Influenza A Virus Migration and Persistence in North A

PLoS Pathogens 9, e1003570 DOI: 10.1371/journal.ppat.1003570

Citation Report

#	Article	IF	CITATIONS
1	Genetic Structure of Avian Influenza Viruses from Ducks of the Atlantic Flyway of North America. PLoS ONE, 2014, 9, e86999.	2.5	14
2	Potential Role of Migratory Quail in Spreading of Some Zoonotic Pathogens in Egypt. American Journal of Animal and Veterinary Sciences, 2014, 9, 203-210.	0.5	5
3	Cross-conservation of T-cell epitopes. Human Vaccines and Immunotherapeutics, 2014, 10, 256-262.	3.3	22
4	Bird harvesting practices and knowledge, risk perceptions, and attitudes regarding avian influenza among Canadian First Nations subsistence hunters: implications for influenza pandemic plans. BMC Public Health, 2014, 14, 1113.	2.9	6
5	Adaptive Evolution and Environmental Durability Jointly Structure Phylodynamic Patterns in Avian Influenza Viruses. PLoS Biology, 2014, 12, e1001931.	5.6	36
6	Using quantitative disease dynamics as a tool for guiding response to avian influenza in poultry in the United States of America. Preventive Veterinary Medicine, 2014, 113, 376-397.	1.9	19
7	Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal. Nature Communications, 2014, 5, 4791.	12.8	54
8	Avian Influenza from an Ecohealth Perspective. EcoHealth, 2014, 11, 4-14.	2.0	13
9	Diffusion of influenza viruses among migratory birds with a focus on the Southwest United States. Infection, Genetics and Evolution, 2014, 26, 185-193.	2.3	13
10	Historical and Recent Cases of H3 Influenza A Virus in Turkeys in Minnesota. Avian Diseases, 2015, 59, 512-517.	1.0	3
11	Global Avian Influenza Surveillance in Wild Birds: A Strategy to Capture Viral Diversity. Emerging Infectious Diseases, 2015, 21, e1-7.	4.3	46
12	Adaptation of Pandemic H2N2 Influenza A Viruses in Humans. Journal of Virology, 2015, 89, 2442-2447.	3.4	29
13	Avian influenza H5N1 viral and bird migration networks in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 172-177.	7.1	169
14	H7N9 influenza A virus in turkeys in Minnesota. Journal of General Virology, 2015, 96, 269-276.	2.9	12
15	Environmental Role in Influenza Virus Outbreaks. Annual Review of Animal Biosciences, 2015, 3, 347-373.	7.4	96
16	Spread and Persistence of Influenza A Viruses in Waterfowl Hosts in the North American Mississippi Migratory Flyway. Journal of Virology, 2015, 89, 5371-5381.	3.4	29
17	Influenza A virus evolution and spatio-temporal dynamics in Eurasian wild birds: a phylogenetic and phylogeographical study of whole-genome sequence data. Journal of General Virology, 2015, 96, 2050-2060.	2.9	23
18	The Genetic Diversity of Influenza A Viruses in Wild Birds in Peru. PLoS ONE, 2016, 11, e0146059.	2.5	24

CITATION REPORT

#	Article	IF	CITATIONS
19	Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential. PLoS Pathogens, 2016, 12, e1005620.	4.7	48
20	Identification of migratory bird flyways in North America using community detection on biological networks. Ecological Applications, 2016, 26, 740-751.	3.8	27
21	Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks. Journal of Immunology, 2016, 197, 783-794.	0.8	14
22	Transmission of influenza reflects seasonality of wild birds across the annual cycle. Ecology Letters, 2016, 19, 915-925.	6.4	59
23	A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells. Infection, Genetics and Evolution, 2016, 41, 279-288.	2.3	4
24	Genome-scale phylodynamics and evolution analysis of global H7N7 influenza viruses. Veterinary Microbiology, 2016, 193, 83-92.	1.9	2
25	Analysis of influenza A viruses from gulls: An evaluation of inter-regional movements and interactions with other avian and mammalian influenza A viruses. Cogent Biology, 2016, 2, 1234957.	1.7	9
26	A Bird's Eye View of Influenza A Virus Transmission: Challenges with Characterizing Both Sides of a Co-Evolutionary Dynamic. Integrative and Comparative Biology, 2016, 56, 304-316.	2.0	47
27	Inference of Japanese encephalitis virus ecological and evolutionary dynamics from passive and active virus surveillance. Virus Evolution, 2016, 2, vew009.	4.9	6
28	A North American H7N3 Influenza Virus Supports Reassortment with 2009 Pandemic H1N1 and Induces Disease in Mice without Prior Adaptation. Journal of Virology, 2016, 90, 4796-4806.	3.4	8
29	Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus. Journal of Virology, 2017, 91, .	3.4	27
30	THE PATHOGENESIS OF CLADE 2.3.4.4 H5 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUSES IN RUDDY DUCK (<i>OXYURA JAMAICENSIS</i>) AND LESSER SCAUP (<i>AYTHYA AFFINIS</i>). Journal of Wildlife Diseases, 2017, 53, 832-842.	0.8	20
31	No evidence for homosubtypic immunity of influenza H3 in Mallards following vaccination in a natural experimental system. Molecular Ecology, 2017, 26, 1420-1431.	3.9	10
32	Of Ducks and Men: Ecology and Evolution of a Zoonotic Pathogen in a Wild Reservoir Host. Advances in Environmental Microbiology, 2017, , 247-286.	0.3	4
33	Evidence of Intercontinental Spread and Uncommon Variants of Low-Pathogenicity Avian Influenza Viruses in Ducks Overwintering in Guatemala. MSphere, 2017, 2, .	2.9	8
34	The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evolutionary Biology, 2017, 17, 118.	3.2	45
35	The ecology and adaptive evolution of influenza A interspecies transmission. Influenza and Other Respiratory Viruses, 2017, 11, 74-84.	3.4	83
36	Migratory birds in southern Brazil are a source of multiple avian influenza virus subtypes. Influenza and Other Respiratory Viruses, 2018, 12, 220-231.	3.4	17

CITATION REPORT

#	Article	IF	CITATIONS
37	Terrestrial Bird Migration and West Nile Virus Circulation, United States. Emerging Infectious Diseases, 2018, 24, 2184-2194.	4.3	21
38	Transmission Dynamics of Highly Pathogenic Avian Influenza Virus A(H5Nx) Clade 2.3.4.4, North America, 2014–2015. Emerging Infectious Diseases, 2018, 24, 1840-1848.	4.3	41
39	A Review of Eight High-Priority, Economically Important Viral Pathogens of Poultry within the Caribbean Region. Veterinary Sciences, 2018, 5, 14.	1.7	21
40	Contrasting selective patterns across the segmented genome of bluetongue virus in a global reassortment hotspot. Virus Evolution, 2019, 5, vez027.	4.9	17
41	A brief history of bird flu. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180257.	4.0	137
42	Attachment Patterns of Human and Avian Influenza Viruses to Trachea and Colon of 26 Bird Species – Support for the Community Concept. Frontiers in Microbiology, 2019, 10, 815.	3.5	12
43	Domestic ducks play a major role in the maintenance and spread of H5N8 highly pathogenic avian influenza viruses in South Korea. Transboundary and Emerging Diseases, 2020, 67, 844-851.	3.0	27
44	Genetic and pathogenic characteristics of clade 2.3.2.1c H5N1 highly pathogenic avian influenza viruses isolated from poultry outbreaks in Laos during 2015–2018. Transboundary and Emerging Diseases, 2020, 67, 947-955.	3.0	6
45	The Ecology and Evolution of Influenza Viruses. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038489.	6.2	97
46	Equine-Like H3 Avian Influenza Viruses in Wild Birds, Chile. Emerging Infectious Diseases, 2020, 26, 2887-2898.	4.3	2
47	The evolutionary history and global spatio-temporal dynamics of potato virus Y. Virus Evolution, 2020, 6, veaa056.	4.9	15
48	Phylogeographic analysis of H5N1 highly pathogenic avian influenza virus isolated in Cambodia from 2018 to 2019. Infection, Genetics and Evolution, 2020, 86, 104599.	2.3	0
49	Influenza A Viruses in Ruddy Turnstones (Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses, 2020, 12, 1205.	3.3	6
50	Establishment and application of the National Parasitic Resource Center (NPRC) in China. Advances in Parasitology, 2020, 110, 373-400.	3.2	0
51	Evolutionary genetics of canine respiratory coronavirus and recent introduction into Swedish dogs. Infection, Genetics and Evolution, 2020, 82, 104290.	2.3	8
52	Animal Disease Surveillance in the 21st Century: Applications and Robustness of Phylodynamic Methods in Recent U.S. Human-Like H3 Swine Influenza Outbreaks. Frontiers in Veterinary Science, 2020, 7, 176.	2.2	1
53	Phylogeography and Antigenic Diversity of Low-Pathogenic Avian Influenza H13 and H16 Viruses. Journal of Virology, 2020, 94, .	3.4	16
54	Bats and birds as viral reservoirs: A physiological and ecological perspective. Science of the Total Environment, 2021, 754, 142372.	8.0	24

#	Article	IF	CITATIONS
55	Methodological synthesis of Bayesian phylodynamics, HIV-TRACE, and GEE: HIV-1 transmission epidemiology in a racially/ethnically diverse Southern U.S. context. Scientific Reports, 2021, 11, 3325.	3.3	8
56	Reassortment and Persistence of Influenza A Viruses from Diverse Geographic Origins within Australian Wild Birds: Evidence from a Small, Isolated Population of Ruddy Turnstones. Journal of Virology, 2021, 95, .	3.4	6
58	Ecology of avian influenza viruses in migratory birds wintering within the Yangtze River wetlands. Science Bulletin, 2021, 66, 2014-2024.	9.0	6
59	Role of Migratory Birds in Spreading Influenza Viruses. , 2014, , 87-101.		1
61	Amplicon pyrosequencing of wild duck eubacterial microbiome from a fecal sample reveals numerous species linked to human and animal diseases. F1000Research, 0, 2, 224.	1.6	2
62	Amplicon pyrosequencing and ion torrent sequencing of wild duck eubacterial microbiome from fecal samples reveals numerous species linked to human and animal diseases. F1000Research, 0, 2, 224.	1.6	3
63	Determining the Phylogenetic and Phylogeographic Origin of Highly Pathogenic Avian Influenza (H7N3) in Mexico. PLoS ONE, 2014, 9, e107330.	2.5	25
64	Molecular Characterization of Subtype H11N9 Avian Influenza Virus Isolated from Shorebirds in Brazil. PLoS ONE, 2015, 10, e0145627.	2.5	9
65	Widespread Reassortment Shapes the Evolution and Epidemiology of Bluetongue Virus following European Invasion. PLoS Pathogens, 2015, 11, e1005056.	4.7	117
66	Competition between influenza A virus subtypes through heterosubtypic immunity modulates re-infection and antibody dynamics in the mallard duck. PLoS Pathogens, 2017, 13, e1006419.	4.7	53
67	Novel insights into chromosome evolution of Charadriiformes: extensive genomic reshuffling in the wattled jacana (Jacana jacana, Charadriiformes, Jacanidae). Genetics and Molecular Biology, 2020, 43, e20190236.	1.3	10
68	Influenza A Prevalence and Subtype Diversity in Migrating Teal Sampled Along the United States Gulf Coast. Avian Diseases, 2018, 63, 165.	1.0	8
69	The Pathogenesis of H7 Highly Pathogenic Avian Influenza Viruses in Lesser Scaup (Aythya affinis). Avian Diseases, 2019, 63, 230.	1.0	7
70	The contrasting phylodynamics of human influenza B viruses. ELife, 2015, 4, e05055.	6.0	166
72	The Evolutionary Dynamics of Influenza A Viruses Circulating in Mallards in Duck Hunting Preserves in Maryland, USA. Microorganisms, 2021, 9, 40.	3.6	3
73	Host diversity and behavior determine patterns of interspecies transmission and geographic diffusion of avian influenza A subtypes among North American wild reservoir species. PLoS Pathogens, 2022, 18, e1009973.	4.7	9
76	Maintenance and dissemination of avian-origin influenza A virus within the northern Atlantic Flyway of North America. PLoS Pathogens, 2022, 18, e1010605.	4.7	9
77	Evolution of the North American Lineage H7 Avian Influenza Viruses in Association with H7 Virus's Introduction to Poultry. Journal of Virology, 2022, 96, .	3.4	6

CITATION REPORT

#	Article	IF	CITATIONS
78	Spatiotemporal changes in influenza A virus prevalence among wild waterfowl inhabiting the continental United States throughout the annual cycle. Scientific Reports, 2022, 12, .	3.3	5
79	Bidirectional Movement of Emerging H5N8 Avian Influenza Viruses Between Europe and Asia via Migratory Birds Since Early 2020. Molecular Biology and Evolution, 2023, 40, .	8.9	12
81	Phylodynamic approaches to studying avian influenza virus. Avian Pathology, 2023, 52, 289-308.	2.0	1
82	Recurring Trans-Atlantic Incursion of Clade 2.3.4.4b H5N1 Viruses by Long Distance Migratory Birds from Northern Europe to Canada in 2022/2023. Viruses, 2023, 15, 1836.	3.3	2
83	Migratory patterns of two major influenza virus host species on tropical islands. Royal Society Open Science, 2023, 10, .	2.4	2