Recovery of an Isolated Coral Reef System Following Se

Science

340, 69-71

DOI: 10.1126/science.1232310

Citation Report

#	Article	IF	CITATIONS
1	Description and validation of production processes in the coral reef ecosystem model CAFFEE (Coral–Algae–Fish-Fisheries Ecosystem Energetics) with a fisheries closure and climatic disturbance. Ecological Modelling, 2013, 263, 326-348.	1.2	25
2	Long-term records of coral calcification across the central Great Barrier Reef: assessing the impacts of river runoff and climate change. Coral Reefs, 2013, 32, 999-1012.	0.9	65
3	Coral Diseases Cause Reef Decline. Science, 2013, 340, 1522-1522.	6.0	9
4	Dynamics of Coral Reef Recovery. Science, 2013, 340, 34-35.	6.0	19
5	Ocean acidification reverses competition for space as habitats degrade. Scientific Reports, 2013, 3, 3280.	1.6	46
6	A Positive Trajectory for Corals at Little Cayman Island. PLoS ONE, 2013, 8, e75432.	1.1	19
7	Biogeography and Change among Regional Coral Communities across the Western Indian Ocean. PLoS ONE, 2014, 9, e93385.	1.1	62
8	Short-term changes of fish assemblages observed in the near-pristine reefs of the Phoenix Islands. Reviews in Fish Biology and Fisheries, 2014, 24, 505-518.	2.4	6
9	Coral reefs in a crystal ball: predicting the future from the vulnerability of corals and reef fishes to multiple stressors. Current Opinion in Environmental Sustainability, 2014, 7, 59-64.	3.1	63
10	Reef degradation and the loss of critical ecosystem goods and services provided by coral reef fishes. Current Opinion in Environmental Sustainability, 2014, 7, 37-43.	3.1	169
11	Community change and evidence for variable warm-water temperature adaptation of corals in Northern Male Atoll, Maldives. Marine Pollution Bulletin, 2014, 80, 107-113.	2.3	36
12	Refuges modulate coral recruitment in the Caribbean and the Pacific. Journal of Experimental Marine Biology and Ecology, 2014, 454, 78-84.	0.7	36
13	Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. Journal of Ecology, 2014, 102, 1528-1536.	1.9	104
14	Antioxidant plasticity and thermal sensitivity in four types of <i><scp>S</scp>ymbiodinium</i> sp Journal of Phycology, 2014, 50, 1035-1047.	1.0	87
15	Quantifying functional diversity in pre- and post-extinction paleocommunities: A test of ecological restructuring after the end-Permian mass extinction. Earth-Science Reviews, 2014, 136, 339-349.	4.0	41
16	Interacting Regional-Scale Regime Shifts for Biodiversity and Ecosystem Services. BioScience, 2014, 64, 665-679.	2.2	41
17	How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia, 2014, 176, 285-296.	0.9	47
18	Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Marine Biology, 2014, 161, 1385-1393.	0.7	45

#	Article	IF	Citations
19	Bottlenecks to coral recovery in the Seychelles. Coral Reefs, 2014, 33, 449-461.	0.9	73
20	Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef. Coral Reefs, 2014, 33, 553-563.	0.9	88
21	Reef-scale failure of coral settlement following typhoon disturbance and macroalgal bloom in Palau, Western Pacific. Coral Reefs, 2014, 33, 613-623.	0.9	45
22	Decadal coral community reassembly on an African fringing reef. Coral Reefs, 2014, 33, 939-950.	0.9	44
23	Increased local retention of reef coral larvae as a result of ocean warming. Nature Climate Change, 2014, 4, 498-502.	8.1	94
24	Resilience in ecology: Abstraction, distraction, or where the action is?. Biological Conservation, 2014, 177, 43-51.	1.9	325
25	Variation in size-frequency distributions of branching corals between a tropical versus sub-tropical reef. Marine Ecology - Progress Series, 2014, 502, 117-128.	0.9	18
26	Limits to Understanding and Managing Outbreaks of Crown- of- Thorns Starfish (Acanthaster spp.)., 2014, , 133-200.		122
27	The Ecosystem Roles of Parrotfishes on Tropical Reefs. , 2014, , 81-132.		110
28	Coral spawning in the Gulf of Oman and relationship to latitudinal variation in spawning season in the northwest Indian Ocean. Scientific Reports, 2014, 4, 7484.	1.6	34
29	Coral record of southeast Indian Ocean marine heatwaves with intensified Western Pacific temperature gradient. Nature Communications, 2015, 6, 8562.	5.8	62
30	Resilience of coral calcification to extreme temperature variations in the Kimberley region, northwest Australia. Coral Reefs, 2015, 34, 1151-1163.	0.9	33
31	Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats. PLoS ONE, 2015, 10, e0128535.	1.1	103
32	Effects of river sediments on coral recruitment, algal abundance benthic community structure on Kenyan coral reefs. African Journal of Environmental Science and Technology, 2015, 9, 615-631.	0.2	10
33	Coral Reefs in the Anthropocene. , 2015, , .		23
34	Abundance, composition and growth rate of coral recruits on dead corals following the 2010 bleaching event at Mu Ko Surin, the Andaman Sea. Ocean Science Journal, 2015, 50, 307-315.	0.6	10
35	The differential effects of increasing frequency and magnitude of extreme events on coral populations. Ecological Applications, 2015, 25, 1534-1545.	1.8	27
36	How models can support ecosystem-based management of coral reefs. Progress in Oceanography, 2015, 138, 559-570.	1.5	33

#	Article	IF	CITATIONS
37	Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature, 2015, 518, 94-97.	13.7	607
38	Coral–algal phase shifts alter fish communities and reduce fisheries production. Global Change Biology, 2015, 21, 165-172.	4.2	51
39	Through bleaching and tsunami: Coral reef recovery in the Maldives. Marine Pollution Bulletin, 2015, 98, 188-200.	2.3	62
40	Geographically conserved rates of background mortality among common reef-building corals in Lhaviyani Atoll, Maldives, versus northern Great Barrier Reef, Australia. Marine Biology, 2015, 162, 1579-1586.	0.7	3
41	Coral reef recovery in the Gal \tilde{A}_i pagos Islands: the northernmost islands (Darwin and Wenman). Coral Reefs, 2015, 34, 421-436.	0.9	57
42	Measuring coral size-frequency distribution using stereo video technology, a comparison with in situ measurements. Environmental Monitoring and Assessment, 2015, 187, 234.	1.3	6
43	Distance decay among coral assemblages during a cycle of disturbance and recovery. Coral Reefs, 2015, 34, 727-738.	0.9	12
44	Fish community reassembly after a coral mass mortality: higher trophic groups are subject to increased rates of extinction. Ecology Letters, 2015, 18, 451-461.	3.0	33
45	Coral Disturbance and Recovery in a Changing World. , 2015, , 217-230.		4
46	Restocking Herbivorous Fish Populations As a Social-Ecological Restoration Tool in Coral Reefs. Frontiers in Marine Science, 2016, 3, .	1.2	16
47	Recent Advances in Understanding the Effects of Climate Change on Coral Reefs. Diversity, 2016, 8, 12.	0.7	98
48	Biannual Spawning and Temporal Reproductive Isolation in Acropora Corals. PLoS ONE, 2016, 11, e0150916.	1.1	31
49	Ecological limitations to the resilience of coral reefs. Coral Reefs, 2016, 35, 1271-1280.	0.9	44
50	Quantifying spatial resilience. Journal of Applied Ecology, 2016, 53, 625-635.	1.9	165
51	Expanding marine protected areas to include degraded coral reefs. Conservation Biology, 2016, 30, 1182-1191.	2.4	39
52	Mark Plummer's Legacy: Leave No Orthodoxy Unquestioned. Coastal Management, 2016, 44, 380-396.	1.0	2
53	Multi-scale records of reef development and condition provide context for contemporary changes on inshore reefs. Global and Planetary Change, 2016, 146, 162-178.	1.6	10
54	Natural bounds on herbivorous coral reef fishes. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161716.	1.2	76

#	ARTICLE	IF	Citations
55	Assessing the impact of acute disturbances on the structure and composition of a coral community using innovative 3D reconstruction techniques. Methods in Oceanography, 2016, 15-16, 49-59.	1.5	63
56	Bleaching and recovery patterns of corals in Palk Bay, India: An indication of bleaching resilient reef. Regional Studies in Marine Science, 2016, 8, 151-156.	0.4	8
57	Skeletal records of community-level bleaching in Porites corals from Palau. Coral Reefs, 2016, 35, 1407-1417.	0.9	35
58	Climate Change, Ocean Chemistry, and the Evolution of Reefs Through Time. Coral Reefs of the World, 2016, , 197-223.	0.3	2
59	Ocean circulation drives heterogeneous recruitments and connectivity among coral populations on the North West Shelf of Australia. Journal of Marine Systems, 2016, 164, 1-12.	0.9	29
60	Coral Reefs at the Crossroads. Coral Reefs of the World, 2016, , .	0.3	6
61	Interactive effects of three pervasive marine stressors in a post-disturbance coral reef. Coral Reefs, 2016, 35, 1281-1293.	0.9	25
62	Coral recovery in the central Maldives archipelago since the last major mass-bleaching, in 1998. Scientific Reports, 2016, 6, 34720.	1.6	47
63	Siting marine protected areas based on habitat quality and extent provides the greatest benefit to spatially structured metapopulations. Ecosphere, 2016, 7, e01533.	1.0	33
64	27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Scientific Reports, 2016, 6, 36260.	1.6	110
65	Coral reef degradation is not correlated with local human population density. Scientific Reports, 2016, 6, 29778.	1.6	128
66	Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs, 2016, 35, 1357-1368.	0.9	25
67	Density-associated recruitment mediates coral population dynamics on a coral reef. Coral Reefs, 2016, 35, 543-553.	0.9	69
68	Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs, 2016, 35, 999-1009.	0.9	42
69	Microparasitic disease dynamics in benthic suspension feeders: Infective dose, non-focal hosts, and particle diffusion. Ecological Modelling, 2016, 328, 44-61.	1.2	21
70	Regional variation in the structure and function of parrotfishes on Arabian reefs. Marine Pollution Bulletin, 2016, 105, 524-531.	2.3	16
71	The implications of recurrent disturbances within the world's hottest coral reef. Marine Pollution Bulletin, 2016, 105, 466-472.	2.3	54
72	Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia, 2016, 181, 13-24.	0.9	45

#	Article	IF	Citations
73	Herbivore crossâ€scale redundancy supports response diversity and promotes coral reef resilience. Journal of Applied Ecology, 2016, 53, 646-655.	1.9	96
74	Restricted gene flow and local adaptation highlight the vulnerability of highâ€latitude reefs to rapid environmental change. Global Change Biology, 2017, 23, 2197-2205.	4.2	54
75	Restoration of a boulder reef in temperate waters: Strategy, methodology and lessons learnt. Ecological Engineering, 2017, 102, 468-482.	1.6	15
76	Delayed coral recovery in a warming ocean. Global Change Biology, 2017, 23, 3869-3881.	4.2	68
77	Differential response of coral communities to Caulerpa spp. bloom in the reefs of Indian Ocean. Environmental Science and Pollution Research, 2017, 24, 3912-3922.	2.7	13
78	Abundance and composition of juvenile corals reveals divergent trajectories for coral assemblages across the United Arab Emirates. Marine Pollution Bulletin, 2017, 114, 1031-1035.	2.3	17
79	Coral larvae are poor swimmers and require fine-scale reef structure to settle. Scientific Reports, 2017, 7, 2249.	1.6	92
80	Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean. Scientific Reports, 2017, 7, 2443.	1.6	52
81	Sponge monitoring: Moving beyond diversity and abundance measures. Ecological Indicators, 2017, 78, 470-488.	2.6	30
82	Coral assemblages are structured along a turbidity gradient on the Southwestern Gulf of Mexico, Veracruz. Continental Shelf Research, 2017, 138, 32-40.	0.9	6
83	Global warming and recurrent mass bleaching of corals. Nature, 2017, 543, 373-377.	13.7	2,363
84	Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits. Scientific Reports, 2017, 7, 12380.	1.6	30
85	Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Scientific Reports, 2017, 7, 13985.	1.6	107
86	Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Science Advances, 2017, 3, e1701413.	4.7	161
87	The Resilience of Marine Ecosystems to Climatic Disturbances. BioScience, 2017, 67, 208-220.	2.2	94
88	Importance of Recruitment Processes in the Dynamics and Resilience of Coral Reef Assemblages. , 2017, , 549-569.		28
89	The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restoration Ecology, 2017, 25, 873-883.	1.4	94
90	Multi-decadal analysis reveals contrasting patterns of resilience and decline in coral assemblages. Coral Reefs, 2017, 36, 1225-1233.	0.9	15

#	Article	IF	CITATIONS
91	A functional approach to the structural complexity of coral assemblages based on colony morphological features. Scientific Reports, 2017, 7, 9849.	1.6	45
92	Cumulative impacts: thermally bleached corals have reduced capacity to clear deposited sediment. Scientific Reports, 2017, 7, 2716.	1.6	29
93	Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Scientific Reports, 2017, 7, 14999.	1.6	159
94	Multiple Stressors and the Functioning of Coral Reefs. Annual Review of Marine Science, 2017, 9, 445-468.	5.1	124
95	Interpreting coral reef monitoring data: A guide for improved management decisions. Ecological Indicators, 2017, 72, 848-869.	2.6	59
96	lsolation predicts compositional change after discrete disturbances in a global metaâ€study. Ecography, 2017, 40, 1256-1266.	2.1	18
97	3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports, 2017, 7, 16737.	1.6	82
98	Thirty Years of Research on Crown-of-Thorns Starfish (1986–2016): Scientific Advances and Emerging Opportunities. Diversity, 2017, 9, 41.	0.7	126
99	Settlement Patterns of Corals and other Benthos on Reefs with Divergent Environments and Disturbances Histories around the Northeastern Arabian Peninsula. Frontiers in Marine Science, 2017, 4, .	1.2	15
100	Tropical and Sub-Tropical Coral Reefs. , 0, , 817-838.		0
101	Population collapse dynamics in <i>Acropora downingi</i> , an Arabian/Persian Gulf ecosystemâ€engineering coral, linked to rising temperature. Global Change Biology, 2018, 24, 2447-2462.	4.2	95
102	Early-phase dynamics in coral recovery following cyclone disturbance on the inshore Great Barrier Reef, Australia. Coral Reefs, 2018, 37, 431-443.	0.9	6
103	Seeking resilience in marine ecosystems. Science, 2018, 359, 986-987.	6.0	82
104	Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biological Conservation, 2018, 220, 308-319.	1.9	57
105	Increasing thermal stress for tropical coral reefs: 1871–2017. Scientific Reports, 2018, 8, 6079.	1.6	182
106	Local oceanographic variability influences the performance of juvenile abalone under climate change. Scientific Reports, 2018, 8, 5501.	1.6	32
107	The hidden dynamics of low coral cover communities. Hydrobiologia, 2018, 818, 193-209.	1.0	24
108	Global warming transforms coral reef assemblages. Nature, 2018, 556, 492-496.	13.7	1,173

#	Article	IF	Citations
109	Genetic signatures through space, time and multiple disturbances in a ubiquitous brooding coral. Molecular Ecology, 2018, 27, 1586-1602.	2.0	19
110	Dispersal capacity and genetic relatedness in Acropora cervicornis on the Florida Reef Tract. Coral Reefs, 2018, 37, 585-596.	0.9	17
111	Editorial: One climateâ€change career. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 4-5.	0.9	0
112	Towards Developing a Mechanistic Understanding of Coral Reef Resilience to Thermal Stress Across Multiple Scales. Current Climate Change Reports, 2018, 4, 51-64.	2.8	36
113	Gradients of disturbance and environmental conditions shape coral community structure for southâ€eastern Indian Ocean reefs. Diversity and Distributions, 2018, 24, 605-620.	1.9	43
114	Resolving high-frequency internal waves generated at an isolated coral atoll using an unstructured grid ocean model. Ocean Modelling, 2018, 122, 67-84.	1.0	20
115	Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 2018, 359, 80-83.	6.0	1,515
116	Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitatâ€forming biota on a tropical coral reef. Ecology and Evolution, 2018, 8, 1918-1928.	0.8	24
117	Clarifying the concept of climate change refugia for coral reefs. ICES Journal of Marine Science, 2018, 75, 43-49.	1.2	46
118	Ecosystem regime shifts disrupt trophic structure. Ecological Applications, 2018, 28, 191-200.	1.8	43
119	Identification of coral recruitment in Lembongan Island, Nusa Penida, Bali. Journal of Physics: Conference Series, 2018, 1040, 012011.	0.3	0
120	Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo'orea, French Polynesia. Scientific Reports, 2018, 8, 16615.	1.6	29
121	Predicting coral dynamics through climate change. Scientific Reports, 2018, 8, 17997.	1.6	19
122	Changing geoâ€ecological functions of coral reefs in the Anthropocene. Functional Ecology, 2019, 33, 976-988.	1.7	113
123	Repeat bleaching of a central Pacific coral reef over the past six decades (1960–2016). Communications Biology, 2018, 1, 177.	2.0	62
124	Change in coral reef benthic communities in the Lembeh Strait and Likupang, North Sulawesi, Indonesia. Acta Oceanologica Sinica, 2018, 37, 45-54.	0.4	0
125	Integrated evidence reveals a new species in the ancient blue coral genus Heliopora (Octocorallia). Scientific Reports, 2018, 8, 15875.	1.6	27
126	Effect of Coral-Algal Interactions on Early Life History Processes in Pocillopora acuta in a Highly Disturbed Coral Reef System. Frontiers in Marine Science, 2018, 5, .	1.2	15

#	Article	IF	Citations
127	Critical Information Gaps Impeding Understanding of the Role of Larval Connectivity Among Coral Reef Islands in an Era of Global Change. Frontiers in Marine Science, 2018, 5, .	1.2	18
128	Coral reef degradation affects the potential for reef recovery after disturbance. Marine Environmental Research, 2018, 142, 48-58.	1.1	41
129	Macroalgae size refuge from herbivory promotes alternative stable states on coral reefs. PLoS ONE, 2018, 13, e0202273.	1.1	27
130	Holdfasts of Sargassum swartzii are resistant to herbivory and resilient to damage. Coral Reefs, 2018, 37, 1075-1084.	0.9	16
131	Recolonization of Marginal Coral Reef Flats in Response to Recent Seaâ€Level Rise. Journal of Geophysical Research: Oceans, 2018, 123, 7618-7628.	1.0	10
132	Predicting coral community recovery using multiâ€species population dynamics models. Ecology Letters, 2018, 21, 1790-1799.	3.0	59
133	Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Scientific Reports, 2018, 8, 9680.	1.6	93
134	Effects of Coral Bleaching and Coral Loss on the Structure and Function of Reef Fish Assemblages. Ecological Studies, 2018, , 265-293.	0.4	48
135	Consequences of Coral Bleaching for Sessile Reef Organisms. Ecological Studies, 2018, , 231-263.	0.4	10
136	Coral Bleaching. Ecological Studies, 2018, , .	0.4	20
137	The effects of suspended sediment on coral reef fish assemblages and feeding guilds of north-west Australia. Coral Reefs, 2018, 37, 659-673.	0.9	33
138	Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Scientific Reports, 2018, 8, 7338.	1.6	106
139	Rapid recovery of a coral dominated Eastern Tropical Pacific reef after experimentally produced anthropogenic disturbance. Marine Environmental Research, 2018, 139, 79-86.	1.1	2
140	Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Scientific Reports, 2018, 8, 11885.	1.6	23
141	Dieâ€offs of the endangered pearl mussel <scp><i>Margaritifera margaritifera</i></scp> during an extreme drought. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 1244-1248.	0.9	39
142	Reef-scale variability in fish and coral assemblages on the central Great Barrier Reef. Marine Biology, 2018, 165, 1.	0.7	7
143	Effects of herbivores, wave exposure and depth on benthic coral communities of the Easter Island ecoregion. Marine and Freshwater Research, 2018, 69, 997.	0.7	10
144	Genetic connectivity supports recovery of gorgonian populations affected by climate change. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 776-787.	0.9	20

#	Article	IF	CITATIONS
145	A framework for identifying and characterising coral reef "oases―against a backdrop of degradation. Journal of Applied Ecology, 2018, 55, 2865-2875.	1.9	58
146	Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nature Ecology and Evolution, 2019, 3, 1341-1350.	3.4	175
147	Split spawning increases robustness of coral larval supply and inter-reef connectivity. Nature Communications, 2019, 10, 3463.	5.8	35
148	Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs, 2019, 38, 863-876.	0.9	54
149	The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs, 2019, 38, 539-545.	0.9	246
150	Marine Heatwave Hotspots in Coral Reef Environments: Physical Drivers, Ecophysiological Outcomes, and Impact Upon Structural Complexity. Frontiers in Marine Science, 2019, 6, .	1.2	90
151	Coral restoration research and technical developments: what we have learned so far. Marine Biology Research, 2019, 15, 377-409.	0.3	48
152	Managing cross-scale dynamics in marine conservation: Pest irruptions and lessons from culling of crown-of-thorns starfish (Acanthaster spp.). Biological Conservation, 2019, 238, 108211.	1.9	24
153	Ecological changes over 90 years at Low Isles on the Great Barrier Reef. Nature Communications, 2019, 10, 4409.	5.8	24
154	Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs, 2019, 38, 567-589.	0.9	82
155	Paleobiological Traits That Determined Scleractinian Coral Survival and Proliferation During the Late Paleocene and Early Eocene Hyperthermals. Paleoceanography and Paleoclimatology, 2019, 34, 252-274.	1.3	9
156	Practical Resilience Index for Coral Reef Assessment. Ocean Science Journal, 2019, 54, 117-127.	0.6	21
157	Beyond the "Deep Reef Refuge―Hypothesis: A Conceptual Framework to Characterize Persistence at Depth. Coral Reefs of the World, 2019, , 881-895.	0.3	62
158	Thermal stress induces persistently altered coral reef fish assemblages. Global Change Biology, 2019, 25, 2739-2750.	4.2	71
159	Abiotic and biotic controls on coral recovery 16Âyears after mass bleaching. Coral Reefs, 2019, 38, 1255-1265.	0.9	31
160	Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reefâ€building corals. Molecular Ecology, 2019, 28, 3371-3382.	2.0	42
161	Northwest Australia. Coral Reefs of the World, 2019, , 337-349.	0.3	7
162	Sexual Reproduction of Scleractinian Corals in Mesophotic Coral Ecosystems vs. Shallow Reefs. Coral Reefs of the World, 2019, , 653-666.	0.3	30

#	Article	IF	CITATIONS
163	Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Global Change Biology, 2019, 25, 2619-2632.	4.2	45
164	Rethinking coral reef functional futures. Functional Ecology, 2019, 33, 942-947.	1.7	36
165	Changes in the population and community structure of corals during recent disturbances (February) Tj ETQq0 0 0	rgBT /Ove 1.6	rlock 10 Tf 5
166	Insights into coral reef benthic dynamics from nonlinear spatial forecasting. Journal of the Royal Society Interface, 2019, 16, 20190047.	1.5	4
167	Ecophysiology of Reef-Building Corals in the Red Sea. Coral Reefs of the World, 2019, , 33-52.	0.3	8
168	Two time losers: selective feeding by crown-of-thorns starfish on corals most affected by successive coral-bleaching episodes on western Australian coral reefs. Marine Biology, 2019, 166, 1.	0.7	19
169	Atmospheric Nitrogen Deposition Increases the Possibility of Macroalgal Dominance on Remote Coral Reefs. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1355-1369.	1.3	24
170	Cross-Shelf Variation in Coral Community Response to Disturbance on the Great Barrier Reef. Diversity, 2019, 11, 38.	0.7	21
171	Uncovering drivers of juvenile coral density following mass bleaching. Coral Reefs, 2019, 38, 637-649.	0.9	26
172	Upper mesophotic depths in the coral reefs of Eilat, Red Sea, offer suitable refuge grounds for coral settlement. Scientific Reports, 2019, 9, 2263.	1.6	39
173	Water quality mediates resilience on the Great Barrier Reef. Nature Ecology and Evolution, 2019, 3, 620-627.	3.4	139
174	The state of Western Australia's coral reefs. Coral Reefs, 2019, 38, 651-667.	0.9	56
175	Cross-Shelf Differences in the Response of Herbivorous Fish Assemblages to Severe Environmental Disturbances. Diversity, 2019, 11, 23.	0.7	26
176	Global warming impairs stock–recruitment dynamics of corals. Nature, 2019, 568, 387-390.	13.7	378
177	Physical mechanisms influencing localized patterns of temperature variability and coral bleaching within a system of reef atolls. Coral Reefs, 2019, 38, 759-771.	0.9	29
178	Temporal effects of ocean warming and acidification on coral–algal competition. Coral Reefs, 2019, 38, 297-309.	0.9	20
179	Exposure, vulnerability, and resiliency of French Polynesian coral reefs to environmental disturbances. Scientific Reports, 2019, 9, 1027.	1.6	18
180	Drivers of recovery and reassembly of coral reef communities. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182908.	1.2	70

#	Article	IF	Citations
181	Experimental support for alternative attractors on coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4372-4381.	3.3	64
182	First Report of the Coral-Killing Sponge Terpios hoshinota Rýtzler and Muzik, 1993 in Western Australia: A New Threat to Kimberley Coral Reefs?. Diversity, 2019, 11, 184.	0.7	11
183	Cross-Shelf Variation Among Juvenile and Adult Coral Assemblages on Australia's Great Barrier Reef. Diversity, 2019, 11, 85.	0.7	5
184	Australia's Great Barrier Reef. , 2019, , 333-362.		0
185	The North-Western Margin of Australia. , 2019, , 303-331.		4
187	The Coral Sea. , 2019, , 679-698.		1
188	The Portuguese Coast. , 2019, , 189-208.		4
189	Recovery Debts Can Be Revealed by Ecosystem Network-Based Approaches. Ecosystems, 2019, 22, 658-676.	1.6	13
190	A seascape genetic analysis of a stress-tolerant coral species along the Western Australian coast. Coral Reefs, 2019, 38, 63-78.	0.9	6
191	Productive instability of coral reef fisheries after climate-driven regime shifts. Nature Ecology and Evolution, 2019, 3, 183-190.	3.4	86
192	Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs, 2019, 38, 713-719.	0.9	44
193	Global Status of Coral Reefs: In Combination, Disturbances and Stressors Become Ratchets. , 2019, , 35-56.		17
194	Impacts of the 2014–2017 global bleaching event on a protected remote atoll in the Western Indian Ocean. Coral Reefs, 2020, 39, 15-26.	0.9	20
195	Lobophora–coral interactions and phase shifts: summary of current knowledge and future directions. Aquatic Ecology, 2020, 54, 1-20.	0.7	28
196	Reef accretion and coral growth rates are decoupled in Holocene reef frameworks. Marine Geology, 2020, 419, 106065.	0.9	17
197	Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs, 2020, 39, 515-521.	0.9	38
198	Habitat and fishing control grazing potential on coral reefs. Functional Ecology, 2020, 34, 240-251.	1.7	27
199	Illuminating the dark depths inside coral. Cellular Microbiology, 2020, 22, e13122.	1.1	7

#	Article	IF	CITATIONS
200	Unique combinations of coral host and algal symbiont genotypes reflect intraspecific variation in heat stress responses among colonies of the reef-building coral, Montipora digitata. Marine Biology, 2020, 167, 1.	0.7	17
201	Optimising conditions for in vitro fertilization success of Acropora tenuis, A. millepora and Favites colemani corals in northwestern Philippines. Journal of Experimental Marine Biology and Ecology, 2020, 524, 151286.	0.7	6
202	Contrasting patterns of genetic connectivity in brooding and spawning corals across a remote atoll system in northwest Australia. Coral Reefs, 2020, 39, 55-60.	0.9	20
203	Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Global Change Biology, 2020, 26, 1285-1294.	4.2	45
204	Assessing opportunities to support coral reef climate change refugia in MPAs: A case study at the Revillagigedo Archipelago. Marine Policy, 2020, 112, 103769.	1.5	6
205	A meta-analysis to assess long-term spatiotemporal changes of benthic coral and macroalgae cover in the Mexican Caribbean. Scientific Reports, 2020, 10, 8897.	1.6	30
206	Multi-Temporal UAV Data and Object-Based Image Analysis (OBIA) for Estimation of Substrate Changes in a Post-Bleaching Scenario on a Maldivian Reef. Remote Sensing, 2020, 12, 2093.	1.8	41
207	Decadal turnover of thermally stressed coral taxa support a risk-spreading approach to marine reserve design. Coral Reefs, 2020, 39, 1549-1563.	0.9	3
208	Influence of Local Pressures on Maldivian Coral Reef Resilience Following Repeated Bleaching Events, and Recovery Perspectives. Frontiers in Marine Science, 2020, 7, .	1.2	12
209	Massive coral bleaching in the patchy reef of Grande Island, along the eastern Arabian Sea during the 2015/16 global bleaching event. Regional Studies in Marine Science, 2020, 39, 101410.	0.4	7
210	Local Human Impacts Disrupt Relationships Between Benthic Reef Assemblages and Environmental Predictors. Frontiers in Marine Science, 2020, 7, .	1.2	7
211	Considering the rates of growth in two taxa of coral across Pacific islands. Advances in Marine Biology, 2020, 87, 167-191.	0.7	11
212	Site-Level Variation in Parrotfish Grazing and Bioerosion as a Function of Species-Specific Feeding Metrics. Diversity, 2020, 12, 379.	0.7	17
214	Early trajectories of benthic coral reef communities following the 2015/16 coral bleaching event at remote Aldabra Atoll, Seychelles. Scientific Reports, 2020, 10, 17034.	1.6	24
215	Modelling the linkage between coral assemblage structure and pattern of environmental forcing. Royal Society Open Science, 2020, 7, 200565.	1.1	4
216	Coral Reef Recovery in the Mexican Caribbean after 2005 Mass Coral Mortalityâ€"Potential Drivers. Diversity, 2020, 12, 338.	0.7	4
217	Coral Morphology Portrays the Spatial Distribution and Population Size-Structure Along a 5–100 m Depth Gradient. Frontiers in Marine Science, 2020, 7, .	1.2	35
218	Micro-Fragmentation as an Effective and Applied Tool to Restore Remote Reefs in the Eastern Tropical Pacific. International Journal of Environmental Research and Public Health, 2020, 17, 6574.	1.2	8

#	Article	IF	CITATIONS
219	Evolutionary History Drives Biogeographic Patterns of Coral Reef Resilience. BioScience, 0, , .	2.2	6
220	Severe coral loss shifts energetic dynamics on a coral reef. Functional Ecology, 2020, 34, 1507-1518.	1.7	52
221	Coral community resilience to successive years of bleaching in KÄne†ohe Bay, Hawai†i. Coral Reefs, 2020, 39, 757-769.	0.9	54
222	Towards modelling the future risk of cyclone wave damage to the world's coral reefs. Global Change Biology, 2020, 26, 4302-4315.	4.2	31
223	Early recovery dynamics of turbid coral reefs after recurring bleaching events. Journal of Environmental Management, 2020, 268, 110666.	3.8	47
224	Quantifying life history demographics of the scleractinian coral genus Pocillopora at Palmyra Atoll. Coral Reefs, 2020, 39, 1091-1105.	0.9	10
225	South Atlantic Coral Reefs Are Major Global Warming Refugia and Less Susceptible to Bleaching. Frontiers in Marine Science, 2020, 7, .	1.2	68
226	Parentage analyses identify local dispersal events and sibling aggregations in a natural population of ⟨i>Millepora⟨ i> hydrocorals, a freeâ€spawning marine invertebrate. Molecular Ecology, 2020, 29, 1508-1522.	2.0	21
227	Fineâ€scale structure among mesophotic populations of the great star coral <i>Montastraea cavernosa</i> revealed by SNP genotyping. Ecology and Evolution, 2020, 10, 6009-6019.	0.8	10
228	Size-frequency distributions of scleractinian coral (Porites spp.) colonies inside and outside a marine reserve in Leyte Gulf, central Philippines. Regional Studies in Marine Science, 2020, 35, 101147.	0.4	1
229	Assessing coral reefs condition for rehabilitation site selection using diver-towed survey in an island of Anambas Islands. IOP Conference Series: Earth and Environmental Science, 2020, 429, 012011.	0.2	3
230	Patch size drives settlement success and spatial distribution of coral larvae under space limitation. Coral Reefs, 2020, 39, 387-396.	0.9	15
231	Relative roles of biological and physical processes influencing coral recruitment during the lag phase of reef community recovery. Scientific Reports, 2020, 10, 2471.	1.6	23
232	Climatic and local stressor interactions threaten tropical forests and coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190116.	1.8	69
233	Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Niño to La Niña. Science of the Total Environment, 2020, 715, 136951.	3.9	40
234	Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs, 2020, 39, 783-793.	0.9	37
235	Coral reef resilience to thermal stress in the Eastern Tropical Pacific. Global Change Biology, 2020, 26, 3880-3890.	4.2	45
236	Responses of urban reef corals during the 2016 mass bleaching event. Marine Pollution Bulletin, 2020, 154, 111111.	2.3	27

#	Article	IF	CITATIONS
237	Uranium-thorium dating of coral mortality and community shift in a highly disturbed inshore reef (Weizhou Island, northern South China Sea). Science of the Total Environment, 2021, 752, 141866.	3.9	12
238	Stony coral populations are more sensitive to changes in vital rates in disturbed environments. Ecological Applications, 2021, 31, e02234.	1.8	3
239	Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. Global Change Biology, 2021, 27, 640-651.	4.2	33
240	Estuaries: Dynamics, Biodiversity, and Impacts. Encyclopedia of the UN Sustainable Development Goals, 2021, , 1-12.	0.0	0
241	Coral husbandry for ocean futures: leveraging abiotic factors to increase survivorship, growth, and resilience in juvenile Montipora capitata. Marine Ecology - Progress Series, 2021, 657, 123-133.	0.9	18
242	Recurrent coral bleaching in north-western Australia and associated declines in coral cover. Marine and Freshwater Research, 2021, 72, 620.	0.7	16
243	Oâ€~ahu's marine protected areas have limited success in protecting coral reef herbivores. Coral Reefs, 2021, 40, 305-322.	0.9	3
244	Changes in coral reef ecosystems as an indication of climate and global change. , 2021, , 427-443.		2
245	A Global, Multiproduct Analysis of Coastal Marine Heatwaves: Distribution, Characteristics, and Longâ€Term Trends. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016708.	1.0	45
246	Tissue fusion and enhanced genotypic diversity support the survival of Pocillopora acuta coral recruits under thermal stress. Coral Reefs, 2021, 40, 447-458.	0.9	16
247	Isolated reefs support stable fish communities with high abundances of regionally fished species. Ecology and Evolution, 2021, 11, 4701-4718.	0.8	6
248	Improvement of the coral growth and cost-effectiveness of hybrid infrastructure by an innovative breakwater design in Naha Port, Okinawa, Japan. Coastal Engineering Journal, 2021, 63, 248-262.	0.7	1
249	Natural recovery of a marine foundation species emerges decades after landscape-scale mortality. Scientific Reports, 2021, 11, 6973.	1.6	10
250	Modelled larval supply predicts coral population recovery potential following disturbance. Marine Ecology - Progress Series, 2021, 661, 127-145.	0.9	12
251	Different population trajectories of two reefâ€building corals with similar lifeâ€history traits. Journal of Animal Ecology, 2021, 90, 1379-1389.	1.3	10
252	Genotype by environment interactions in coral bleaching. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210177.	1.2	33
253	Revisiting the paradigm of sharkâ€driven trophic cascades in coral reef ecosystems. Ecology, 2021, 102, e03303.	1.5	18
254	Juvenile corals underpin coral reef carbonate production after disturbance. Global Change Biology, 2021, 27, 2623-2632.	4.2	21

#	ARTICLE	IF	CITATIONS
255	Structural complexity shapes the behavior and abundance of a common herbivorous fish, increasing herbivory on a turf-dominated, fringing reef. Journal of Experimental Marine Biology and Ecology, 2021, 537, 151515.	0.7	3
256	Assessment of coral reef health conditions in Juru Seberang Village, Tanjung Pandan District, Belitung Regency-Bangka-Belitung Province. IOP Conference Series: Earth and Environmental Science, 2021, 744, 012030.	0.2	3
257	Fine-scale time series surveys reveal new insights into spatio-temporal trends in coral cover (2002–2018), of a coral reef on the Southern Great Barrier Reef. Coral Reefs, 2021, 40, 1055-1067.	0.9	11
258	Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. Conservation Biology, 2021, 35, 1473-1483.	2.4	22
259	Drivers of coral bleaching in a Marine Protected Area of the Southern Gulf of Mexico during the 2015 event. Marine Pollution Bulletin, 2021, 166, 112256.	2.3	10
260	Coral monitoring in northwest Australia with environmental DNA metabarcoding using a curated reference database for optimized detection. Environmental DNA, 2022, 4, 63-76.	3.1	25
261	Local management matters for coral reefs. Science, 2021, 372, 908-909.	6.0	7
262	Genetic structure of Turbinaria peltata in the northern South China Sea suggest insufficient genetic adaptability of relatively high-latitude scleractinian corals to environment stress. Science of the Total Environment, 2021, 775, 145775.	3.9	9
263	A New Operational Seasonal Thermal Stress Prediction Tool for Coral Reefs Around Australia. Frontiers in Marine Science, 2021, 8, .	1.2	10
264	Coral larval recruitment in north-western Australia predicted by regional and local conditions. Marine Environmental Research, 2021, 168, 105318.	1.1	10
265	Barriers and corridors of gene flow in an urbanized tropical reef system. Evolutionary Applications, 2021, 14, 2502-2515.	1.5	13
266	Reconnecting reef recovery in a world of coral bleaching. Limnology and Oceanography: Methods, 2021, 19, 702-713.	1.0	8
267	Long-term monitoring of benthic communities reveals spatial determinants of disturbance and recovery dynamics on coral reefs. Marine Ecology - Progress Series, 2021, 672, 141-152.	0.9	7
268	Increasing Coral Reef Resilience Through Successive Marine Heatwaves. Geophysical Research Letters, 2021, 48, e2021GL094128.	1.5	22
269	Disturbance ecology and the problem of $\langle i \rangle n \langle i \rangle \hat{A} = \hat{A}1$: A proposed framework for unifying disturbance ecology studies to address theory across multiple ecological systems. Methods in Ecology and Evolution, 2021, 12, 2276-2286.	2.2	7
270	How do fisher responses to macroalgal overgrowth influence the resilience of coral reefs?. Limnology and Oceanography, 2022, 67, .	1.6	4
271	The spatial footprint and patchiness of largeâ€scale disturbances on coral reefs. Global Change Biology, 2021, 27, 4825-4838.	4.2	26
272	Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines. Scientific Reports, 2021, 11, 18787.	1.6	21

#	Article	IF	CITATIONS
273	Parrotfish corallivory on stress-tolerant corals in the Anthropocene. PLoS ONE, 2021, 16, e0250725.	1.1	11
274	Evaluating the precariousness of coral recovery when coral and macroalgae are alternative basins of attraction. Limnology and Oceanography, 2022, 67, .	1.6	10
275	Wave exposure shapes reef community composition and recovery trajectories at a remote coral atoll. Coral Reefs, 2021, 40, 1819-1829.	0.9	8
276	Tradeoffs between fertility and child development attributes: evidence from coral bleaching in Indonesia. Environment and Development Economics, 0 , , 1 - 21 .	1.3	1
277	Documenting decadal disturbance dynamics reveals archipelago-specific recovery and compositional change on Polynesian reefs. Marine Pollution Bulletin, 2021, 170, 112659.	2.3	8
278	Optimizing coral reef recovery with context-specific management actions at prioritized reefs. Journal of Environmental Management, 2021, 295, 113209.	3.8	12
279	Importance of Recruitment Processes in the Dynamics and Resilience of Coral Reef Assemblages. , 2016, , $1\text{-}21$.		6
280	Sea urchins (diadematids) promote coral recovery via recruitment on Taiwanese reefs. Coral Reefs, 2020, 39, 1199-1207.	0.9	17
281	Population dynamics of the reef crisis: Consequences of the growing human population. Advances in Marine Biology, 2020, 87, 1-30.	0.7	3
282	Population dynamics and growth rates of free-living mushroom corals (Scleractinia: Fungiidae) in the sediment-stressed reefs of Singapore. Advances in Marine Biology, 2020, 87, 115-140.	0.7	1
283	Coral community life histories and population dynamics driven by seascape bathymetry and temperature variability. Advances in Marine Biology, 2020, 87, 291-330.	0.7	10
284	Predicting coral community recovery using multiâ€species population dynamics models. Ecology Letters, 2019, 22, 605-615.	3.0	5
286	Associated Microorganisms in Marine Cnidarians, Their Ecological Function in Symbiotic Relationship. Earth Sciences, 2015, 4, 180.	0.1	1
287	Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000Research, 2013, 2, 187.	0.8	27
288	Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000Research, 0, 2, 187.	0.8	31
289	Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery. F1000Research, 2013, 2, 187.	0.8	35
290	Dynamic Stability of Coral Reefs on the West Australian Coast. PLoS ONE, 2013, 8, e69863.	1.1	36
291	Spatial Variation in Background Mortality among Dominant Coral Taxa on Australia's Great Barrier Reef. PLoS ONE, 2014, 9, e100969.	1.1	12

#	Article	IF	CITATIONS
292	Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia. PLoS ONE, 2014, 9, e101204.	1.1	52
293	Coral Reef Disturbance and Recovery Dynamics Differ across Gradients of Localized Stressors in the Mariana Islands. PLoS ONE, 2014, 9, e105731.	1.1	34
294	Persistence and Change in Community Composition of Reef Corals through Present, Past, and Future Climates. PLoS ONE, 2014, 9, e107525.	1.1	75
295	A Diverse Assemblage of Reef Corals Thriving in a Dynamic Intertidal Reef Setting (Bonaparte) Tj ETQq1 1 0.7843	14 rgBT /0	Overlock 10
296	Coral Settlement on a Highly Disturbed Equatorial Reef System. PLoS ONE, 2015, 10, e0127874.	1.1	43
297	Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis. PLoS ONE, 2016, 11, e0146636.	1.1	45
298	Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands. PLoS ONE, 2016, 11, e0147628.	1.1	19
299	Integrating Climate Change Resilience Features into the Incremental Refinement of an Existing Marine Park. PLoS ONE, 2016, 11, e0161094.	1.1	18
300	A systematic review of ecological attributes that confer resilience to climate change in environmental restoration. PLoS ONE, 2017, 12, e0173812.	1.1	145
301	Enhancing coral recruitment through assisted mass settlement of cultured coral larvae. PLoS ONE, 2020, 15, e0242847.	1.1	26
302	Patrones a gran escala del reclutamiento de coral en Isla Mona, Puerto Rico: evidencia de una trayectoria transitoria de comunidad después del blanqueamiento y mortalidad coralino masivo. Revista De Biologia Tropical, 0, 62, 49.	0.1	4
303	Kimberley marine biota. Historical data: scleractinian corals. Records of the Western Australian Museum, Supplement, 2016, 84, 111.	0.5	11
304	Post-settlement growth and mortality rates of juvenile scleractinian corals in Moorea, French Polynesia versus Trunk Reef, Australia. Marine Ecology - Progress Series, 2013, 488, 157-170.	0.9	31
305	Patterns of coral settlement in an extreme environment: the southern Persian Gulf (Dubai, United) Tj ETQq $1\ 1\ 0$.	784314 rg	;BT_/Overloc
306	Land use, water quality, and the history of coral assemblages at Bocas del Toro, Panam \tilde{A}_i . Marine Ecology - Progress Series, 2014, 504, 159-170.	0.9	51
307	Impacts of multiple disturbances on coral communities at Ishigaki Island, Okinawa, Japan, during a 15 year survey. Marine Ecology - Progress Series, 2014, 509, 171-180.	0.9	46
308	Herbivory and the resilience of Caribbean coral reefs: knowledge gaps and implications for management. Marine Ecology - Progress Series, 2015, 520, 1-20.	0.9	136
309	Impact of two sequential super typhoons on coral reef communities in Palau. Marine Ecology - Progress Series, 2015, 540, 73-85.	0.9	34

#	Article	IF	Citations
310	Diversity on the edge: non-linear patterns of coral community structure at an isolated oceanic island. Marine Ecology - Progress Series, 2016, 546, 61-74.	0.9	1
311	Drivers of herbivory on coral reefs: species, habitat and management effects. Marine Ecology - Progress Series, 2016, 554, 129-140.	0.9	21
312	Seeing red: Coral larvae are attracted to healthy‑looking reefs. Marine Ecology - Progress Series, 2016, 559, 65-71.	0.9	22
313	Similar impacts of fishing and environmental stress on calcifying organisms in Indian Ocean coral reefs. Marine Ecology - Progress Series, 2016, 560, 87-103.	0.9	20
314	Efficacy of an established marine protected area at sustaining a queen conch Lobatus gigas population during three decades of monitoring. Marine Ecology - Progress Series, 2017, 573, 177-189.	0.9	24
315	Fine-scale spatial patterns of parrotfish herbivory are shaped by resource availability. Marine Ecology - Progress Series, 2017, 577, 165-176.	0.9	23
316	Spatial and temporal limits of coral-macroalgal competition: the negative impacts of macroalgal density, proximity, and history of contact. Marine Ecology - Progress Series, 2018, 586, 11-20.	0.9	41
317	How does a widespread reef coral maintain a population in an isolated environment?. Marine Ecology - Progress Series, 2018, 594, 85-94.	0.9	12
318	Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Marine Ecology - Progress Series, 2018, 604, 263-268.	0.9	42
319	Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Marine Ecology - Progress Series, 2019, 608, 297-306.	0.9	26
320	Global biogeography of coral recruitment: tropical decline and subtropical increase. Marine Ecology - Progress Series, 2019, 621, 1-17.	0.9	57
321	Combining agent-based, trait-based and demographic approaches to model coral-community dynamics. ELife, 2020, 9, .	2.8	8
322	A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef. PeerJ, 2015, 3, e1092.	0.9	21
323	<i>Porites superfusa</i> mortality and recovery from a bleaching event at Palmyra Atoll, USA. PeerJ, 2017, 5, e3204.	0.9	8
324	Mortality, recovery, and community shifts of scleractinian corals in Puerto Rico one decade after the 2005 regional bleaching event. Peerl, 2017, 5, e3611.	0.9	8
325	More coral, more fish? Contrasting snapshots from a remote Pacific atoll. PeerJ, 2015, 3, e745.	0.9	12
326	Bleaching and post-bleaching mortality of <i> Acropora </i> corals on a heat-susceptible reef in 2016. Peerl, 2019, 7, e8138.	0.9	32
327	Size-frequency distribution of coral assemblages in insular shallow reefs of the Mexican Caribbean using underwater photogrammetry. PeerJ, 2020, 8, e8957.	0.9	14

#	Article	IF	Citations
328	Changes in the incidence of coral injuries during mass bleaching across Australia's Coral Sea Marine Park. Marine Ecology - Progress Series, 2022, 682, 97-109.	0.9	3
329	Remoteness does not enhance coral reef resilience. Global Change Biology, 2022, 28, 417-428.	4.2	13
330	Investigating transport in a tidally driven coral atoll flow using Lagrangian coherent structures. Limnology and Oceanography, 2021, 66, 4017-4027.	1.6	4
331	Recruitment and larval connectivity of a remnant Acropora community in the Arabian Gulf, United Arab Emirates. Coral Reefs, 2021, 40, 1889-1898.	0.9	2
332	Spatial, Temporal and Taxonomic Variation in Coral Growthâ€"Implications for the Structure and Function of Coral Reef Ecosystems., 2015,, 224-305.		6
335	Identification of twoâ€phase recovery for interpretation of coral reef monitoring data. Journal of Applied Ecology, 2022, 59, 153-164.	1.9	6
336	Sea Urchins Play an Increasingly Important Role for Coral Resilience Across Reefs in Taiwan. Frontiers in Marine Science, 2020, 7, .	1.2	13
337	Zooxanthellae Diversity and Coral-Symbiont Associations in the Philippine Archipelago: Specificity and Adaptability Across Thermal Gradients. Frontiers in Marine Science, 2021, 8, .	1.2	7
338	Substrate damage and recovery after giant clam shell mining at remote coral reefs in the southern South China Sea. Journal of Chinese Geography, 2021, 31, 1655-1674.	1.5	1
339	Coral cover and rubble cryptofauna abundance and diversity at outplanted reefs in Okinawa, Japan. PeerJ, 2020, 8, e9185.	0.9	6
340	Zone specific trends in coral cover, genera and growth-forms in the World-Heritage listed Ningaloo Reef. Marine Environmental Research, 2020, 160, 105020.	1.1	5
341	Spatial patchiness in change, recruitment, and recovery on coral reefs at Lizard Island following consecutive bleaching events. Marine Environmental Research, 2022, 173, 105537.	1.1	16
342	Pollutants in the coral environment and strategies to lower their impact on the functioning of reef ecosystem., 2022,, 161-178.		0
343	Increased Coral Larval Supply Enhances Recruitment for Coral and Fish Habitat Restoration. Frontiers in Marine Science, 2021, 8, .	1.2	19
344	First insights into coral recruit and juvenile abundances at remote Aldabra Atoll, Seychelles. PLoS ONE, 2021, 16, e0260516.	1.1	9
345	Recovery trajectories of oceanic reef ecosystems following multiple mass coral bleaching events. Marine Biology, 2022, 169, 1.	0.7	1
346	Limitations to coral recovery along an environmental stress gradient. Ecological Applications, 2022, 32, e2558.	1.8	8
347	Implications of bleaching on cnidarian venom ecology. Toxicon: X, 2022, 13, 100094.	1.2	1

#	ARTICLE	IF	CITATIONS
348	Recovery trends of reef carbonate budgets at remote coral atolls 6 years postâ€bleaching. Limnology and Oceanography, 2023, 68, .	1.6	8
349	A tale of two reef systems: Local conditions, disturbances, coral life histories, and the climate catastrophe. Ecological Applications, 2022, 32, e2509.	1.8	6
350	Causal drivers of climateâ€mediated coral reef regime shifts. Ecosphere, 2022, 13, .	1.0	10
351	Coral calcification and carbonate production in the eastern tropical Pacific: The role of branching and massive corals in the reef maintenance. Geobiology, 2022, , .	1.1	1
352	Decadal vision in oceanography 2021: Tropical oceans. Oceanography in Japan, 2021, 30, 105-129.	0.5	2
353	Sizeâ€dependent mortality of corals during marine heatwave erodes recovery capacity of a coral reef. Global Change Biology, 2022, 28, 1342-1358.	4.2	26
354	Local anthropogenic stress does not exacerbate coral bleaching under global climate change. Global Ecology and Biogeography, 2022, 31, 1228-1236.	2.7	11
355	Early successional trajectory of benthic community in an uninhabited reef system three years after mass coral bleaching. Coral Reefs, 2022, 41, 1087-1096.	0.9	6
377	Extremely high but localized pulses of coral recruitment in the southwestern lagoon of New Caledonia and implications for conservation. Marine Ecology - Progress Series, 2022, 692, 67-79.	0.9	7
378	Population connectivity and genetic offset in the spawning coral <i>Acropora digitifera</i> in Western Australia. Molecular Ecology, 2022, 31, 3533-3547.	2.0	7
379	Estuaries: Dynamics, Biodiversity, and Impacts. Encyclopedia of the UN Sustainable Development Goals, 2022, , 355-366.	0.0	0
380	Unprecedented Coral Mortality on Southwestern Atlantic Coral Reefs Following Major Thermal Stress. Frontiers in Marine Science, 2022, 9, .	1.2	12
381	Coral responses to climate change exposure. Environmental Research Letters, 2022, 17, 073001.	2.2	7
382	Functional Richness and Resilience in Coral Reef Communities. Frontiers in Ecology and Evolution, 0, 10, .	1.1	2
384	From polyps to pixels: understanding coral reef resilience to local and global change across scales. Landscape Ecology, 2023, 38, 737-752.	1.9	10
385	Algal turf structure and composition vary with particulate loads on coral reefs. Marine Pollution Bulletin, 2022, 181, 113903.	2.3	8
386	Multi-dimensional approaches to scaling up coral reef restoration. Marine Policy, 2022, 143, 105199.	1.5	7
387	A remote coral reef shows macroalgal succession following a mass bleaching event. Ecological Indicators, 2022, 142, 109175.	2.6	2

#	Article	IF	CITATIONS
388	Survival and growth of coral recruits in varying group sizes. Journal of Experimental Marine Biology and Ecology, 2022, 556, 151793.	0.7	0
389	Rapid recovery of coral communities from a mass bleaching event in the summer of 2016, observed in Amitori Bay, Iriomote Island, Japan. Marine Biology, 2022, 169, .	0.7	5
390	Priority effects in coral–macroalgae interactions can drive alternate community paths in the absence of topâ€down control. Ecology, 2022, 103, .	1.5	8
391	Climate change disturbances contextualize the outcomes of coral-reef fisheries management across Micronesia., 2022, 1, e0000040.		2
392	Combined impacts of natural recruitment and active propagation for coral population recovery on the Great Barrier Reef. Marine Ecology - Progress Series, 0, , .	0.9	5
393	Advances in Coral Biology. Coral Reefs of the World, 2022, , 25-53.	0.3	1
394	Reef Ecology in the Western Pacific for Adaptation to Global Change. Coral Reefs of the World, 2022, , 55-98.	0.3	0
395	Changes in fish assemblages after marine heatwave events in West Hawaiâ€~i Island. Marine Ecology - Progress Series, 2022, 698, 95-109.	0.9	3
396	A snapshot of sediment dynamics on an inshore coral reef. Marine Environmental Research, 2022, 181, 105763.	1.1	6
398	Recovery of coral cover on inshore fringing reefs following mass coral bleaching in the Philippines. Coral Reefs, 2023, 42, 99-104.	0.9	1
399	Decadal changes in parrotfish assemblages around reefs of Guam, Micronesia. Coral Reefs, 2022, 41, 1693-1703.	0.9	3
400	Evolutionary Responses of a Reef-building Coral to Climate Change at the End of the Last Glacial Maximum. Molecular Biology and Evolution, 2022, 39, .	3.5	6
402	Habitat configurations shape the trophic and energetic dynamics of reef fishes in a tropical–temperate transition zone: implications under a warming future. Oecologia, 2022, 200, 455-470.	0.9	3
404	Significant Shifts in Microbial Communities Associated with Scleractinian Corals in Response to Algae Overgrowth. Microorganisms, 2022, 10, 2196.	1.6	3
405	The Role of Microplastics in Marine Pathogen Transmission: Retrospective Regression Analysis, Experimental Design, and Disease Modelling. Journal of Marine Science and Engineering, 2022, 10, 1837.	1.2	1
406	Climate change impacts on the coral reefs of the UK Overseas Territory of the Pitcairn Islands: resilience and adaptation considerations. Journal of the Marine Biological Association of the United Kingdom, 2022, 102, 535-549.	0.4	0
407	Coral reef collapse in South-Central Vietnam: a consequence of multiple negative effects. Aquatic Ecology, 2023, 57, 65-83.	0.7	5
408	Machine learning prediction of connectivity, biodiversity and resilience in the Coral Triangle. Communications Biology, 2022, 5, .	2.0	2

#	Article	IF	CITATIONS
409	Oceanic productivity and high-frequency temperature variability—not human habitation—supports calcifier abundance on central Pacific coral reefs. Frontiers in Marine Science, 0, 9, .	1.2	O
410	Adaptations by the coral Acropora tenuis confer resilience to future thermal stress. Communications Biology, 2022, 5, .	2.0	8
411	Larval dispersal patterns and connectivity of Acropora on Florida $\hat{a} \in \mathbb{T}^M$ s Coral Reef and its implications for restoration. Frontiers in Marine Science, 0, 9, .	1.2	7
412	Highly conserved thermal performance strategies may limit adaptive potential in corals. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	1.2	5
413	Benthic composition changes on coral reefs at global scales. Nature Ecology and Evolution, 2023, 7, 71-81.	3.4	24
414	Zeolite-microfragmenting Media: A Potential Strategy to Accelerate Coral Growth. E3S Web of Conferences, 2023, 374, 00020.	0.2	0
415	Legacy effects of anthropogenic disturbances modulate dynamics in the world's coral reefs. Global Change Biology, 2023, 29, 3285-3303.	4.2	2
416	How climate-driven changes in disturbance frequency affect the recovery of intertidal mussel beds. Journal of Experimental Marine Biology and Ecology, 2023, 562, 151885.	0.7	2
417	Environmental controls on the resilience of Scott Reefs since the Miocene (North West Shelf,) Tj ETQq0 0 0 rgB	Γ/Qverlocl	₹ 1 <u>9</u> Tf 50 42
418	Differential bleaching susceptibility among coral taxa and colony sizes, relative to bleaching severity across Australia's Great Barrier Reef and Coral Sea Marine Parks. Marine Pollution Bulletin, 2023, 191, 114907.	2.3	5
419	Collapse of native freshwater mussel populations: Prospects of a long-term study. Biological Conservation, 2023, 279, 109931.	1.9	7
420	Increased dominance of heat-tolerant symbionts creates resilient coral reefs in near-term ocean warming. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	15
421	Bottom-contact fisheries disturbance and signs of recovery of precious corals in the Northwestern Hawaiian Islands and Emperor Seamount Chain. Ecological Indicators, 2023, 148, 110010.	2.6	4
422	Production and accumulation of reef framework by calcifying corals and macroalgae on a remote Indian Ocean cay. Biogeosciences, 2023, 20, 1011-1026.	1.3	0
423	A functional perspective on the meaning of the term $\hat{a} \in \mathbb{R}^-$ herbivore $\hat{a} \in \mathbb{R}^-$: patterns versus processes in coral reef fishes. Coral Reefs, 0, , .	0.9	7
424	Transformation of coral communities subjected to an unprecedented heatwave is modulated by local disturbance. Science Advances, 2023, 9, .	4.7	13
425	Contrasting reproductive strategies between stress-tolerant and competitive coral taxa. Coral Reefs, 0, , .	0.9	1
431	Bleaching of the world's coral reefs. , 2023, , 251-271.		0

ARTICLE IF CITATIONS

Coral Reefs of the Emirates. , 2024, , 325-351.