CSF1R Signaling Blockade Stanches Tumor-Infiltrating Efficacy of Radiotherapy in Prostate Cancer

Cancer Research 73, 2782-2794 DOI: 10.1158/0008-5472.can-12-3981

Citation Report

#	Article	IF	CITATIONS
1	Myeloid derived suppressor cells $\hat{a} \in $ a new therapeutic target in the treatment of cancer. , 2013, 1, 10.		249
2	Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 2013, 501, 346-354.	13.7	2,093
3	Proangiogenic TIE2+/CD31+ Macrophages Are the Predominant Population of Tumor-Associated Macrophages Infiltrating Metastatic Lymph Nodes. Molecules and Cells, 2013, 36, 432-438.	1.0	30
4	Antiangiogenic therapy improves the antitumor effect of adoptive cell immunotherapy by normalizing tumor vasculature. Medical Oncology, 2013, 30, 698.	1.2	19
5	Targeting tumor-infiltrating macrophages to combat cancer. Immunotherapy, 2013, 5, 1075-1087.	1.0	135
6	Macrophage Regulation of Tumor Responses to Anticancer Therapies. Cancer Cell, 2013, 23, 277-286.	7.7	893
7	The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery. Frontiers in Physiology, 2013, 4, 157.	1.3	98
8	Macrophages: Gatekeepers of Tissue Integrity. Cancer Immunology Research, 2013, 1, 201-209.	1.6	76
9	Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncolmmunology, 2013, 2, e26860.	2.1	82
10	The Osteoblastic and Osteoclastic Interactions in Spinal Metastases Secondary to Prostate Cancer. Cancer Growth and Metastasis, 2013, 6, CGM.S12769.	3.5	24
11	The role of tumor-associated macrophages in tumor vascularization. Vascular Cell, 2013, 5, 20.	0.2	88
12	Radiation Therapy-Induced Tumor Invasiveness Is Associated with SDF-1-Regulated Macrophage Mobilization and Vasculogenesis. PLoS ONE, 2013, 8, e69182.	1.1	89
13	Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Frontiers in Physiology, 2014, 5, 75.	1.3	463
14	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
15	Head and neck cancer relapse after chemoradiotherapy correlates with CD163+ macrophages in primary tumour and CD11b+ myeloid cells in recurrences. British Journal of Cancer, 2014, 111, 1509-1518.	2.9	87
16	Myeloid Cell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function. Carcinogenesis, 2014, 35, 1788-1797.	1.3	41
17	Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression. Frontiers in Immunology, 2014, 5, 489.	2.2	163
18	Expression of Arginase I in Myeloid Cells Limits Control of Residual Disease after Radiation Therapy of Tumors in Mice. Radiation Research, 2014, 182, 182-190.	0.7	35

TITATION REDORT

#	Article	IF	CITATIONS
19	Inhibition of CSF-1 Receptor Improves the Antitumor Efficacy of Adoptive Cell Transfer Immunotherapy. Cancer Research, 2014, 74, 153-161.	0.4	249
20	Increased KIT Inhibition Enhances Therapeutic Efficacy in Gastrointestinal Stromal Tumor. Clinical Cancer Research, 2014, 20, 2350-2362.	3.2	44
21	A Pan-Cancer Modular Regulatory Network Analysis to Identify Common and Cancer-Specific Network Components. Cancer Informatics, 2014, 13s5, CIN.S14058.	0.9	18
22	Mechanisms Driving Macrophage Diversity and Specialization in Distinct Tumor Microenvironments and Parallelisms with Other Tissues. Frontiers in Immunology, 2014, 5, 127.	2.2	162
23	TGFβ Inhibition Prior to Hypofractionated Radiation Enhances Efficacy in Preclinical Models. Cancer Immunology Research, 2014, 2, 1011-1022.	1.6	44
24	Identification of new 4-N-substituted 6-aryl-7H-pyrrolo[2,3-d]pyrimidine-4-amines as highly potent EGFR-TK inhibitors with Src-family activity. European Journal of Pharmaceutical Sciences, 2014, 59, 69-82.	1.9	23
25	Variations of chromosomes 2 and 3 gene expression profiles among pulmonary telocytes, pneumocytes, airway cells, mesenchymal stem cells and lymphocytes. Journal of Cellular and Molecular Medicine, 2014, 18, 2044-2060.	1.6	49
26	Monocyte Subpopulations in Angiogenesis. Cancer Research, 2014, 74, 1287-1293.	0.4	56
27	Pharmacological modulation of monocytes and macrophages. Current Opinion in Pharmacology, 2014, 17, 38-44.	1.7	48
28	Molecular Pathways: Myeloid Complicity in Cancer. Clinical Cancer Research, 2014, 20, 5157-5170.	3.2	44
29	Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses. Cancer and Metastasis Reviews, 2014, 33, 737-745.	2.7	10
30	CSF-1R Signaling in Health and Disease: A Focus on the Mammary Gland. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 149-159.	1.0	32
31	The Capable ABL: What Is Its Biological Function?. Molecular and Cellular Biology, 2014, 34, 1188-1197.	1.1	152
32	Regulation of microglial survival and proliferation in health and diseases. Seminars in Immunology, 2015, 27, 410-415.	2.7	37
33	Synergistic Anti-Tumor Effects of Zoledronic Acid and Radiotherapy against Metastatic Hepatocellular Carcinoma. Internal Medicine, 2015, 54, 2609-2613.	0.3	5
34	Gr-1+CD11b+ cells facilitate Lewis lung cancer recurrence by enhancing neovasculature after local irradiation. Scientific Reports, 2014, 4, 4833.	1.6	14
35	Myeloid Cells as Targets for Therapy in Solid Tumors. Cancer Journal (Sudbury, Mass), 2015, 21, 343-350.	1.0	32
36	Monocyte-Derived Dendritic Cells Are Essential for CD8+ T Cell Activation and Antitumor Responses After Local Immunotherapy. Frontiers in Immunology, 2015, 6, 584.	2.2	67

#	Article	IF	CITATIONS
37	Myeloid-derived suppressor cells: their role in the pathophysiology of hematologic malignancies and potential as therapeutic targets. Leukemia and Lymphoma, 2015, 56, 2251-2263.	0.6	29
38	Lenalidomide and cyclophosphamide immunoregulation in patients with metastatic, castration-resistant prostate cancer. Clinical and Experimental Metastasis, 2015, 32, 111-124.	1.7	17
39	TH2-Polarized CD4+ T Cells and Macrophages Limit Efficacy of Radiotherapy. Cancer Immunology Research, 2015, 3, 518-525.	1.6	197
40	The interaction of anticancer therapies with tumor-associated macrophages. Journal of Experimental Medicine, 2015, 212, 435-445.	4.2	507
41	Inflammation and prostate cancer: friends or foe?. Inflammation Research, 2015, 64, 275-286.	1.6	48
42	CSF1 Receptor Targeting in Prostate Cancer Reverses Macrophage-Mediated Resistance to Androgen Blockade Therapy. Cancer Research, 2015, 75, 950-962.	0.4	150
43	CSF-1/CSF-1R targeting agents in clinical development for cancer therapy. Current Opinion in Pharmacology, 2015, 23, 45-51.	1.7	107
44	Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor. New England Journal of Medicine, 2015, 373, 428-437.	13.9	438
45	Opportunities and challenges of radiotherapy for treating cancer. Nature Reviews Clinical Oncology, 2015, 12, 527-540.	12.5	452
46	Inflammation and cancer: advances and new agents. Nature Reviews Clinical Oncology, 2015, 12, 584-596.	12.5	901
47	Host effects contributing to cancer therapy resistance. Drug Resistance Updates, 2015, 19, 33-42.	6.5	38
48	Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Letters, 2015, 368, 164-172.	3.2	60
49	Therapeutic Peptide Vaccine-Induced CD8 T Cells Strongly Modulate Intratumoral Macrophages Required for Tumor Regression. Cancer Immunology Research, 2015, 3, 1042-1051.	1.6	68
50	Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends in Immunology, 2015, 36, 198-216.	2.9	121
51	Macrophages and Therapeutic Resistance in Cancer. Cancer Cell, 2015, 27, 462-472.	7.7	1,130
52	Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks. Cancer Letters, 2015, 369, 416-426.	3.2	52
53	Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncology, 2015, 1, 1325.	3.4	570
54	Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer. Cancer Research, 2015, 75, 4742-4752.	0.4	96

ш		IF	CITATIONS
#	ARTICLE	IF	CITATIONS
55	Genetic instability in the tumor microenvironment: a new look at an old neighbor. Molecular Cancer, 2015, 14, 145.	7.9	48
56	Immune Response to Cancer Therapy: Mounting an Effective Antitumor Response and Mechanisms of Resistance. Trends in Cancer, 2015, 1, 66-75.	3.8	101
57	Subversion of anticancer immunosurveillance by radiotherapy. Nature Immunology, 2015, 16, 1005-1007.	7.0	35
58	Enhancing Cancer Immunotherapy Via Activation of Innate Immunity. Seminars in Oncology, 2015, 42, 562-572.	0.8	30
59	Microenvironmental regulation of therapeutic response in cancer. Trends in Cell Biology, 2015, 25, 198-213.	3.6	604
60	Myeloid-Derived Cells in Tumors: Effects of Radiation. Seminars in Radiation Oncology, 2015, 25, 18-27.	1.0	116
61	Radiation and Inflammation. Seminars in Radiation Oncology, 2015, 25, 4-10.	1.0	185
62	The impact of radiation therapy on the antitumor immunity: Local effects and systemic consequences. Cancer Letters, 2015, 356, 114-125.	3.2	77
63	p53 Mutation: Critical Mediator of Therapy Resistance against Tumor Microenvironment. Biochemistry & Physiology, 2016, 05, .	0.2	4
64	Myeloid cell signatures in tumor microenvironment predicts therapeutic response in cancer. OncoTargets and Therapy, 2016, 9, 1047.	1.0	30
65	New Mechanisms of Tumor-Associated Macrophages on Promoting Tumor Progression: Recent Research Advances and Potential Targets for Tumor Immunotherapy. Journal of Immunology Research, 2016, 2016, 1-12.	0.9	105
66	Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy. Oncotarget, 2016, 7, 78653-78666.	0.8	79
67	Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets. International Journal of Molecular Sciences, 2016, 17, 1958.	1.8	41
68	The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines, 2016, 4, 36.	2.1	296
69	Impacts of Ionizing Radiation on the Different Compartments of the Tumor Microenvironment. Frontiers in Pharmacology, 2016, 7, 78.	1.6	41
70	Myeloidâ€derived suppressor cells as effectors of immune suppression in cancer. International Journal of Cancer, 2016, 139, 1915-1926.	2.3	80
71	Macrophage response to oncolytic paramyxoviruses potentiates virusâ€mediated tumor cell killing. European Journal of Immunology, 2016, 46, 919-928.	1.6	27
72	Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Scientific Reports, 2016, 6, 18765.	1.6	139

#	Article	IF	CITATIONS
73	CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Scientific Reports, 2016, 6, 29032.	1.6	51
75	Can immunostimulatory agents enhance the abscopal effect of radiotherapy?. European Journal of Cancer, 2016, 62, 36-45.	1.3	105
76	Emerging Opportunities and Challenges in Cancer Immunotherapy. Clinical Cancer Research, 2016, 22, 1845-1855.	3.2	242
77	Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAF ^{V600E} melanoma. Oncolmmunology, 2016, 5, e1089381.	2.1	32
78	Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nature Reviews Clinical Oncology, 2016, 13, 611-626.	12.5	103
79	Timing of CSF-1/CSF-1R signaling blockade is critical to improving responses to CTLA-4 based immunotherapy. Oncolmmunology, 2016, 5, e1151595.	2.1	57
80	T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells. Blood, 2016, 128, 1081-1092.	0.6	120
81	Immune phenotypes of prostate cancer cells: Evidence of epithelial immune cell-like transition?. Asian Journal of Urology, 2016, 3, 195-202.	0.5	12
82	Inhibition of mouse breast adenocarcinoma growth by ablation with intratumoral alpha-irradiation combined with inhibitors of immunosuppression and CpG. Cancer Immunology, Immunotherapy, 2016, 65, 1149-1158.	2.0	29
83	The role of local ablative therapy in oligometastatic non-small-cell lung cancer: hype or hope. Future Oncology, 2016, 12, 2713-2727.	1.1	18
85	Microenvironmental Effects of Cell Death in Malignant Disease. Advances in Experimental Medicine and Biology, 2016, 930, 51-88.	0.8	29
86	Cancer Cell Death-Inducing Radiotherapy: Impact on Local Tumour Control, Tumour Cell Proliferation and Induction of Systemic Anti-tumour Immunity. Advances in Experimental Medicine and Biology, 2016, 930, 151-172.	0.8	9
87	Novel Strategies to Prevent, Mitigate or Reverse Radiation Injury and Fibrosis. , 2016, , 75-108.		1
88	The intersection of radiotherapy and immunotherapy: Mechanisms and clinical implications. Science Immunology, 2016, 1, .	5.6	149
89	M2-polarized macrophages contribute to neovasculogenesis, leading to relapse of oral cancer following radiation. Scientific Reports, 2016, 6, 27548.	1.6	74
90	Tumor infiltrating T lymphocytes expressing FoxP3, CCR7 or PD-1 predict the outcome of prostate cancer patients subjected to salvage radiotherapy after biochemical relapse. Cancer Biology and Therapy, 2016, 17, 1213-1220.	1.5	52
91	Stereotactic Ablative Radiation Therapy Combined With Immunotherapy for Solid Tumors. Cancer Journal (Sudbury, Mass), 2016, 22, 257-266.	1.0	38
92	The role of myeloid cells in cancer therapies. Nature Reviews Cancer, 2016, 16, 447-462.	12.8	570

#	Article	IF	CITATIONS
93	FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). International Journal of Molecular Medicine, 2016, 38, 3-15.	1.8	306
94	Immunomodulatory effects of radiation: what is next for cancer therapy?. Future Oncology, 2016, 12, 239-256.	1.1	35
95	Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment. Seminars in Immunology, 2016, 28, 54-63.	2.7	47
96	Regulation of prostate cancer progression by the tumor microenvironment. Cancer Letters, 2016, 380, 340-348.	3.2	166
97	Targeting Suppressive Myeloid Cells Potentiates Checkpoint Inhibitors to Control Spontaneous Neuroblastoma. Clinical Cancer Research, 2016, 22, 3849-3859.	3.2	109
98	Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine, 2016, 6, 50-58.	2.7	113
99	Tumor-associated macrophages and anti-tumor therapies: complex links. Cellular and Molecular Life Sciences, 2016, 73, 2411-2424.	2.4	99
100	Trial Watch—Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncolmmunology, 2016, 5, e1149674.	2.1	46
101	MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 35-48.	3.3	68
102	Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro-Oncology, 2016, 18, 797-806.	0.6	170
103	Radiotherapy Combined with Novel STING-Targeting Oligonucleotides Results in Regression of Established Tumors. Cancer Research, 2016, 76, 50-61.	0.4	196
104	From DNA Damage to Nucleic Acid Sensing: A Strategy to Enhance Radiation Therapy. Clinical Cancer Research, 2016, 22, 20-25.	3.2	67
105	High Expression of Colony-Stimulating Factor 1 Receptor Associates with Unfavorable Cancer-Specific Survival of Patients with Clear Cell Renal Cell Carcinoma. Annals of Surgical Oncology, 2016, 23, 1044-1052.	0.7	11
106	Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery. Advanced Drug Delivery Reviews, 2017, 109, 119-130.	6.6	126
107	Tumour-associated macrophages as treatment targets in oncology. Nature Reviews Clinical Oncology, 2017, 14, 399-416.	12.5	2,667
108	Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 315-327.	2.5	184
109	Radiotherapy and immunotherapy: a beneficial liaison?. Nature Reviews Clinical Oncology, 2017, 14, 365-379.	12.5	760
110	Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro-Oncology, 2017, 19, now287.	0.6	128

#	Article	IF	CITATIONS
111	Candidate immune biomarkers for radioimmunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 58-68.	3.3	14
112	Radiotherapy in the age of cancer immunology: Current concepts and future developments. Critical Reviews in Oncology/Hematology, 2017, 112, 1-10.	2.0	19
113	Combining Radiotherapy and Immunotherapy. Cancer Treatment and Research, 2017, , 1-20.	0.2	1
114	Stimulating Innate Immunity to Enhance Radiation Therapy–Induced Tumor Control. International Journal of Radiation Oncology Biology Physics, 2017, 99, 362-373.	0.4	43
115	Myeloid-derived suppressor cells—a new therapeutic target to overcome resistance to cancer immunotherapy. Journal of Leukocyte Biology, 2017, 102, 727-740.	1.5	88
116	Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy. Cancer Immunology Research, 2017, 5, 535-546.	1.6	108
117	Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies. Journal of Leukocyte Biology, 2017, 102, 393-406.	1.5	55
118	Combined Radiation Therapy and Immune Checkpoint Blockade Therapy for Breast Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, 153-164.	0.4	59
119	The Promise of Targeting Macrophages in Cancer Therapy. Clinical Cancer Research, 2017, 23, 3241-3250.	3.2	252
120	Radiation and Immune Checkpoint Blockade: From Bench to Clinic. Seminars in Radiation Oncology, 2017, 27, 289-298.	1.0	39
121	The synergy between ionizing radiation and immunotherapy in the treatment of prostate cancer. Immunotherapy, 2017, 9, 1005-1018.	1.0	2
122	Immune recognition of irradiated cancer cells. Immunological Reviews, 2017, 280, 220-230.	2.8	73
123	Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth. EMBO Molecular Medicine, 2017, 9, 1629-1645.	3.3	54
124	Mechanisms regulating T-cell infiltration and activity in solid tumors. Annals of Oncology, 2017, 28, xii18-xii32.	0.6	276
125	Molecular-Targeted Immunotherapeutic Strategy for Melanoma <i>via</i> Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages. ACS Nano, 2017, 11, 9536-9549.	7.3	268
126	Iron deposition is associated with differential macrophage infiltration and therapeutic response to iron chelation in prostate cancer. Scientific Reports, 2017, 7, 11632.	1.6	25
127	CSF-1R Inhibitor Development: Current Clinical Status. Current Oncology Reports, 2017, 19, 70.	1.8	78
128	A perspective on the impact of radiation therapy on the immune rheostat. British Journal of Radiology, 2017, 90, 20170272.	1.0	9

#	Article	IF	CITATIONS
129	Cancerâ€Related Systemic Inflammation: The Challenges and Therapeutic Opportunities for Personalized Medicine. Clinical Pharmacology and Therapeutics, 2017, 102, 599-610.	2.3	68
130	Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomedical Journal, 2017, 40, 200-211.	1.4	71
131	Radiotherapy and the tumor microenvironment: The "macro―picture. Biomedical Journal, 2017, 40, 185-188.	1.4	7
132	Anti PD-L1 combined with other agents in non-small cell lung cancer: combinations with non-immuno-oncology agents. Expert Review of Respiratory Medicine, 2017, 11, 791-805.	1.0	4
133	Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell, 2017, 32, 654-668.e5.	7.7	457
134	Regulatory myeloid cells: an underexplored continent in B-cell lymphomas. Cancer Immunology, Immunotherapy, 2017, 66, 1103-1111.	2.0	19
135	Radiotherapy combination opportunities leveraging immunity for the next oncology practice. Ca-A Cancer Journal for Clinicians, 2017, 67, 65-85.	157.7	344
136	Enhanced activated TÃ ⁻ Â;¹⁄2cell subsets in prostate cancer patients receiving iodine-125 low-dose-rate prostate brachytherapy. Oncology Reports, 2017, 39, 417-424.	1.2	16
137	Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, 2017, , .	0.8	9
138	Targeting Myeloid-Derived Suppressor Cells in Cancer. Advances in Experimental Medicine and Biology, 2017, 1036, 105-128.	0.8	49
140	Immune Modulation by Androgen Deprivation and Radiation Therapy: Implications for Prostate Cancer Immunotherapy. Cancers, 2017, 9, 13.	1.7	40
141	Major Challenges and Potential Microenvironment-Targeted Therapies in Glioblastoma. International Journal of Molecular Sciences, 2017, 18, 2732.	1.8	26
142	A Century of Radiation Therapy and Adaptive Immunity. Frontiers in Immunology, 2017, 8, 431.	2.2	47
143	Tumor abolition and antitumor immunostimulation by physico-chemical tumor nbsp ablation. Frontiers in Bioscience - Landmark, 2017, 22, 310-347.	3.0	38
144	Barriers to Radiation-Induced In Situ Tumor Vaccination. Frontiers in Immunology, 2017, 8, 229.	2.2	149
145	Modulating Both Tumor Cell Death and Innate Immunity Is Essential for Improving Radiation Therapy Effectiveness. Frontiers in Immunology, 2017, 8, 613.	2.2	60
146	Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Frontiers in Immunology, 2017, 8, 828.	2.2	295
147	Translational Significance for Tumor Metastasis of Tumor-Associated Macrophages and Epithelial–Mesenchymal Transition. Frontiers in Immunology, 2017, 8, 1106.	2.2	69

#	Article	IF	CITATIONS
148	Design, Synthesis, and Structure–Activity Relationship Study of 2-Oxo-3,4-dihydropyrimido[4,5- <i>d</i>]pyrimidines as New Colony Stimulating Factor 1 Receptor (CSF1R) Kinase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 2353-2371.	2.9	21
149	CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages. European Respiratory Journal, 2018, 51, 1702120.	3.1	114
150	<scp>C</scp> olony stimulating factor 1 receptor blockade improves the efficacy of chemotherapy against human neuroblastoma in the absence of T lymphocytes. International Journal of Cancer, 2018, 143, 1483-1493.	2.3	32
151	Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. Cancer Cell, 2018, 33, 581-598.	7.7	393
153	Immunotherapy: a new standard of care in thoracic malignancies?. European Respiratory Journal, 2018, 51, 1702072.	3.1	11
154	Radiation effects on antitumor immune responses: current perspectives and challenges. Therapeutic Advances in Medical Oncology, 2018, 10, 175883401774257.	1.4	185
155	Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. Journal of Experimental Medicine, 2018, 215, 877-893.	4.2	111
157	Effect of Pharmaceutical Compounds on Myeloid-Derived Suppressor Cells. , 2018, , 199-213.		0
158	Synergy Between Radiotherapy and Immunotherapy. , 2018, , 507-524.		0
159	CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype. Cell Reports, 2018, 23, 1448-1460.	2.9	169
160	Harnessing and Optimizing the Interplay between Immunotherapy and Radiotherapy to Improve Survival Outcomes. Molecular Cancer Research, 2018, 16, 1209-1214.	1.5	7
161	Plasticity of myeloid-derived suppressor cells in cancer. Current Opinion in Immunology, 2018, 51, 76-82.	2.4	281
162	The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules. Cancer Growth and Metastasis, 2018, 11, 117906441876163.	3.5	120
163	Dysregulated myelopoiesis and hematopoietic function following acute physiologic insult. Current Opinion in Hematology, 2018, 25, 37-43.	1.2	49
164	Beyond the Mâ€ <scp>CSF</scp> receptor – novel therapeutic targets in tumorâ€associated macrophages. FEBS Journal, 2018, 285, 777-787.	2.2	26
165	Interleukin 35 Expression Correlates With Microvessel Density inÂPancreatic Ductal Adenocarcinoma, Recruits Monocytes, and Promotes Growth and Angiogenesis of Xenograft Tumors in Mice. Gastroenterology, 2018, 154, 675-688.	0.6	89
166	The role of macrophage phenotype in regulating the response to radiation therapy. Translational Research, 2018, 191, 64-80.	2.2	63
167	Cancer Radiosensitizers. Trends in Pharmacological Sciences, 2018, 39, 24-48.	4.0	380

#	Article	IF	Citations
168	Proton beam therapy and immunotherapy: an emerging partnership for immune activation in non-small cell lung cancer. Translational Lung Cancer Research, 2018, 7, 180-188.	1.3	28
170	Radiation combined with macrophage depletion promotes adaptive immunity and potentiates checkpoint blockade. EMBO Molecular Medicine, 2018, 10, .	3.3	64
171	Radiotherapy as a New Player in Immuno-Oncology. Cancers, 2018, 10, 515.	1.7	21
172	Integrative metabolic and transcriptomic profiling of prostate cancer tissue containing reactive stroma. Scientific Reports, 2018, 8, 14269.	1.6	52
173	Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Frontiers in Immunology, 2018, 9, 1977.	2.2	123
174	Role of the immunosuppressive microenvironment in immunotherapy. Advances in Radiation Oncology, 2018, 3, 520-526.	0.6	107
175	VEGF-Grab Enhances the Efficacy of Radiation Therapy by Blocking VEGF-A and Treatment-Induced PIGF. International Journal of Radiation Oncology Biology Physics, 2018, 102, 609-618.	0.4	3
176	Radiation, inflammation and the immune response in cancer. Mammalian Genome, 2018, 29, 843-865.	1.0	131
177	Genetics and biology of prostate cancer. Genes and Development, 2018, 32, 1105-1140.	2.7	434
178	The Postinjury Inflammatory State and the Bone Marrow Response to Anemia. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 629-638.	2.5	32
179	The Evolution of Radiation Therapy in Metastatic Breast Cancer: From Local Therapy to Systemic Agent. International Journal of Breast Cancer, 2018, 2018, 1-7.	0.6	12
180	Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?. Journal of Immunology Research, 2018, 2018, 1-25.	0.9	325
181	Multifaceted Roles for Macrophages in Prostate Cancer Skeletal Metastasis. Frontiers in Endocrinology, 2018, 9, 247.	1.5	43
182	Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy. Frontiers in Immunology, 2018, 9, 527.	2.2	297
183	Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends in Immunology, 2018, 39, 644-655.	2.9	312
184	Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. Journal of Hematology and Oncology, 2018, 11, 104.	6.9	303
185	Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment. Oncolmmunology, 2018, 7, e1477459.	2.1	37
186	Myeloid-derived suppressor cells and their role in gynecological malignancies. Tumor Biology, 2018, 40, 101042831877648.	0.8	22

#	Article	IF	CITATIONS
187	Radiation-Induced Transformation of Immunoregulatory Networks in the Tumor Stroma. Frontiers in Immunology, 2018, 9, 1679.	2.2	31
188	Elective Nodal Irradiation Attenuates the Combinatorial Efficacy of Stereotactic Radiation Therapy and Immunotherapy. Clinical Cancer Research, 2018, 24, 5058-5071.	3.2	213
189	Myeloidâ€derived suppressor cells: Roles in the tumor microenvironment and tumor radiotherapy. International Journal of Cancer, 2019, 144, 933-946.	2.3	67
190	Optimizing radiotherapy with immune checkpoint blockade in hepatocellular carcinoma. World Journal of Gastroenterology, 2019, 25, 2416-2429.	1.4	66
191	Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. Journal of Hematology and Oncology, 2019, 12, 76.	6.9	866
192	Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591985423.	1.4	87
193	A translational concept of immuno-radiobiology. Radiotherapy and Oncology, 2019, 140, 116-124.	0.3	15
194	Tumor-associated macrophages: an accomplice in solid tumor progression. Journal of Biomedical Science, 2019, 26, 78.	2.6	635
195	Understanding the Origin and Diversity of Macrophages to Tailor Their Targeting in Solid Cancers. Frontiers in Immunology, 2019, 10, 2215.	2.2	58
196	Stereotactic Body Radiation and Interleukin-12 Combination Therapy Eradicates Pancreatic Tumors by Repolarizing the Immune Microenvironment. Cell Reports, 2019, 29, 406-421.e5.	2.9	55
197	Nanoformulated Codelivery of Quercetin and Alantolactone Promotes an Antitumor Response through Synergistic Immunogenic Cell Death for Microsatellite-Stable Colorectal Cancer. ACS Nano, 2019, 13, 12511-12524.	7.3	110
198	The Endless Saga of Monocyte Diversity. Frontiers in Immunology, 2019, 10, 1786.	2.2	67
199	Targets for improving tumor response to radiotherapy. International Immunopharmacology, 2019, 76, 105847.	1.7	62
200	Radiation as an In Situ Auto-Vaccination: Current Perspectives and Challenges. Vaccines, 2019, 7, 100.	2.1	30
201	Combined MEK inhibition and tumor-associated macrophages depletion suppresses tumor growth in a triple-negative breast cancer mouse model. International Immunopharmacology, 2019, 76, 105864.	1.7	13
202	Combining Radiation Therapy with Immune Checkpoint Blockadein Breast Cancer. Current Breast Cancer Reports, 2019, 11, 203-216.	0.5	2
203	Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. Cancer Microenvironment, 2019, 12, 119-132.	3.1	46
204	Targeting the Tumor Microenvironment of Leukemia and Lymphoma. Trends in Cancer, 2019, 5, 351-364.	3.8	67

	Ci	ITATION REPORT	
#	Article	IF	Citations
205	The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers, 2019, 11, 860.	1.7	75
206	Harnessing Microglia and Macrophages for the Treatment of Glioblastoma. Frontiers in Pharmacology, 2019, 10, 506.	1.6	55
207	IDO1 Inhibition Overcomes Radiation-Induced "Rebound Immune Suppression―by Reducing Nur IDO1-Expressing Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. International Journal of Radiation Oncology Biology Physics, 2019, 104, 903-912.	nbers of 0.4	39
208	Radiotherapy in Combination With Cytokine Treatment. Frontiers in Oncology, 2019, 9, 367.	1.3	33
209	Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Molecular Cancer, 2019, 18, 94.	7.9	237
210	Radiotherapy Both Promotes and Inhibits Myeloid-Derived Suppressor Cell Function: Novel Strategies for Preventing the Tumor-Protective Effects of Radiotherapy. Frontiers in Oncology, 2019, 9, 215.	1.3	51
211	Synergistic effect of immunotherapy and radiotherapy in non-small cell lung cancer: current clinical trials and prospective challenges. Precision Clinical Medicine, 2019, 2, 57-70.	1.3	24
212	Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in preclinical model of prostate cancer. Oncolmmunology, 2019, 8, e1581528.	a 2.1	20
213	Synchrotron microbeam radiotherapy evokes a different early tumor immunomodulatory response to conventional radiotherapy in EMT6.5 mammary tumors. Radiotherapy and Oncology, 2019, 133, 93-5		19
214	A Functional Immune System Is Required for the Systemic Genotoxic Effects of Localized Irradiation. International Journal of Radiation Oncology Biology Physics, 2019, 103, 1184-1193.	0.4	19
215	Regulation of Blood and Lymphatic Vessels by Immune Cells in Tumors and Metastasis. Annual Reviev of Physiology, 2019, 81, 535-560.	v 5.6	44
216	The Intriguing History of Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 2965.	2.2	240
217	How Prostate Cancer Cells Use Strategy Instead of Brute Force to Achieve Metastasis. Cancers, 2019 11, 1928.	, 1.7	5
218	The pro-tumorigenic host response to cancer therapies. Nature Reviews Cancer, 2019, 19, 667-685.	12.8	135
219	Combining Radiotherapy With Anti-angiogenic Therapy and Immunotherapy; A Therapeutic Triad for Cancer?. Frontiers in Immunology, 2018, 9, 3107.	2.2	76
220	Time to abandon single-site irradiation for inducing abscopal effects. Nature Reviews Clinical Oncology, 2019, 16, 123-135.	12.5	233
221	Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Oral Oncology, 2019, 88, 29-38.	. 0.8	70
222	Development and translation of novel therapeutics targeting tumor-associated macrophages. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 556-562.	0.8	7

#	Article	IF	CITATIONS
223	α-PD-L1 mAb enhances the abscopal effect of hypo-fractionated radiation by attenuating PD-L1 expression and inducing CD8 ⁺ T-cell infiltration. Immunotherapy, 2019, 11, 101-118.	1.0	15
224	Modulating the Tumor Microenvironment via Oncolytic Viruses and CSF-1R Inhibition Synergistically Enhances Anti-PD-1 Immunotherapy. Molecular Therapy, 2019, 27, 244-260.	3.7	67
225	M2 macrophages and regulatory T cells in lethal prostate cancer. Prostate, 2019, 79, 363-369.	1.2	128
226	Imatinib inhibits CSF1R that stimulates proliferation of rheumatoid arthritis fibroblast-like synoviocytes. Clinical and Experimental Immunology, 2019, 195, 237-250.	1.1	15
227	Radiotherapy as a Backbone for Novel Concepts in Cancer Immunotherapy. Cancers, 2020, 12, 79.	1.7	29
228	Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nature Immunology, 2020, 21, 120-134.	7.0	218
229	Macrophage exclusion after radiation therapy (MERT): A new and effective way to increase the therapeutic ratio of radiotherapy. Radiotherapy and Oncology, 2020, 144, 159-164.	0.3	20
230	Targeting Tumor Microenvironment by Small-Molecule Inhibitors. Translational Oncology, 2020, 13, 57-69.	1.7	82
231	Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells, 2020, 9, 46.	1.8	196
232	Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance. Cancers, 2020, 12, 2916.	1.7	63
233	Targeting Tumor-Associated Macrophages in Anti-Cancer Therapies: Convincing the Traitors to Do the Right Thing. Journal of Clinical Medicine, 2020, 9, 3226.	1.0	41
234	Tumor-associated macrophages: A promising target for a cancer immunotherapeutic strategy. Pharmacological Research, 2020, 161, 105111.	3.1	68
235	Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint Blockade. Cancers, 2020, 12, 2762.	1.7	41
236	Targeting tumor-associated macrophages for cancer immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188434.	3.3	68
237	Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Science Translational Medicine, 2020, 12, .	5.8	170
238	Chitosan/γ-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer. Biomaterials, 2020, 257, 120218.	5.7	60
239	The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. International Immunopharmacology, 2020, 87, 106807.	1.7	46
240	Tumor-macrophage crosstalk: how to listen. Integrative Biology (United Kingdom), 2020, 12, 291-302.	0.6	5

#	Article	IF	CITATIONS
241	Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy. , 2020, 8, e000588.		38
242	Wee1 kinase inhibitor AZD1775 potentiates CD8+ T cell-dependent antitumour activity via dendritic cell activation following a single high dose of irradiation. Medical Oncology, 2020, 37, 66.	1.2	18
243	SBRT combined with PD-1/PD-L1 inhibitors in NSCLC treatment: a focus on the mechanisms, advances, and future challenges. Journal of Hematology and Oncology, 2020, 13, 105.	6.9	73
244	Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells, 2020, 9, 1785.	1.8	56
245	Potential and unsolved problems of anti-PD-1/PD-L1 therapy combined with radiotherapy. Tumori, 2020, 107, 030089162094038.	0.6	8
246	Modulation of Determinant Factors to Improve Therapeutic Combinations with Immune Checkpoint Inhibitors. Cells, 2020, 9, 1727.	1.8	8
247	Pharmacological Activation of Estrogen Receptor Beta Overcomes Tumor Resistance to Immune Checkpoint Blockade Therapy. IScience, 2020, 23, 101458.	1.9	15
248	FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nature Communications, 2020, 11, 4064.	5.8	76
249	<p>Research Progress and Existing Problems for Abscopal Effect</p> . Cancer Management and Research, 2020, Volume 12, 6695-6706.	0.9	8
250	Converging focal radiation and immunotherapy in a preclinical model of triple negative breast cancer: contribution of VISTA blockade. Oncolmmunology, 2020, 9, 1830524.	2.1	34
251	Metabolic programming of tumor associated macrophages in the context of cancer treatment. Annals of Translational Medicine, 2020, 8, 1028-1028.	0.7	16
252	The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. International Journal of Molecular Sciences, 2020, 21, 6866.	1.8	20
253	Foxp3+ Regulatory T Cell Depletion after Nonablative Oligofractionated Irradiation Boosts the Abscopal Effects in Murine Malignant Mesothelioma. Journal of Immunology, 2020, 205, 2519-2531.	0.4	13
254	Lactate-Modulated Immunosuppression of Myeloid-Derived Suppressor Cells Contributes to the Radioresistance of Pancreatic Cancer. Cancer Immunology Research, 2020, 8, 1440-1451.	1.6	112
255	Application of Anti-Inflammatory Agents in Prostate Cancer. Journal of Clinical Medicine, 2020, 9, 2680.	1.0	12
256	Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers, 2020, 12, 3853.	1.7	14
257	Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. International Journal of Molecular Sciences, 2020, 21, 9324.	1.8	22
258	CSF1R and HCST: Novel Candidate Biomarkers Predicting the Response to Immunotherapy in Non-Small Cell Lung Cancer. Technology in Cancer Research and Treatment, 2020, 19, 153303382097066.	0.8	13

#	Article	IF	CITATIONS
259	Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiation Oncology, 2020, 15, 254.	1.2	62
260	Radiation therapy and the innate immune response: Clinical implications for immunotherapy approaches. British Journal of Clinical Pharmacology, 2020, 86, 1726-1735.	1.1	18
261	Dendritic Cell Maturation Defines Immunological Responsiveness of Tumors to Radiation Therapy. Journal of Immunology, 2020, 204, 3416-3424.	0.4	37
262	<p>Pexidartinib, a Novel Small Molecule CSF-1R Inhibitor in Use for Tenosynovial Giant Cell Tumor: A Systematic Review of Pre-Clinical and Clinical Development</p> . Drug Design, Development and Therapy, 2020, Volume 14, 1693-1704.	2.0	99
263	Targeting MerTK Enhances Adaptive Immune Responses After Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 108, 93-103.	0.4	21
264	Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Seminars in Radiation Oncology, 2020, 30, 158-172.	1.0	10
265	Radiation Damage to Tumor Vasculature Initiates a Program That Promotes Tumor Recurrences. International Journal of Radiation Oncology Biology Physics, 2020, 108, 734-744.	0.4	26
266	Cranial irradiation acutely and persistently impairs injury-induced microglial proliferation. Brain, Behavior, & Immunity - Health, 2020, 4, 100057.	1.3	3
267	Immunomodulation of NK Cells by Ionizing Radiation. Frontiers in Oncology, 2020, 10, 874.	1.3	32
268	The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Frontiers in Oncology, 2020, 10, 899.	1.3	44
269	Tumor Immune Microenvironment Clusters in Localized Prostate Adenocarcinoma: Prognostic Impact of Macrophage Enriched/Plasma Cell Non-Enriched Subtypes. Journal of Clinical Medicine, 2020, 9, 1973.	1.0	10
270	Dual oxidase 1 limits the IFNÎ ³ -associated antitumor effect of macrophages. , 2020, 8, e000622.		17
271	Hypofractionated Irradiation Suppressed the Off-Target Mouse Hepatocarcinoma Growth by Inhibiting Myeloid-Derived Suppressor Cell-Mediated Immune Suppression. Frontiers in Oncology, 2020, 10, 4.	1.3	11
272	Enhancement of antitumor effect of radiotherapy via combination with Au@SiO2 nanoparticles targeted to tumor-associated macrophages. Journal of Industrial and Engineering Chemistry, 2020, 84, 349-357.	2.9	6
273	Radiationâ€induced tissue damage and response. Journal of Pathology, 2020, 250, 647-655.	2.1	63
274	The Promise of Combining Radiation Therapy With Immunotherapy. International Journal of Radiation Oncology Biology Physics, 2020, 108, 6-16.	0.4	92
276	Immunomodulatory Effects of Stereotactic Body Radiation Therapy: Preclinical Insights and Clinical Opportunities. International Journal of Radiation Oncology Biology Physics, 2021, 110, 35-52.	0.4	54
277	Targeting tumor-associated macrophages as an antitumor strategy. Biochemical Pharmacology, 2021, 183, 114354.	2.0	88

#	Article	IF	CITATIONS
278	High-dose per Fraction Radiotherapy Induces Both Antitumor Immunity and Immunosuppressive Responses in Prostate Tumors. Clinical Cancer Research, 2021, 27, 1505-1515.	3.2	36
279	Polymorphonuclear-MDSCs Facilitate Tumor Regrowth After Radiation by Suppressing CD8+ T Cells. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1533-1546.	0.4	19
280	Modulation of the chemokine/chemokine receptor axis as a novel approach for glioma therapy. , 2021, 222, 107790.		28
281	Radiation Response in the Tumour Microenvironment: Predictive Biomarkers and Future Perspectives. Journal of Personalized Medicine, 2021, 11, 53.	1.1	17
282	Targeting cancer-promoting inflammation — have anti-inflammatory therapies come of age?. Nature Reviews Clinical Oncology, 2021, 18, 261-279.	12.5	171
283	Tumor-associated myeloid cells: diversity and therapeutic targeting. Cellular and Molecular Immunology, 2021, 18, 566-578.	4.8	100
284	Perspectives of Radiotherapy in Immuno-oncology Era. , 2021, , 325-337.		0
285	Abraxane-induced bone marrow CD11b ⁺ myeloid cell depletion in tumor-bearing mice is visualized by μPET-CT with ⁶⁴ Cu-labeled anti-CD11b and prevented by anti-CSF-1. Theranostics, 2021, 11, 3527-3539.	4.6	4
286	Hypofractionated Low-Dose Radiotherapy Combined with Immune Checkpoint Inhibition in Metastatic Solid Tumors. OncoTargets and Therapy, 2021, Volume 14, 773-783.	1.0	2
287	Targeting Myeloid-Derived Suppressor Cells in Ovarian Cancer. Cells, 2021, 10, 329.	1.8	21
288	Changes in the tumor microenvironment and outcome for TME-targeting therapy in glioblastoma: A pilot study. PLoS ONE, 2021, 16, e0246646.	1.1	15
289	Role of Tumor-Associated Macrophages in Sarcomas. Cancers, 2021, 13, 1086.	1.7	26
291	Linking Serine/Glycine Metabolism to Radiotherapy Resistance. Cancers, 2021, 13, 1191.	1.7	20
292	PARP inhibitor niraparib as a radiosensitizer promotes antitumor immunity of radiotherapy in EGFR-mutated non-small cell lung cancer. Clinical and Translational Oncology, 2021, 23, 1827-1837.	1.2	14
293	Plinabulin, a Distinct Microtubule-Targeting Chemotherapy, Promotes M1-Like Macrophage Polarization and Anti-tumor Immunity. Frontiers in Oncology, 2021, 11, 644608.	1.3	19
294	Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers. Cells, 2021, 10, 1073.	1.8	6
295	Radiotherapy and cGAS/STING signaling: Impact on MDSCs in the tumor microenvironment. Cellular Immunology, 2021, 362, 104298.	1.4	35
296	The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 654877.	2.2	19

#	Article	IF	Citations
297	Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Letters, 2021, 502, 84-96.	3.2	80
298	Modulation of PD-1/PD-L1 axis in myeloid-derived suppressor cells by anti-cancer treatments. Cellular Immunology, 2021, 362, 104301.	1.4	12
299	Construction of the Prediction Model for Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy Based on Pretreatment Tumor-Infiltrating Macrophage-Associated Biomarkers. OncoTargets and Therapy, 2021, Volume 14, 2599-2610.	1.0	6
300	A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Translational Lung Cancer Research, 2021, 10, 1889-1916.	1.3	68
301	Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 2021, 11, 933-959.	7.7	646
302	Cancer-Associated Fibroblasts and Tumor-Associated Macrophages in Cancer and Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 668731.	1.3	55
303	Medulloblastoma recurrence and metastatic spread are independent of colony-stimulating factor 1 receptor signaling and macrophage survival. Journal of Neuro-Oncology, 2021, 153, 225-237.	1.4	15
304	Immunophenotyping Reveals Longitudinal Changes in Circulating Immune Cells During Radium-223 Therapy in Patients With Metastatic Castration-Resistant Prostate Cancer. Frontiers in Oncology, 2021, 11, 667658.	1.3	6
305	Protein kinase inhibitors for the treatment of prostate cancer. Expert Opinion on Pharmacotherapy, 2021, 22, 1889-1899.	0.9	8
306	Cisplatin-based chemoradiation decreases telomerase-specific CD4 TH1 response but increases immune suppressive cells in peripheral blood. BMC Immunology, 2021, 22, 38.	0.9	7
307	Macrophage Polarization States in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 6995.	1.8	539
308	CSF1/CSF1R Signaling Inhibitor Pexidartinib (PLX3397) Reprograms Tumor-Associated Macrophages and Stimulates T-cell Infiltration in the Sarcoma Microenvironment. Molecular Cancer Therapeutics, 2021, 20, 1388-1399.	1.9	73
309	Blocking the CCL5–CCR5 Axis Using Maraviroc Promotes M1 Polarization of Macrophages Cocultured with Irradiated Hepatoma Cells. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 599-611.	1.8	14
310	The Prognostic Potential of Human Prostate Cancer-Associated Macrophage Subtypes as Revealed by Single-Cell Transcriptomics. Molecular Cancer Research, 2021, 19, 1778-1791.	1.5	20
311	Phase I Study of Stereotactic Body Radiotherapy plus Nivolumab and Urelumab or Cabiralizumab in Advanced Solid Tumors. Clinical Cancer Research, 2021, 27, 5510-5518.	3.2	23
312	Microbeam Radiotherapy—A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma. International Journal of Molecular Sciences, 2021, 22, 7755.	1.8	18
313	Mechanisms of Immune Modulation by Radiation. Seminars in Radiation Oncology, 2021, 31, 205-216.	1.0	5
314	Study Design and Rationale for Espera Trial: A Multicentre, Randomized, Phase II Clinical Trial Evaluating the Potential Efficacy of Adding SBRT to Pembrolizumab-Pemetrexed Maintenance in Responsive or Stable Advanced Non-Squamous NSCLC After Chemo-Immunotherapy Induction. Clinical Lung Cancer. 2021	1.1	4

#	Article	IF	CITATIONS
315	Macrophage-Derived Cholesterol Contributes to Therapeutic Resistance in Prostate Cancer. Cancer Research, 2021, 81, 5477-5490.	0.4	48
316	A Phase 1 study Combining Pexidartinib, Radiation Therapy, and Androgen Deprivation Therapy in Men With Intermediate- and High-Risk Prostate Cancer. Advances in Radiation Oncology, 2021, 6, 100679.	0.6	3
317	Comparative analysis of triple-negative breast cancer transcriptomics of Kenyan, African American and Caucasian Women. Translational Oncology, 2021, 14, 101086.	1.7	17
318	Use of Nanoformulation to Target Macrophages for Disease Treatment. Advanced Functional Materials, 2021, 31, 2104487.	7.8	17
319	Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 7239.	1.8	21
320	Abscopal effect and resistance reversion in nivolumab-treated non-small-cell lung cancer undergoing palliative radiotherapy: a case report. Immunotherapy, 2021, 13, 971-976.	1.0	4
321	Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death and Disease, 2021, 12, 818.	2.7	38
322	Spatially fractionated radiotherapy: tumor response modelling including immunomodulation. Physics in Medicine and Biology, 2021, 66, 175012.	1.6	3
323	Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages. Cells, 2021, 10, 2364.	1.8	13
324	Interaction Between Modern Radiotherapy and Immunotherapy for Metastatic Prostate Cancer. Frontiers in Oncology, 2021, 11, 744679.	1.3	7
325	Targeted delivery and reprogramming of myeloid-derived suppressor cells (MDSCs) in cancer. , 2022, , 409-435.		1
326	Activity of tumor-associated macrophage depletion by CSF1R blockade is highly dependent on the tumor model and timing of treatment. Cancer Immunology, Immunotherapy, 2021, 70, 2401-2410.	2.0	29
327	Advances in Hypofractionated Irradiation-Induced Immunosuppression of Tumor Microenvironment. Frontiers in Immunology, 2020, 11, 612072.	2.2	16
328	Inflammation and oxidatively induced DNA damage: A synergy leading to cancer development. , 2021, , 131-147.		1
329	Monocytes and Macrophages in Cancer: Unsuspected Roles. Advances in Experimental Medicine and Biology, 2020, 1219, 161-185.	0.8	17
330	LXR activation radiosensitizes non-small cell lung cancer by restricting myeloid-derived suppressor cells. Biochemical and Biophysical Research Communications, 2020, 528, 330-335.	1.0	23
331	Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews Immunology, 2019, 19, 369-382.	10.6	1,365
332	The TAM family as a therapeutic target in combination with radiation therapy. Emerging Topics in Life Sciences, 2017, 1, 493-500.	1.1	5

#	Article	IF	CITATIONS
333	Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight, 2018, 3, .	2.3	90
334	Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. Journal of Clinical Investigation, 2014, 124, 687-695.	3.9	1,627
335	The impact of hypoxia on tumor-associated macrophages. Journal of Clinical Investigation, 2016, 126, 3672-3679.	3.9	401
336	CSF1R Protein Expression in Reactive Lymphoid Tissues and Lymphoma: Its Relevance in Classical Hodgkin Lymphoma. PLoS ONE, 2015, 10, e0125203.	1.1	30
337	Neutrophil-to-Lymphocyte Ratio Predicts PSA Response and Prognosis in Prostate Cancer: A Systematic Review and Meta-Analysis. PLoS ONE, 2016, 11, e0158770.	1.1	47
338	4-(Nitrophenylsulfonyl)piperazines mitigate radiation damage to multiple tissues. PLoS ONE, 2017, 12, e0181577.	1.1	14
339	Inhibition of TAMs improves the response to docetaxel in castration-resistant prostate cancer. Endocrine-Related Cancer, 2019, 26, 131-140.	1.6	28
340	Tumor-associated macrophages, multi-tasking cells in the cancer landscape. Cancer Research Frontiers, 2015, 1, 149-161.	0.2	7
341	Increasing the efficacy of radiotherapy by modulating the CCR2/CCR5 chemokine axes. Oncotarget, 2016, 7, 86522-86535.	0.8	50
342	PD-1 mRNA expression in peripheral blood cells and its modulation characteristics in cancer patients. Oncotarget, 2017, 8, 50782-50791.	0.8	10
343	Prognostic role of tumour-associated macrophages and macrophage scavenger receptor 1 in prostate cancer: a systematic review and meta-analysis. Oncotarget, 2017, 8, 83261-83269.	0.8	48
344	M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget, 2017, 8, 72597-72612.	0.8	78
345	Macrophage depletion reduces postsurgical tumor recurrence and metastatic growth in a spontaneous murine model of melanoma. Oncotarget, 2015, 6, 22857-22868.	0.8	39
346	Small-Molecule CSF1R Inhibitors as Anticancer Agents. Current Medicinal Chemistry, 2020, 27, 3944-3966.	1.2	29
347	Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 581107.	1.3	14
348	Tumor-Associated Macrophages: Protumoral Macrophages in Inflammatory Tumor Microenvironment. Advanced Pharmaceutical Bulletin, 2020, 10, 556-565.	0.6	42
349	The emerging role of myeloid-derived suppressor cells in radiotherapy. Radiation Oncology Journal, 2020, 38, 1-10.	0.7	36
350	Tumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodes. ELife, 2016, 5, .	2.8	81

		ATION REPORT	
#	Article	IF	CITATIONS
351	Effects of radiation on tumor vasculature. Molecular Carcinogenesis, 2022, 61, 165-172.	1.3	7
352	Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naÃ ⁻ ve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment. , 2021, 9, e002919.		30
353	Controversies in Neoplastic Myeloplasia. SpringerBriefs in Immunology, 2016, , 1-24.	0.1	0
354	Translational Research and Immunotherapy in Lung Cancer. , 2016, , 255-296.		0
355	Aiming the Immune System to Improve the Antitumor Efficacy of Radiation Therapy. , 2016, , 159-181.		0
356	M2-polarized macrophages contribute to neovasculogenesis, leading to recurrence of oral cancer after radiation. Nihon Koku Geka Gakkai Zasshi, 2018, 64, 307-320.	0.0	0
358	Abscopal Effects in Metastatic Cancer: Is a Predictive Approach Possible to Improve Individual Outcomes?. Journal of Clinical Medicine, 2021, 10, 5124.	1.0	10
359	Current advances in immune checkpoint inhibitor combinations with radiation therapy or cryotherapy for breast cancer. Breast Cancer Research and Treatment, 2022, 191, 229-241.	1.1	12
360	Immunotherapy and Radiation. Advances in Experimental Medicine and Biology, 2020, 1244, 205-213.	0.8	2
361	Cross Talk Between Macrophages and Cancer Cells in the Bone Metastatic Environment. Frontiers in Endocrinology, 2021, 12, 763846.	1.5	11
362	Case Report: Response to Immunotherapy, Can Radiotherapy Be a Troublemaker?. Frontiers in Immunology, 2021, 12, 745146.	2.2	3
363	Cellâ€Derived Biogenetic Gold Nanoparticles for Sensitizing Radiotherapy and Boosting Immune Response against Cancer. Small, 2021, 17, e2103984.	5.2	38
365	Revisiting the hallmarks of cancer. American Journal of Cancer Research, 2017, 7, 1016-1036.	1.4	292
366	Radionuclide Therapy and Immunomodulation. , 2022, , 249-266.		0
367	Translational Development and Testing of Theranostics in Combination with Immunotherapies. , 2022, , 267-280.	,	0
368	Macrophage-Targeted Therapy Unlocks Antitumoral Cross-talk between IFNÎ ³ -Secreting Lymphocytes ar IL12-Producing Dendritic Cells. Cancer Immunology Research, 2022, 10, 40-55.	nd 1.6	18
369	Immunologic Effects of Stereotactic Body Radiotherapy in Dogs with Spontaneous Tumors and the Impact of Intratumoral OX40/TLR Agonist Immunotherapy. International Journal of Molecular Sciences, 2022, 23, 826.	1.8	5
370	Macrophages as a Therapeutic Target in Metastatic Prostate Cancer: A Way to Overcome Immunotherapy Resistance?. Cancers, 2022, 14, 440.	1.7	20

	Сітаті	on Report	
#	Article	IF	CITATIONS
371	Circulating tumor cells and DNAs in prostate tumors. , 2022, , 67-99.		0
372	Radiotherapy resistance: identifying universal biomarkers for various human cancers. Journal of Cancer Research and Clinical Oncology, 2022, 148, 1015-1031.	1.2	19
373	Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Experimental Hematology and Oncology, 2021, 10, 60.	2.0	53
375	Tumor-Associated Macrophages: Reasons to Be Cheerful, Reasons to Be Fearful. Experientia Supplementum (2012), 2022, 113, 107-140.	0.5	10
376	Combining Radiotherapy and Immunotherapy in Metastatic Breast Cancer: Current Status and Future Directions. Biomedicines, 2022, 10, 821.	1.4	5
377	Tumor-Mediated Neutrophil Polarization and Therapeutic Implications. International Journal of Molecular Sciences, 2022, 23, 3218.	1.8	20
378	Immunomodulatory effect of splenectomy in lung cancer mouse xenograft models receiving radiation therapy. Radiation Oncology Journal, 2022, 40, 53-65.	0.7	2
379	Modulation of the Human Pancreatic Ductal Adenocarcinoma Immune Microenvironment by Stereotactic Body Radiotherapy. Clinical Cancer Research, 2022, 28, 150-162.	3.2	31
380	Myeloid-Derived Suppressor Cells and Radiotherapy. Cancer Immunology Research, 2022, 10, 545-557.	1.6	32
381	Direct and indirect regulation of the tumor immune microenvironment by VEGF. Journal of Leukocyte Biology, 2022, 111, 1269-1286.	1.5	28
382	Introducing Checkpoint Inhibitors Into the Curative Setting of Head and Neck Cancers: Lessons Learned, Future Considerations. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 511-526.	1.8	9
383	CSF-1R inhibitor, pexidartinib, sensitizes esophageal adenocarcinoma to PD-1 immune checkpoint blockade in a rat model. Carcinogenesis, 2022, 43, 842-850.	1.3	10
384	Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Frontiers in Oncology, 2022, 12, .	1.3	11
386	T-Cell Repertoire in Tumor Radiation: The Emerging Frontier as a Radiotherapy Biomarker. Cancers, 2022, 14, 2674.	1.7	5
388	Targeting IL-34/MCSF-1R Axis in Colon Cancer. Frontiers in Immunology, 0, 13, .	2.2	6
389	In Vivo Quantitative Imaging of Glioma Heterogeneity Employing Positron Emission Tomography. Cancers, 2022, 14, 3139.	1.7	3
390	Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	142
391	Deciphering the Biological Effects of Radiotherapy in Cancer Cells. Biomolecules, 2022, 12, 1167.	1.8	9

#	Article	IF	CITATIONS
392	The implications from the interplay of neoadjuvant chemoradiotherapy and the immune microenvironment in rectal cancer. Future Oncology, 2022, 18, 3229-3244.	1.1	2
393	Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. , 2022, 238, 108274.		0
394	Infiltrating Immune Cells in Prostate Cancer and Their Implication in Prostate Cancer Therapy. , 2022, , .		0
395	The Roles of Tumor-Associated Macrophages in Prostate Cancer. Journal of Oncology, 2022, 2022, 1-20.	0.6	10
396	The effects of radiation therapy on the macrophage response in cancer. Frontiers in Oncology, 0, 12, .	1.3	12
397	Immunomodulatory effects of carbon ion radiotherapy in patients with localized prostate cancer. Journal of Cancer Research and Clinical Oncology, 2023, 149, 4533-4545.	1.2	4
398	PD-L1 antibody enhanced β-glucan antitumor effects via blockade of the immune checkpoints in a melanoma model. Cancer Immunology, Immunotherapy, 2023, 72, 719-731.	2.0	5
399	Receptors of immune cells mediates recognition for tumors. Progress in Molecular Biology and Translational Science, 2023, , 219-267.	0.9	2
400	Monocyte programming by cancer therapy. Frontiers in Immunology, 0, 13, .	2.2	22
401	Radiation-Induced Remodeling of the Tumor Microenvironment Through Tumor Cell-Intrinsic Expression of cGAS-STING in Esophageal Squamous Cell Carcinoma. International Journal of Radiation Oncology Biology Physics, 2023, 115, 957-971.	0.4	8
402	Radiotherapy as a means to increase the efficacy of T-cell therapy in solid tumors. Oncolmmunology, 2023, 12, .	2.1	7
403	Application of individualized multimodal radiotherapy combined with immunotherapy in metastatic tumors. Frontiers in Immunology, 0, 13, .	2.2	4
404	The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sciences, 2023, 316, 121399.	2.0	2
405	Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer. Pharmaceutics, 2023, 15, 252.	2.0	4
406	Adipose tissue macrophages: implications for obesity-associated cancer. Military Medical Research, 2023, 10, .	1.9	4
407	Radiation-induced PD-L1 expression in tumor and its microenvironment facilitates cancer-immune escape: a narrative review. Annals of Translational Medicine, 2022, 10, 1406-1406.	0.7	13
408	Radiation-induced circulating myeloid-derived suppressor cells induce systemic lymphopenia after chemoradiotherapy in patients with glioblastoma. Science Translational Medicine, 2023, 15, .	5.8	17
409	Selective COX-2 Inhibitor Etoricoxib's Liposomal Formulation Attenuates M2 Polarization of TAMs and Enhances its Anti-metastatic Potential. Pharmaceutical Research, 2023, 40, 551-566.	1.7	1

#	Article	IF	CITATIONS
410	Combining radiotherapy and NK cell-based therapies: The time has come. International Review of Cell and Molecular Biology, 2023, , .	1.6	1
411	Application of nanoâ€radiosensitizers in combination cancer therapy. Bioengineering and Translational Medicine, 2023, 8, .	3.9	7
412	Shedding light on macrophage immunotherapy in lung cancer. Journal of Cancer Research and Clinical Oncology, 2023, 149, 8143-8152.	1.2	2
413	Single-cell RNA-sequencing reveals radiochemotherapy-induced innate immune activation and MHC-II upregulation in cervical cancer. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	26
414	Interleukin-34 and immune checkpoint inhibitors: Unified weapons against cancer. Frontiers in Oncology, 0, 13, .	1.3	3
415	Therapeutic targeting of tumour myeloid cells. Nature Reviews Cancer, 2023, 23, 216-237.	12.8	49
416	Overview of the synergistic use of radiotherapy and immunotherapy in cancer treatment: current challenges and scopes of improvement. Expert Review of Anticancer Therapy, 2023, 23, 135-145.	1.1	6
417	Mechanisms Underlying Tumor-Associated Macrophages (TAMs)-Facilitated Metastasis. , 2023, , 1-54.		Ο
418	The characteristics of oncological clinical trials investigating the synergistic effect of radiotherapy and immune checkpoint inhibitors: a cross-sectional study. Translational Cancer Research, 2023, 12, 558-571.	0.4	0
419	Antitumor Therapy Targeting the Tumor Microenvironment. Journal of Oncology, 2023, 2023, 1-16.	0.6	4
420	Pexidartinib synergize PD-1 antibody through inhibiting treg infiltration by reducing TAM-derived CCL22 in lung adenocarcinoma. Frontiers in Pharmacology, 0, 14, .	1.6	1
422	Safety and efficacy of radiotherapy/chemoradiotherapy combined with immune checkpoint inhibitors for non-small cell lung cancer: A systematic review and meta-analysis. Frontiers in Immunology, 0, 14, .	2.2	3
423	Immunogenic hypofractionated radiotherapy sensitising head and neck squamous cell carcinoma to anti-PD-L1 therapy in MDSC-dependent manner. British Journal of Cancer, 2023, 128, 2126-2139.	2.9	5
424	Functional plasticity of neutrophils after low- or high-dose irradiation in cancer treatment – A mini review. Frontiers in Immunology, 0, 14, .	2.2	1
425	A role for macrophages under cytokine control in mediating resistance to ADI-PEG20 (pegargiminase) in ASS1-deficient mesothelioma. Pharmacological Reports, 2023, 75, 570-584.	1.5	2
426	Advances in Radiotherapy Immune Modulation. Surgical Oncology Clinics of North America, 2023, , .	0.6	1
427	Recent advances in targeting myeloid-derived suppressor cells and their applications to radiotherapy. International Review of Cell and Molecular Biology, 2023, , .	1.6	1
444	Dual impact of radiation therapy on tumor-targeting immune responses. International Review of Cell and Molecular Biology, 2023, , xiii-xxiv.	1.6	0

#	Article	IF	CITATIONS
455	Chromosome 5. , 2023, , 90-158.		0
468	Current and Future Perspectives of Combining Chemotherapy and Stereotactic Body Radiation Therapy with Immunotherapy in the Treatment of Lung Cancer. , 2024, , 265-295.		0