 109841.	2.6	4
935	Dark accumulation of downstream glycolytic intermediates initiates robust photosynthesis in cyanobacteria. Plant Physiology, 2023, 191, 2400-2413.	2.3	14
936	Spatial-temporal study of cluster 5 picocyanobacteria and exopolymeric microgels in Lake Maggiore. Advances in Oceanography and Limnology, 2022, 13, .	0.2	2
937	Microbial Community Abundance and Metabolism Close to the Ice-Water Interface of the Blomstrandbreen Glacier (Kongsfjorden, Svalbard): A Sampling Survey Using an Unmanned Autonomous Vehicle. Water (Switzerland), 2023, 15, 556.	1.2	3
938	Introduction to Cyanobacteria. Advances in Biochemical Engineering/Biotechnology, 2023, , 1-24.	0.6	0
939	Seasonality of phytoplankton biomass and composition on the Cape Canaveral shelf of Florida: Role of shifts in climate and coastal watershed influences. Frontiers in Ecology and Evolution, 0, 11, .	1.1	1
940	Short-term dynamics of nano- and picoplankton production in an embayment of the southern Benguela upwelling region. Estuarine, Coastal and Shelf Science, 2023, 284, 108285.	0.9	1
941	Disentangling environmental effects on picophytoplankton communities in the Eastern Indian Ocean. Environmental Research, 2023, 225, 115635.	3.7	3
942	Microbial food webs share similar biogeographic patterns and driving mechanisms with depths in oligotrophic tropical western Pacific Ocean. Frontiers in Microbiology, 0, 14, .	1.5	1
943	Integrated Proteomic and Metabolomic Analyses Show Differential Effects of Glucose Availability in Marine <i>Synechococcus</i> and <i>Prochlorococcus</i> . Microbiology Spectrum, 2023, 11, .	1.2	2
945	Light and carbon: Synthetic biology toward new cyanobacteria-based living biomaterials. Materials Today Bio, 2023, 19, 100583.	2.6	3
946	Draft genomes of three closely related low light-adapted Prochlorococcus. BMC Genomic Data, 2023, 24, .	0.7	1
947	Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies. ISME Journal, 2023, 17, 720-732.	4.4	3
948	Associations between picocyanobacterial ecotypes and cyanophage host genes across ocean basins and depth. PeerJ, 0, 11, e14924.	0.9	2
949	Prediction of abnormal proliferation risk of Phaeocystis globosa based on correlation mining of PC concentration indicator and meteorological factors along Qinzhou Bay, Guangxi. Journal of Sea Research, 2023, 192, 102365.	0.6	0
950	Cell specialization in cyanobacterial biofilm development revealed by expression of a cell-surface and extracellular matrix protein. Npj Biofilms and Microbiomes, 2023, 9, .	2.9	1
951	Nested PCR Approach for <i>petB</i> Gene Metabarcoding of Marine <i>Synechococcus</i> Populations. Microbiology Spectrum, 2023, 11, .	1.2	0
952	Abiotic selection of microbial genome size in the global ocean. Nature Communications, 2023, 14, .	5.8	10

#	Article	IF	CITATIONS
953	Seasonality of biogeochemically relevant microbial genes in a coastal ocean microbiome. Environmental Microbiology, 2023, 25, 1465-1483.	1.8	1
954	Understanding opposing predictions of Prochlorococcus in a changing climate. Nature Communications, 2023, 14, .	5.8	3
956	Photoinhibition of the Picophytoplankter Synechococcus Is Exacerbated by Ocean Acidification. Water (Switzerland), 2023, 15, 1228.	1.2	1
957	The Calvin Benson cycle in bacteria: New insights from systems biology. Seminars in Cell and Developmental Biology, 2023, , .	2.3	2
958	Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle. Environmental Microbiology Reports, 2023, 15, 282-290.	1.0	0
959	The Landscape of Global Ocean Microbiome: From Bacterioplankton to Biofilms. International Journal of Molecular Sciences, 2023, 24, 6491.	1.8	4
960	A Reduction of Transcriptional Regulation in Aquatic Oligotrophic Microorganisms Enhances Fitness in Nutrient-Poor Environments. Microbiology and Molecular Biology Reviews, 0, , .	2.9	1
961	Electron transport in cyanobacterial thylakoid membranes: are cyanobacteria simple models for photosynthetic organisms?. Journal of Experimental Botany, 2023, 74, 3476-3487.	2.4	3
962	Transcriptional Mechanisms of Thermal Acclimation in <i>Prochlorococcus</i> . MBio, 2023, 14, .	1.8	1
964	Microplastics and nanoplastics toxicity assays: A revision towards to environmental-relevance in water environment. Journal of Hazardous Materials, 2023, 454, 131476.	6.5	13
966	Molecular discoveries in microbial DMSP synthesis. Advances in Microbial Physiology, 2023, , 59-116.	1.0	2
998	Halotolerance mechanisms in saltâ€'tolerant cyanobacteria. Advances in Applied Microbiology, 2023, , .	1.3	0
1008	Consequences of Microplastics on Global Ecosystem Structure and Function. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	0.7	1
1015	Sponge functional roles in a changing world. Advances in Marine Biology, 2023, , .	0.7	0
1027	Bacterial Biodiversity. , 2024, , 793-801.		0
1048	Cyanobacteria in Ocean. , 2023, , 47-66.		0