Whatâ€[™] a name? Why these proteins are intrinsicall

Intrinsically Disordered Proteins 1, e24157 DOI: 10.4161/idp.24157

Citation Report

#	Article	IF	CITATIONS
1	Solvent interaction analysis of intrinsically disordered proteins in aqueous two-phase systems. Molecular BioSystems, 2013, 9, 3068.	2.9	14
2	RAPID: Fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1671-1680.	1.1	49
3	The UBE2E Proteins as Conjugating Dispersers: Extending Function with Extended Extensions. Journal of Molecular Biology, 2013, 425, 4067-4070.	2.0	3
4	Another Disordered Chameleon: The Micro-Exon Gene 14 Protein from Schistosomiasis. Biophysical Journal, 2013, 104, 2326-2328.	0.2	2
5	A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Science, 2013, 22, 693-724.	3.1	415
6	The most important thing is the tail: Multitudinous functionalities of intrinsically disordered protein termini. FEBS Letters, 2013, 587, 1891-1901.	1.3	117
7	Structural characterizations of phosphorylatable residues in transmembrane proteins from <i>Arabidopsis thaliana</i> . Intrinsically Disordered Proteins, 2013, 1, e25713.	1.9	5
8	Digested disorder. Intrinsically Disordered Proteins, 2013, 1, e27454.	1.9	6
9	Disorder in the lifetime of a protein. Intrinsically Disordered Proteins, 2013, 1, e26782.	1.9	9
10	Ordered Disorder of the Astrocytic Dystrophin-Associated Protein Complex in the Norm and Pathology. PLoS ONE, 2013, 8, e73476.	1.1	12
11	Dynamic New World: Refining Our View of Protein Structure, Function and Evolution. Proteomes, 2014, 2, 128-153.	1.7	19
12	Origination of the Protein Fold Repertoire from Oily Pluripotent Peptides. Proteomes, 2014, 2, 154-168.	1.7	5
13	pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Research, 2014, 42, D326-D335.	6.5	195
14	Toward a consensus in protein structure nomenclature. Intrinsically Disordered Proteins, 2014, 2, e970902.	1.9	2
15	Lysophospholipid-Containing Membranes Modulate the Fibril Formation of the Repeat Domain of a Human Functional Amyloid, Pmel17. Journal of Molecular Biology, 2014, 426, 4074-4086.	2.0	21
16	New Force Field on Modeling Intrinsically Disordered Proteins. Chemical Biology and Drug Design, 2014, 84, 253-269.	1.5	110
17	Structural Determinants Allowing Transferase Activity in SENSITIVE TO FREEZING 2, Classified as a Family I Glycosyl Hydrolase. Journal of Biological Chemistry, 2014, 289, 26089-26106.	1.6	23
18	A putative role of the Sup35p C-terminal domain in the cytoskeleton organization during yeast mitosis. Molecular BioSystems, 2014, 10, 925-940.	2.9	5

# 19	ARTICLE Structural Disorder in Viral Proteins. Chemical Reviews, 2014, 114, 6880-6911.	IF 23.0	Citations
20	Introducing Protein Intrinsic Disorder. Chemical Reviews, 2014, 114, 6561-6588.	23.0	628
21	Introduction to Intrinsically Disordered Proteins (IDPs). Chemical Reviews, 2014, 114, 6557-6560.	23.0	118
22	Classification of Intrinsically Disordered Regions and Proteins. Chemical Reviews, 2014, 114, 6589-6631.	23.0	1,618
23	Conditionally and Transiently Disordered Proteins: Awakening Cryptic Disorder To Regulate Protein Function. Chemical Reviews, 2014, 114, 6779-6805.	23.0	165
24	Ordered Water within the Collapsed Globules of an Amyloidogenic Intrinsically Disordered Protein. Journal of Physical Chemistry B, 2014, 118, 9191-9198.	1.2	36
25	Intrinsically Disordered Proteins and Intrinsically Disordered Protein Regions. Annual Review of Biochemistry, 2014, 83, 553-584.	5.0	850
26	In various protein complexes, disordered protomers have large perâ€residue surface areas and area of proteinâ€, DNA―and RNAâ€binding interfaces. FEBS Letters, 2015, 589, 2561-2569.	1.3	42
27	Structural disorder within paramyxoviral nucleoproteins. FEBS Letters, 2015, 589, 2649-2659.	1.3	19
28	Force fieldâ€dependent solution properties of glycine oligomers. Journal of Computational Chemistry, 2015, 36, 1275-1285.	1.5	26
29	Can proteins be intrinsically disordered inside a membrane?. Intrinsically Disordered Proteins, 2015, 3, e984570.	1.9	8
30	Test and Evaluation of <i>ff99IDPs</i> Force Field for Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling, 2015, 55, 1021-1029.	2.5	68
31	Dynamic footprint of sequestration in the molecular fluctuations of osteopontin. Journal of the Royal Society Interface, 2015, 12, 20150506.	1.5	16
32	Testing the transferability of a coarse-grained model to intrinsically disordered proteins. Physical Chemistry Chemical Physics, 2015, 17, 31741-31749.	1.3	22
33	Dynamics of the Intrinsically Disordered Câ€Terminal Domain of the Nipah Virus Nucleoprotein and Interaction with the X Domain of the Phosphoprotein as Unveiled by NMR Spectroscopy. ChemBioChem, 2015, 16, 268-276.	1.3	31
34	Demonstration of a Folding after Binding Mechanism in the Recognition between the Measles Virus N _{TAIL} and X Domains. ACS Chemical Biology, 2015, 10, 795-802.	1.6	63
35	The Complexity of Protein Structure and the Challenges it Poses in Developing Biopharmaceuticals. , 2015, , 1-21.		3
36	Structural investigation on the intrinsically disordered N-terminal region of HPV16 E7 protein. BMB Reports, 2016, 49, 431-436.	1.1	15

	CITATION	N REPORT	
#	Article	IF	Citations
37	Expression, Purification, and Characterization of Interleukin-11 Orthologues. Molecules, 2016, 21, 1632.	1.7	3
38	Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. Molecular BioSystems, 2016, 12, 2798-2817.	2.9	27
39	Chicken cathelicidins as potent intrinsically disordered biocides with antimicrobial activity against infectious pathogens. Developmental and Comparative Immunology, 2016, 65, 8-24.	1.0	12
40	Native globular actin has a thermodynamically unstable quasiâ€stationary structure with elements of intrinsic disorder. FEBS Journal, 2016, 283, 438-445.	2.2	10
41	How disordered is my protein and what is its disorder for? A guide through the "dark side―of the protein universe. Intrinsically Disordered Proteins, 2016, 4, e1259708.	1.9	87
42	Direct Observation of the Intrinsic Backbone Torsional Mobility of Disordered Proteins. Biophysical Journal, 2016, 111, 768-774.	0.2	34
43	Globular–disorder transition in proteins: a compromise between hydrophobic and electrostatic interactions?. Physical Chemistry Chemical Physics, 2016, 18, 23207-23214.	1.3	8
44	Three reasons protein disorder analysis makes more sense in the light of collagen. Protein Science, 2016, 25, 1030-1036.	3.1	7
45	Intrinsic disorder in biomarkers of insulin resistance, hypoadiponectinemia, and endothelial dysfunction among the type 2 diabetic patients. Intrinsically Disordered Proteins, 2016, 4, e1171278.	1.9	7
46	Predicting Conformational Disorder. Methods in Molecular Biology, 2016, 1415, 265-299.	0.4	10
47	Intrinsically disordered proteins in PubMed: what can the tip of the iceberg tell us about what lies below?. RSC Advances, 2016, 6, 11513-11521.	1.7	15
48	Expanding the Range of Protein Function at the Far End of the Order-Structure Continuum. Journal of Biological Chemistry, 2016, 291, 6706-6713.	1.6	14
49	(Intrinsically disordered) splice variants in the proteome: implications for novel drug discovery. Genes and Genomics, 2016, 38, 577-594.	0.5	10
50	Protein unfolding in crowded milieu: what crowding can do to a protein undergoing unfolding?. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2155-2170.	2.0	28
51	Time, space, and disorder in the expanding proteome universe. Proteomics, 2017, 17, 1600399.	1.3	19
52	Evidence for a Strong Correlation Between Transcription Factor Protein Disorder and Organismic Complexity. Genome Biology and Evolution, 2017, 9, 1248-1265.	1.1	49
53	Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles. Journal of Proteome Research, 2017, 16, 2393-2409.	1.8	13
54	How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cellular and Molecular Life Sciences, 2017, 74, 3091-3118.	2.4	30

#	Article	IF	CITATIONS
55	Functions of intrinsic disorder in transmembrane proteins. Cellular and Molecular Life Sciences, 2017, 74, 3205-3224.	2.4	63
56	Computational Prediction of Intrinsic Disorder in Proteins. Current Protocols in Protein Science, 2017, 88, 2.16.1-2.16.14.	2.8	49
57	The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll–Mr. Hyde― behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy, 2017, 13, 2115-2162.	4.3	48
58	The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger. Scientific Reports, 2017, 7, 12131.	1.6	7
59	Paradoxes and wonders of intrinsic disorder: Stability of instability. Intrinsically Disordered Proteins, 2017, 5, e1327757.	1.9	31
60	Functionality of intrinsic disorder in tumor necrosis factorâ€Î± and its receptors. FEBS Journal, 2017, 284, 3589-3618.	2.2	13
61	Prediction of Disordered RNA, DNA, and Protein Binding Regions Using DisoRDPbind. Methods in Molecular Biology, 2017, 1484, 187-203.	0.4	59
62	Erythropoietin and co.: intrinsic structure and functional disorder. Molecular BioSystems, 2017, 13, 56-72.	2.9	21
63	Interfacial Properties of NTAIL, an Intrinsically Disordered Protein. Biophysical Journal, 2017, 113, 2723-2735.	0.2	8
64	Emergence of order in self-assembly of the intrinsically disordered biomineralisation peptide n16N. Molecular Simulation, 2018, 44, 463-469.	0.9	3
65	Exploring intrinsically disordered proteins in Chlamydomonas reinhardtii. Scientific Reports, 2018, 8, 6805.	1.6	25
66	Mass spectrometry based proteomics as foodomics tool in research and assurance of food quality and safety. Trends in Food Science and Technology, 2018, 77, 100-119.	7.8	42
67	Functional and structural characterization of osteocytic MLO-Y4 cell proteins encoded by genes differentially expressed in response to mechanical signals in vitro. Scientific Reports, 2018, 8, 6716.	1.6	11
68	Intrinsic Disorder, Protein–Protein Interactions, and Disease. Advances in Protein Chemistry and Structural Biology, 2018, 110, 85-121.	1.0	91
69	Machine learning and data science in soft materials engineering. Journal of Physics Condensed Matter, 2018, 30, 043002.	0.7	114
70	Transient Secondary Structures as General Target-Binding Motifs in Intrinsically Disordered Proteins. International Journal of Molecular Sciences, 2018, 19, 3614.	1.8	32
71	Fluorescence Depolarization Kinetics to Study the Conformational Preference, Structural Plasticity, Binding, and Assembly of Intrinsically Disordered Proteins. Methods in Enzymology, 2018, 611, 347-381.	0.4	25
72	Formation of Heterotypic Amyloids: α‧ynuclein in Coâ€Aggregation. Proteomics, 2018, 18, e1800059.	1.3	8

#	Article	IF	CITATIONS
73	Analysis of binding interfaces of the human scaffold protein AXIN1 by peptide microarrays. Journal of Biological Chemistry, 2018, 293, 16337-16347.	1.6	16
74	The Unfolded State of the C-Terminal Domain of L9 Expands at Low but Not at Elevated Temperatures. Biophysical Journal, 2018, 115, 655-663.	0.2	9
75	Proteasome Activation to Combat Proteotoxicity. Molecules, 2019, 24, 2841.	1.7	29
76	Orchestration of algal metabolism by protein disorder. Archives of Biochemistry and Biophysics, 2019, 672, 108070.	1.4	13
77	Intrinsically disordered proteins and structured proteins with intrinsically disordered regions have different functional roles in the cell. PLoS ONE, 2019, 14, e0217889.	1.1	84
78	Entropy and Information within Intrinsically Disordered Protein Regions. Entropy, 2019, 21, 662.	1.1	41
79	An arsenal of methods for the experimental characterization of intrinsically disordered proteins – How to choose and combine them?. Archives of Biochemistry and Biophysics, 2019, 676, 108055.	1.4	37
80	Introduction to intrinsically disordered proteins and regions. , 2019, , 1-34.		17
81	A Suggestion of Converting Protein Intrinsic Disorder to Structural Entropy Using Shannon's Information Theory. Entropy, 2019, 21, 591.	1.1	2
82	Perspective: the essential role of NMR in the discovery and characterization of intrinsically disordered proteins. Journal of Biomolecular NMR, 2019, 73, 651-659.	1.6	48
83	Protein Interactions with Nanoparticle Surfaces: Highlighting Solution NMR Techniques. Israel Journal of Chemistry, 2019, 59, 962-979.	1.0	40
84	Structural Basis of the Subcellular Topology Landscape of Escherichia coli. Frontiers in Microbiology, 2019, 10, 1670.	1.5	25
85	Cementum protein 1â€derived peptide (CEMP 1â€p1) modulates hydroxyapatite crystal formation in vitro. Journal of Peptide Science, 2019, 25, e3211.	0.8	6
86	In silico prediction of structural changes inÂhuman papillomavirus type 16 (HPV16) E6 oncoprotein and its variants. BMC Molecular and Cell Biology, 2019, 20, 35.	1.0	11
87	Quantum Chemical Calculations of NMR Chemical Shifts in Phosphorylated Intrinsically Disordered Proteins. Journal of Chemical Theory and Computation, 2019, 15, 5642-5658.	2.3	6
88	Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Toxins, 2019, 11, 369.	1.5	5
89	Computational prediction of functions of intrinsically disordered regions. Progress in Molecular Biology and Translational Science, 2019, 166, 341-369.	0.9	27
90	Computational Prediction of MoRFs, Short Disorder-to-order Transitioning Protein Binding Regions. Computational and Structural Biotechnology Journal, 2019, 17, 454-462.	1.9	50

#	Article	IF	CITATIONS
91	Structure of proteins: Evolution with unsolved mysteries. Progress in Biophysics and Molecular Biology, 2019, 149, 160-172.	1.4	8
92	Recent Advances in Computational Protocols Addressing Intrinsically Disordered Proteins. Biomolecules, 2019, 9, 146.	1.8	50
93	Perspective on Alternative Splicing and Proteome Complexity in Plants. Trends in Plant Science, 2019, 24, 496-506.	4.3	129
94	ls it possible for short peptide composed of positively- and negatively-charged "hydrophilic―amino acid residue-clusters to form metastable "hydrophobic―packing?. Physical Chemistry Chemical Physics, 2019, 21, 9683-9693.	1.3	5
95	Disordered domains in chromatin-binding proteins. Essays in Biochemistry, 2019, 63, 147-156.	2.1	36
96	In Silico Study of Rett Syndrome Treatment-Related Genes, MECP2, CDKL5, and FOXG1, by Evolutionary Classification and Disordered Region Assessment. International Journal of Molecular Sciences, 2019, 20, 5593.	1.8	12
97	Putative circumsporozoite protein (CSP) of Plasmodium vivax is considerably distinct from the well-known CSP and plays a role in the protein ubiquitination pathway. Gene: X, 2019, 4, 100024.	2.3	1
98	Sequence-Derived Markers of Drug Targets and Potentially Druggable Human Proteins. Frontiers in Genetics, 2019, 10, 1075.	1.1	14
99	Amino acid substitution scoring matrices specific to intrinsically disordered regions in proteins. Scientific Reports, 2019, 9, 16380.	1.6	19
100	Specific metallo-protein interactions and antimicrobial activity in Histatin-5, an intrinsically disordered salivary peptide. Scientific Reports, 2019, 9, 17303.	1.6	18
101	Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinformatics, 2019, 20, 723.	1.2	319
102	Predicting Functions of Disordered Proteins with MoRFpred. Methods in Molecular Biology, 2019, 1851, 337-352.	0.4	14
103	Matrix proteins of enveloped viruses: a case study of Influenza A virus M1 protein. Journal of Biomolecular Structure and Dynamics, 2019, 37, 671-690.	2.0	30
104	Disorder in milk proteins: adipophilin and TIP47, important constituents of the milk fat globule membrane. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1214-1229.	2.0	3
105	DISOselect: Disorder predictor selection at the protein level. Protein Science, 2020, 29, 184-200.	3.1	10
106	The complexity of protein structure and the challenges it poses in developing biopharmaceuticals. , 2020, , 3-26.		2
107	Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. International Journal of Biological Macromolecules, 2020, 145, 904-913.	3.6	17
108	Accuracy of protein-level disorder predictions. Briefings in Bioinformatics, 2020, 21, 1509-1522.	3.2	36

#	Article	IF	CITATIONS
109	Disorder driven allosteric control of protein activity. Current Research in Structural Biology, 2020, 2, 191-203.	1.1	21
110	Liquid–Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus–Host Interactions. International Journal of Molecular Sciences, 2020, 21, 9045.	1.8	110
111	Structure-Function Insights of Jaburetox and Soyuretox: Novel Intrinsically Disordered Polypeptides Derived from Plant Ureases. Molecules, 2020, 25, 5338.	1.7	6
112	Monitoring the Interaction of αâ€Synuclein with Calcium Ions through Exclusively Heteronuclear Nuclear Magnetic Resonance Experiments. Angewandte Chemie, 2020, 132, 18696-18704.	1.6	6
113	Monitoring the Interaction of α‣ynuclein with Calcium Ions through Exclusively Heteronuclear Nuclear Magnetic Resonance Experiments. Angewandte Chemie - International Edition, 2020, 59, 18537-18545.	7.2	20
114	Disorder and cysteines in proteins: A design for orchestration of conformational see-saw and modulatory functions. Progress in Molecular Biology and Translational Science, 2020, 174, 331-373.	0.9	22
115	The Dynamism of Intrinsically Disordered Proteins: Binding-Induced Folding, Amyloid Formation, and Phase Separation. Journal of Physical Chemistry B, 2020, 124, 11541-11560.	1.2	31
116	Mycoplasma bovis <i>mbfN</i> Encodes a Novel LRR Lipoprotein That Undergoes Proteolytic Processing and Binds Host Extracellular Matrix Components. Journal of Bacteriology, 2020, 203, .	1.0	3
117	Evolving Role of Conformational Dynamics in Understanding Fundamental Biomolecular Behavior. ACS Symposium Series, 2020, , 57-81.	0.5	1
118	Myelin basic protein dynamics from out-of-equilibrium functional state to degraded state in myelin. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183256.	1.4	5
119	Computational Investigation of Structural Interfaces of Protein Complexes with Short Linear Motifs. Journal of Proteome Research, 2020, 19, 3254-3263.	1.8	1
121	IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell. Cellular and Molecular Life Sciences, 2021, 78, 2371-2385.	2.4	15
122	The Methods and Tools for Intrinsic Disorder Prediction and their Application to Systems Medicine. , 2021, , 159-169.		3
123	A generic approach to decipher the mechanistic pathway of heterogeneous protein aggregation kinetics. Chemical Science, 2021, 12, 13530-13545.	3.7	2
124	Molecular Dynamic Simulation of Intrinsically Disordered Proteins and Relevant Forcefields. , 2021, , 317-333.		1
125	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	23.0	406
126	Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO Journal, 2021, 40, e106389.	3.5	32
127	Fluspirilene Analogs Activate the 20S Proteasome and Overcome Proteasome Impairment by	1.7	10

щ		IF	CITATIONS
#	ARTICLE A new type of flexible CP12 protein in the marine diatom Thalassiosira pseudonana. Cell		CITATIONS
128	Communication and Signaling, 2021, 19, 38.	2.7	9
129	Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Molecular Cell, 2021, 81, 1682-1697.e7.	4.5	81
130	High-Speed Atomic Force Microscopy Reveals Spatiotemporal Dynamics of Histone Protein H2A Involution by DNA Inchworming. Journal of Physical Chemistry Letters, 2021, 12, 3837-3846.	2.1	14
132	Peptide array–based interactomics. Analytical and Bioanalytical Chemistry, 2021, 413, 5561-5566.	1.9	8
133	Prion-Like Proteins in Phase Separation and Their Link to Disease. Biomolecules, 2021, 11, 1014.	1.8	26
134	Tandem domain structure determination based on a systematic enumeration of conformations. Scientific Reports, 2021, 11, 16925.	1.6	2
135	Tackling Stereochemistry in Drug Molecules with Vibrational Optical Activity. Pharmaceuticals, 2021, 14, 877.	1.7	17
136	RNA modulates physiological and neuropathological protein phase transitions. Neuron, 2021, 109, 2663-2681.	3.8	39
138	Intrinsic Disorder in Human RNA-Binding Proteins. Journal of Molecular Biology, 2021, 433, 167229.	2.0	23
139	Cryptic amyloidogenic regions in intrinsically disordered proteins: Function and disease association. Computational and Structural Biotechnology Journal, 2021, 19, 4192-4206.	1.9	9
140	Exploratory Analysis of Quality Assessment of Putative Intrinsic Disorder in Proteins. Lecture Notes in Computer Science, 2017, , 722-732.	1.0	4
141	The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Briefings in Bioinformatics, 2021, 22, 742-768.	3.2	29
144	Understanding the evolutionary trend of intrinsically structural disorders in cancer relevant proteins as probed by Shannon entropy scoring and structure network analysis. BMC Bioinformatics, 2019, 19, 549.	1.2	7
145	Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Computational Biology, 2016, 12, e1004619.	1.5	188
146	The Ramachandran Number: An Order Parameter for Protein Geometry. PLoS ONE, 2016, 11, e0160023.	1.1	26
147	PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins. Molecules and Cells, 2018, 41, 889-899.	1.0	15
148	An NMR study on the intrinsically disordered core transactivation domain of human glucocorticoid receptor. BMB Reports, 2017, 50, 522-527.	1.1	12
149	Intrinsically disordered caldesmon binds calmodulin via the "buttons on a string―mechanism. PeerJ, 2015, 3, e1265.	0.9	9

#	Article	IF	CITATIONS
150	Charge neutralization as the major factor for the assembly of nucleocapsid-like particles from C-terminal truncated hepatitis C virus core protein. PeerJ, 2016, 4, e2670.	0.9	5
151	The B <scp>ack</scp> MAP Python module: how a simpler Ramachandran number can simplify the life of a protein simulator. PeerJ, 2018, 6, e5745.	0.9	2
152	Flexible spandrels of the global plant virome: Proteomic-wide evolutionary patterns of structural intrinsic protein disorder elucidate modulation at the functional virus–host interplay. Progress in Molecular Biology and Translational Science, 2021, 183, 355-409.	0.9	0
153	Target-binding behavior of IDPs via pre-structured motifs. Progress in Molecular Biology and Translational Science, 2021, 183, 187-247.	0.9	4
154	Unfoldomes and Unfoldomics: Introducing Intrinsically Disordered Proteins. , 2016, , 125-150.		2
158	OUP accepted manuscript. Bioinformatics, 2020, 36, i754-i761.	1.8	6
159	Computational Prediction of Intrinsic Disorder in Protein Sequences with the disCoP Meta-predictor. Methods in Molecular Biology, 2020, 2141, 21-35.	0.4	4
161	The protein disorder cycle. Biophysical Reviews, 2021, 13, 1155-1162.	1.5	9
162	Bioinformatic Analysis of Lytic Polysaccharide Monooxygenases Reveals the Pan-Families Occurrence of Intrinsically Disordered C-Terminal Extensions. Biomolecules, 2021, 11, 1632.	1.8	25
163	The Inherent Coupling of Intrinsically Disordered Regions in the Multidomain Receptor Tyrosine Kinase KIT. International Journal of Molecular Sciences, 2022, 23, 1589.	1.8	5
164	Experimental Evidence of Intrinsic Disorder and Amyloid Formation by the Henipavirus W Proteins. International Journal of Molecular Sciences, 2022, 23, 923.	1.8	6
165	Conformational and Solvation Dynamics of an Amyloidogenic Intrinsically Disordered Domain of a Melanosomal Protein. Journal of Physical Chemistry B, 2022, 126, 443-452.	1.2	3
166	Analysis of structure and dynamics of intrinsically disordered regions in proteins using solution NMR methods. , 2022, , 535-550.		1
167	Surveying over 100 predictors of intrinsic disorder in proteins. Expert Review of Proteomics, 2021, 18, 1019-1029.	1.3	18
168	Deep learning in prediction of intrinsic disorder in proteins. Computational and Structural Biotechnology Journal, 2022, 20, 1286-1294.	1.9	24
169	Resources for computational prediction of intrinsic disorder in proteins. Methods, 2022, 204, 132-141.	1.9	17
170	Characterization of intrinsically disordered regions in proteins informed by human genetic diversity. PLoS Computational Biology, 2022, 18, e1009911.	1.5	13
171	Human Vitamin K Epoxide Reductase as a Target of Its Redox Protein. International Journal of Molecular Sciences, 2022, 23, 3899.	1.8	3

#	Article	IF	CITATIONS
172	Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. Biophysics Reviews, 2022, 3, .	1.0	15
173	Protein embeddings and deep learning predict binding residues for various ligand classes. Scientific Reports, 2021, 11, 23916.	1.6	63
174	Short Linear Motifs (SLiMs) in "Core―RxLR Effectors of <i>Phytophthora parasitica</i> var. <i>nicotianae</i> : a Case of PpRxLR1 Effector. Microbiology Spectrum, 2022, 10, e0177421.	1.2	1
178	Predicting Protein Conformational Disorder and Disordered Binding Sites. Methods in Molecular Biology, 2022, 2449, 95-147.	0.4	4
179	Masks Start to Drop: Suppressor of MAX2 1-Like Proteins Reveal Their Many Faces. Frontiers in Plant Science, 2022, 13, .	1.7	12
180	Predicting protein intrinsically disordered regions by applying natural language processing practices. Soft Computing, 0, , 1.	2.1	0
181	A Type Ib Crustin from Deep-Sea Shrimp Possesses Antimicrobial and Immunomodulatory Activity. International Journal of Molecular Sciences, 2022, 23, 6444.	1.8	0
182	Hidden Multivalency in Phosphatase Recruitment by a Disordered AKAP Scaffold. Journal of Molecular Biology, 2022, 434, 167682.	2.0	5
183	Compositional Bias of Intrinsically Disordered Proteins and Regions and Their Predictions. Biomolecules, 2022, 12, 888.	1.8	11
184	AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Scientific Reports, 2022, 12, .	1.6	48
186	The Multivalent Polyampholyte Domain of Nst1, a P-Body-Associated Saccharomyces cerevisiae Protein, Provides a Platform for Interacting with P-Body Components. International Journal of Molecular Sciences, 2022, 23, 7380.	1.8	2
187	An <i>in silico</i> study of how histone tail conformation affects the binding affinity of ING family proteins. PeerJ, 0, 10, e14029.	0.9	0
188	The Role of Disordered Regions in Orchestrating the Properties of Multidomain Proteins: The SARS-CoV-2 Nucleocapsid Protein and Its Interaction with Enoxaparin. Biomolecules, 2022, 12, 1302.	1.8	4
190	Does Generic Cyclic Kinase Insert Domain of Receptor Tyrosine Kinase KIT Clone Its Native Homologue?. International Journal of Molecular Sciences, 2022, 23, 12898.	1.8	2
191	SETH predicts nuances of residue disorder from protein embeddings. Frontiers in Bioinformatics, 0, 2,	1.0	14
192	Intrinsically Disordered Proteins: An Overview. International Journal of Molecular Sciences, 2022, 23, 14050.	1.8	30
193	Concerted enhanced-sampling simulations to elucidate the helix-fibril transition pathway of intrinsically disordered α-Synuclein. International Journal of Biological Macromolecules, 2022, 223, 1024-1041.	3.6	3
194	Methods for measuring structural disorder in proteins. , 2023, , 149-198.		Ο

#	Article	IF	CITATIONS
195	Prediction of protein structure and intrinsic disorder in the era of deep learning. , 2023, , 199-224.		0
196	From dilute to concentrated solutions of intrinsically disordered proteins: Interpretation and analysis of collected data. Methods in Enzymology, 2023, , 299-330.	0.4	1
197	Native Mass Spectrometry of BRD4 Bromodomains Linked to a Long Disordered Region. Mass Spectrometry, 2022, , .	0.2	0
198	Approaches for the Identification of Intrinsically Disordered Protein Domains. Methods in Molecular Biology, 2023, , 403-412.	0.4	0
199	CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information. Briefings in Bioinformatics, 2023, 24, .	3.2	5
200	Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2022, 16, 247-260.	0.3	0
201	Novel machine learning approaches revolutionize protein knowledge. Trends in Biochemical Sciences, 2023, 48, 345-359.	3.7	23
202	Computational prediction of disordered binding regions. Computational and Structural Biotechnology Journal, 2023, 21, 1487-1497.	1.9	11
203	Site-Specific Phosphorylation of RTK KIT Kinase Insert Domain: Interactome Landscape Perspectives. , 2023, 1, 39-71.		0
204	Circuit Topology Approach for the Comparative Analysis of Intrinsically Disordered Proteins. Journal of Chemical Information and Modeling, 2023, 63, 2586-2602.	2.5	2
215	Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins. Nature Protocols, 2023, 18, 3157-3172.	5.5	4
218	Exploration ofÂConformations forÂanÂIntrinsically Disordered Protein. Lecture Notes in Computer Science, 2023, , 531-540.	1.0	0
221	Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. Advances in Protein Chemistry and Structural Biology, 2023, , .	1.0	0